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A journey of a thousand steps
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Stochastic bandits (MAB with IID rewards)

Basic protocol :

Given K arms, T rounds.
Foreachroundt < T
1. Algorithm picks arm a;
2. Algorithm observes reward r; for chosen arm

Goal: maximize total reward over T rounds

Primary interest: mean reward vector u,
where u(a) = E[D,] is the mean reward of arm a.



Uniform Exploration

- MAB instance
- Parameter N

. Tried each arm No

N times ?

A\ 4

\

Explore arms uniformly

Yes

4 )

Exploit : Select arm
with highest
average reward

. J




Regret

T
R(T) =" -T = ) u(ar)
t=1

with u* := max pu(a) and u(a) = E[D,]
a



Regret Analysis

Hoeffding inequality (clean event):

2
Pr{li(a) - u(@)] <T@} > 1-

2logT
N

with confidence radius r(a) =



Regret Analysis

case K = 2 arms

ula) +r(a) =2 a(a) > a(a*) =z p(a*) —r(a’)

N

a(a*) — ji(a) < r(a) +r(a*) = o( o8 T)



Regret Analysis

R(T)SN+0< IOI%TX(T—ZN)>S N+0< 1°§T><T)

2 1
minimize with N = T3(logT)3

R(T) <0 (T%(log T)%)



Regret Analysis

C|R(T)] < Té X 0(K logT)%




Reward distribution

10-armed Testbed

T
10
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e-greedy

MAB instance

€; for each round

Toss a coin with

success

success
probability €;

Exploit: choose the

>

Explore: choose an arm
uniformly at random

arm with highest
average reward so far




Regret Analysis

1 1

With exploration probabilities e, =t 3 - (K logt)s
For each round t:

R ()] < tg X 0(K log t)%
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Upper Confidence Bound exploration

- MAB instance\ | Try each arm
- t=1 j once

Choose the arm a with higher
Upper Confidence Bound :
UCB:(a) = i;(a) + r¢(a)

t=t+1

Yes No
t<T End




Upper Confidence Bound exploration

UCB1:

Try each arm once:
In each round t, pick argmax UCB;(a), where UCB;(a) = j;(a) + r:(a)
a

2logt

ne(a)

Recall: confidence radius 1:(a) =




Regret Analysis

E|R(t)] < 0(\/1{15 logT) forallroundst < T
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Bayesian Bandits
Bayesian assumption: [ ~ [P
.u(a) = ]E[]D)a]

Bayesian regret:

BR(T) = E;-p|E[R(DII] = Epep|p* - T — Xiepr ular)]



Thompson Sampling

- MABinstance\
- Priorp j

- t=1

»
>

A 4

Sample from p
Take best action
Update p
t=t+1

Y N
& t<T ° End >




Terminology

t-history:
H, = ((ay, 1), -, (as, 1)) € (A X R)?

feasible t-history:
H = ((a}, 1), ., (a, ) € (AX R)?
with Pr[H, = H] > 0



Thompson Sampling

For each round t
observe H;_; = H, for some feasible (t — 1)-history H:
Draw arm a; independently from distribution p,(- |H), where
p.(a|H) = Prla* = a|H;_; = H] foreacharma




Bayesian regret analysis

BR(T) = 0({/KT log(T))
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Continuum-armed bandits (CAB)

Lipschitz condition:

ju(x) —u(y)| <L:|x—y|foranytwoarmsx,y € X =[0,1]



Fixed discretization

Discretization:
Finite setofarms S c X

Bestarmin S:
1 (S) = sup u(x)

XES

Discretizatin error:
DE(S) = u*(X) — u*(S)



Regret Analysis

E[R(T)] =T - w*(X) — W(ALG)
= (T W (S) = WALG)) + T - (1" (X) — u*(5))
= Rs(T) + T - DE(S)

where W (ALG) is the total reward of the algorithm

E[R(T)] < 0 (\/ISITlogT) + T - DE(S)



Regret Analysis

Fixed uniform discretization :
- 1
Consider S c X = [0,1], |S]| = H

DE(S) <L -e€

1 2 1
E|IR(T)] <O (L§ - T3 - log§(T))



Lipschitz MAB

Recall CAB:

ju(x) —u(y)| < L:|x—1y|foranytwoarmsx,y € X =[0,1]

Now:

ju(x) — u(y)| < D(x,y) foranytwoarmsx,y



Regret Analysis

metric space: X = [0,1]¢ under L, metric(p = 1)

Consider S c X, |S]| = (EDd

DE(S) < Cpd - €



Regret Analysis

Recall:

E[R(T)] < O({/ISITlogT) + T - DE(S)

EIR(T)] <O (T%(c log T)ﬁ)



Adaptive discretization

DE(S) < D(S,x*) == minD(x,x™)
XES



Zooming Algorithm

- MAB instance
- S - @

Are all arms
covered by active
arms?

Yes Play an arm according
to the selection rule

A

Activate an arm
according to the
activation rule




Zooming Algorithm

Initialize set of active arms S « @
For each round t
if some arm y is not covered by confidence balls of active arms then
pick any such arm y and “activate” it: § <« S U {y}
play an active arm x with the largest index;(x)

Activation rule

Selection rule



Zooming Algorithm: Notations

Confidence radius:

r(x) = /,ft}fjfl, () — ()] < 7 ()

Confidence Ball:

Be(x) = {y € X: D(x,y) < ()}



Zooming Algorithm: Activation Rule

Suppose arm y not active and D(x,y) < 1:(x)

invariant:

all arms are covered by confidence balls of the active arms

Activation rule:

If some arm y becomes uncovered by confidence balls of the active arms, activate y



Zooming Algorithm: Selection Rule

Recall UCB1:
index;(x) = f;(x) + 2r:(x) UCB:(x) = i (x) + 1:(x)

Selection rule:

Play active arm with the largest index



Regret Analysis

E[R(T)] <O (T%(c log T)ﬁ)



Conclusion

Summary:
- Stochastic bandits
- Bayesian bandits

- Lipschitz bandits

Next:

Contextual bandits
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