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What’s in the name ? A brief history



Applications

• Clinical trials



• Web interfaces

• Ad placement

• Recommender systems

Applications



• Game tree search

Applications
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Stochastic bandits (MAB with IID rewards)

Given 𝐾 arms, 𝑇 rounds.
For each round 𝑡 ≤ 𝑇

1. Algorithm picks arm 𝑎𝑡
2. Algorithm observes reward 𝑟𝑡 for chosen arm

Basic protocol :

Goal: maximize total reward over 𝑇 rounds

Primary interest: mean reward vector 𝜇, 
where 𝜇 𝑎 = 𝔼 𝔻𝑎 is the mean reward of arm 𝑎.



Uniform Exploration

Exploit : Select arm 
with highest 

average reward

Tried each arm 
𝑁 times ?

Explore arms uniformly
No

Yes

- MAB instance
- Parameter 𝑁



Regret

𝑅 𝑇 = 𝜇∗ ⋅ 𝑇 −෍

𝑡=1

𝑇

𝜇 𝑎𝑡

with 𝜇∗ ≔ max
𝑎∈𝐴

𝜇 𝑎 and 𝜇 𝑎 ≔ 𝔼 𝔻𝑎



Pr ҧ𝜇 𝑎 − 𝜇 𝑎 ≤ 𝑟 𝑎 ≥ 1 −
2

𝑇4

with confidence radius 𝑟 𝑎 =
2 log 𝑇

𝑁

Hoeffding inequality (clean event):

Regret Analysis



Regret Analysis

case 𝐾 = 2 arms

𝜇 𝑎 + 𝑟 𝑎 ≥ ҧ𝜇 𝑎 > ҧ𝜇 𝑎∗ ≥ 𝜇 𝑎∗ − 𝑟 𝑎∗

ҧ𝜇 𝑎∗ − ҧ𝜇 𝑎 ≤ 𝑟 𝑎 + 𝑟 𝑎∗ = 𝑂
log 𝑇

𝑁



𝑅 𝑇 ≤ 𝑁 + 𝑂
log 𝑇

𝑁
× 𝑇 − 2𝑁 ≤ 𝑁 + 𝑂

log 𝑇

𝑁
× 𝑇

minimize with 𝑁 = 𝑇
2

3 log 𝑇
1

3

𝑅 𝑇 ≤ 𝑂 𝑇
2
3 log 𝑇

1
3

Regret Analysis



𝔼 𝑅(𝑇) ≤ 𝑇
2
3 × 𝑂 𝐾 log 𝑇

1
3

Regret Analysis



10-armed Testbed



Benchmark: 10-armed Testbed



𝜖-greedy

Toss a coin with 
success 

probability 𝜖𝑡

Explore: choose an arm 
uniformly at random

Exploit: choose the 
arm with highest 

average reward so far

success

- MAB instance
- 𝜖𝑡 for each round



Regret Analysis

𝔼 𝑅(𝑡) ≤ 𝑡
2
3 × 𝑂 𝐾 log 𝑡

1
3

With exploration probabilities 𝜖𝑡 = 𝑡−
1

3 ⋅ 𝐾 log 𝑡
1

3

For each round t :



Benchmark



- MAB instance
- 𝑡 = 1

Choose the arm 𝑎 with higher 
Upper Confidence Bound :
UCB𝑡 𝑎 = ҧ𝜇𝑡 𝑎 + 𝑟𝑡 𝑎

𝑡 = 𝑡 + 1

Upper Confidence Bound exploration

𝑡 ≤ 𝑇

Try each arm 
once

Yes
End

No



Upper Confidence Bound exploration

Recall: confidence radius 𝑟𝑡 𝑎 =
2 log 𝑡

𝑛𝑡 𝑎

Try each arm once:
In each round 𝑡, pick argmax

𝑎∈𝐴
𝑈𝐶𝐵𝑡(𝑎), where 𝑈𝐶𝐵𝑡 𝑎 = ҧ𝜇𝑡 𝑎 + 𝑟𝑡 𝑎

UCB1:



Regret Analysis

𝔼 𝑅 𝑡 ≤ 𝑂 𝐾𝑡 log 𝑇 for all rounds 𝑡 ≤ 𝑇



Benchmark
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Bayesian Bandits

𝐵𝑅 𝑇 ≔ 𝔼𝐼∼ℙ 𝔼 𝑅 𝑇 |𝐼 = 𝔼𝐼∼ℙ 𝜇∗ ⋅ 𝑇 − σ𝑡∈ 𝑇 𝜇 𝑎𝑡

Bayesian regret:

Bayesian assumption :  𝐼 ∼ ℙ

𝜇 𝑎 = 𝔼 𝔻𝑎



Thompson Sampling

- MAB instance
- Prior 𝑝
- 𝑡 = 1

Sample from 𝑝
Take best action

Update 𝑝
𝑡 = 𝑡 + 1

𝑡 ≤ 𝑇
Yes

End
No



Terminology

𝑡-history: 

𝐻𝑡 = 𝑎1, 𝑟1 , … , 𝑎𝑡 , 𝑟𝑡 ∈ 𝐴 × ℝ 𝑡

feasible 𝑡-history: 

𝐻 = 𝑎1
′ , 𝑟1

′ , … , 𝑎𝑡
′ , 𝑟𝑡

′ ∈ 𝐴 × ℝ 𝑡

with Pr 𝐻𝑡 = 𝐻 > 0



Thompson Sampling

For each round 𝑡
observe 𝐻𝑡−1 = 𝐻, for some feasible (𝑡 − 1)-history 𝐻:
Draw arm 𝑎𝑡 independently from distribution 𝑝𝑡 ⋅ 𝐻 , where

𝑝𝑡 𝑎 𝐻 ≔ Pr 𝑎∗ = 𝑎 𝐻𝑡−1 = 𝐻 for each arm 𝑎



Bayesian regret analysis

𝐵𝑅 𝑇 = 𝑂 KT log 𝑇



Benchmark
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Continuum-armed bandits (CAB)

𝜇 𝑥 − 𝜇 𝑦 ≤ 𝐿 ⋅ |𝑥 − 𝑦| for any two arms 𝑥, 𝑦 ∈ 𝑋 = 0,1

Lipschitz condition:



Fixed discretization

Discretization:
Finite set of arms 𝑆 ⊂ 𝑋

Best arm in 𝑆:
𝜇∗ 𝑆 = sup

𝑥∈𝑆
𝜇(𝑥)

Discretizatin error:   
DE 𝑆 = 𝜇∗ 𝑋 − 𝜇∗ 𝑆



𝔼 𝑅 𝑇 .= 𝑇 ⋅ 𝜇∗ 𝑋 −𝑊 𝐴𝐿𝐺

= 𝑇 ⋅ 𝜇∗ 𝑆 −𝑊 𝐴𝐿𝐺 + 𝑇 ⋅ 𝜇∗ 𝑋 − 𝜇∗ 𝑆

= 𝑅𝑆 𝑇 + 𝑇 ⋅ DE(𝑆)

where 𝑊(𝐴𝐿𝐺) is the total reward of the algorithm

Regret Analysis

𝔼 𝑅 𝑇 ≤ 𝑂 𝑆 𝑇 log 𝑇 + 𝑇 ⋅ DE(𝑆)



Regret Analysis

𝔼 𝑅(𝑇) ≤ 𝑂 𝐿
1
3 ⋅ 𝑇

2
3 ⋅ log

1
3 𝑇

Fixed uniform discretization :

DE 𝑆 ≤ 𝐿 ⋅ 𝜖

Consider 𝑆 ⊂ 𝑋 = 0,1 , 𝑆 =
1

𝜖



Lipschitz MAB

𝜇 𝑥 − 𝜇 𝑦 ≤ 𝒟(𝑥, 𝑦) for any two arms 𝑥, 𝑦

𝜇 𝑥 − 𝜇 𝑦 ≤ 𝐿 ⋅ |𝑥 − 𝑦| for any two arms 𝑥, 𝑦 ∈ 𝑋 = 0,1

Recall CAB:

Now:



Regret Analysis

metric space: 𝑋 = 0,1 𝑑 under 𝑙𝑝 metric (𝑝 ≥ 1)

Consider 𝑆 ⊂ 𝑋, 𝑆 =
1

𝜖

𝑑

DE 𝑆 ≤ 𝑐𝑝,𝑑 ⋅ 𝜖



Regret Analysis

𝔼 𝑅 𝑇 ≤ 𝑂 𝑇
𝑑+1
𝑑+2 𝑐 log 𝑇

1
𝑑+2

𝔼 𝑅 𝑇 ≤ 𝑂 𝑆 𝑇 log 𝑇 + 𝑇 ⋅ DE 𝑆

Recall:



Adaptive discretization

DE 𝑆 ≤ 𝒟 𝑆, 𝑥∗ ≔ min
𝑥∈𝑆

𝒟(𝑥, 𝑥∗)



Are all arms 
covered by active 

arms?

Play an arm according 
to the selection rule

Yes

- MAB instance
- 𝑆 = ∅

Zooming Algorithm 

Activate an arm 
according to the 
activation rule

No



Zooming Algorithm 

Initialize set of active arms 𝑆 ← ∅
For each round 𝑡

if some arm 𝑦 is not covered by confidence balls of active arms then
pick any such arm 𝑦 and “activate” it: 𝑆 ← 𝑆 ∪ {𝑦}

play an active arm 𝑥 with the largest index𝑡(𝑥) Selection rule

Activation rule



𝑟𝑡 𝑥 =
2 log 𝑇

𝑛𝑡 𝑥 +1
, 

Confidence radius:

𝜇 𝑥 − 𝜇𝑡 𝑥 ≤ 𝑟𝑡 𝑥

Confidence Ball:

𝐵𝑡 𝑥 = {𝑦 ∈ 𝑋: 𝒟 𝑥, 𝑦 ≤ 𝑟𝑡 𝑥 }

Zooming Algorithm: Notations



Suppose arm y not active and 𝒟 𝑥, 𝑦 ≪ 𝑟𝑡(𝑥)

Activation rule:

invariant:

all arms are covered by confidence balls of the active arms

If some arm 𝑦 becomes uncovered by confidence balls of the active arms, activate 𝑦

Zooming Algorithm: Activation Rule



index𝑡 𝑥 = ҧ𝜇𝑡 𝑥 + 2𝑟𝑡 𝑥

Selection rule:

Play active arm with the largest index

Zooming Algorithm: Selection Rule

Recall UCB1:

𝑈𝐶𝐵𝑡 𝑥 = ҧ𝜇𝑡 𝑥 + 𝑟𝑡 𝑥



Regret Analysis

𝔼 𝑅 𝑇 ≤ 𝑂 𝑇
𝑑+1
𝑑+2 𝑐 log 𝑇

1
𝑑+2



Conclusion

Summary:

- Stochastic bandits

- Bayesian bandits

- Lipschitz bandits

Next:

Contextual bandits
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