Multi-Armed Bandits

Florian Turati

A Classical Dilemma

Round	1	2	3	4	5	6	7	8	9	10
Left	0		10	0		0				10
Right		10			0		0	0	0	

Outline

Motivation

- Stochastic bandits
- Bayesian bandits
- Lipschitz bandits

What's in the name ? A brief history

Applications

• Clinical trials

Applications

- Web interfaces
- Ad placement
- Recommender systems

CORONAVIRUS: Live updates | All coronavirus stories | Global virus map | Key symptoms | Podcast | Newsletter | TRENDING: Edward Snowden

White House gives guidelines on reopening economy

Trump told governors they'll call the shots in their states and shared guidelines to reopen in phases starting May 1

Lessons: The governments that got it right

LIVE UPDATES: Portugal extends state of emergency

Analysis: Trump's big show will hide the real story

Watch: Dr. Gupta reacts to Dr. Oz citing new data on Fox News 🕟

Cuomo: Wife of CNN anchor diagnosed with coronavirus

What Trump could learn from Angela Merkel about dealing with coronavirus

ANALYSIS: UK politicians concerned 'virtual parliament' cannot hold Johnson to account

Ivanka and Jared Kushner don't think the coronavirus rules apply to them

Images of Venice from space show how coronavirus has changed city's iconic canals

Bolsonaro fires popular health minister

Here are the top 10 contenders Biden may choose as his running mate $\ensuremath{\triangleright}$

Police probe into Italian care homes finds coronavirus violations

Prince Harry and Meghan quietly delivered meals to Los Angeles residents in need

Pregnant nurse dies of Covid-19 but baby survives

Virus piles on pain for India's 'untouchables'

Famed WWE ring announcer dead at 69

US explores possibility Covid-19 started in Chinese lab

Applications

• Game tree search

Research

Number of papers

Outline

- Motivation
- Stochastic bandits
- Bayesian bandits
- Lipschitz bandits

A Classical Dilemma

Round	11	12	13	14	15	16	17	18	19	20
Left	10		0		10	0	0	10	0	10
Right		0		10						

Stochastic bandits (MAB with IID rewards)

Basic protocol :

Given K arms, T rounds. For each round $t \leq T$ 1. Algorithm picks arm a_t 2. Algorithm observes reward r_t for chosen arm

Goal: maximize total reward over *T* rounds

Primary interest: mean reward vector μ , where $\mu(a) = \mathbb{E}[\mathbb{D}_a]$ is the mean reward of arm a.

Uniform Exploration

Regret

$$R(T) = \mu^* \cdot T - \sum_{t=1}^T \mu(a_t)$$

with
$$\mu^* \coloneqq \max_{a \in A} \mu(a)$$
 and $\mu(a) \coloneqq \mathbb{E}[\mathbb{D}_a]$

Hoeffding inequality (clean event):

$$\Pr\{|\bar{\mu}(a) - \mu(a)| \le r(a)\} \ge 1 - \frac{2}{T^4}$$

with confidence radius
$$r(a) = \sqrt{\frac{2 \log T}{N}}$$

case K = 2 arms

$$\mu(a) + r(a) \ge \bar{\mu}(a) > \bar{\mu}(a^*) \ge \mu(a^*) - r(a^*)$$

$$\bar{\mu}(a^*) - \bar{\mu}(a) \le r(a) + r(a^*) = O\left(\sqrt{\frac{\log T}{N}}\right)$$

$$R(T) \le N + O\left(\sqrt{\frac{\log T}{N}} \times (T - 2N)\right) \le N + O\left(\sqrt{\frac{\log T}{N}} \times T\right)$$

minimize with
$$N = T^{\frac{2}{3}} (\log T)^{\frac{1}{3}}$$

$$R(T) \le O\left(T^{\frac{2}{3}}(\log T)^{\frac{1}{3}}\right)$$

$\mathbb{E}[R(T)] \le T^{\frac{2}{3}} \times O(K \log T)^{\frac{1}{3}}$

10-armed Testbed

Benchmark: 10-armed Testbed

ϵ -greedy

With exploration probabilities $\epsilon_t = t^{-\frac{1}{3}} \cdot (K \log t)^{\frac{1}{3}}$ For each round t :

$$\mathbb{E}[R(t)] \le t^{\frac{2}{3}} \times O(K \log t)^{\frac{1}{3}}$$

Benchmark

Upper Confidence Bound exploration

Upper Confidence Bound exploration

UCB1:

Try each arm once: In each round *t*, pick $\underset{a \in A}{\operatorname{argmax}} UCB_t(a)$, where $UCB_t(a) = \overline{\mu}_t(a) + r_t(a)$

Recall: confidence radius
$$r_t(a) = \sqrt{\frac{2 \log t}{n_t(a)}}$$

$\mathbb{E}[R(t)] \leq O(\sqrt{Kt \log T})$ for all rounds $t \leq T$

Benchmark

Outline

- Motivation
- Stochastic bandits
- Bayesian bandits
- Lipschitz bandits

A Classical Dilemma

Round	1	2	3	4	5	6	7	8	9	10
Left	0		1	0		0				1
Right		1			0		0	0	0	

Bayesian Bandits

Bayesian assumption : $I \sim \mathbb{P}$

 $\mu(a) = \mathbb{E}[\mathbb{D}_a]$

Bayesian regret:

 $BR(T) \coloneqq \mathbb{E}_{I \sim \mathbb{P}} \left[\mathbb{E}[R(T)|I] \right] = \mathbb{E}_{I \sim \mathbb{P}} \left[\mu^* \cdot T - \sum_{t \in [T]} \mu(a_t) \right]$

Thompson Sampling

Terminology

t-history:

$$H_t = ((a_1, r_1), \dots, (a_t, r_t)) \in (A \times \mathbb{R})^t$$

feasible *t*-history: $H = ((a'_1, r'_1), \dots, (a'_t, r'_t)) \in (A \times \mathbb{R})^t$ with $\Pr[H_t = H] > 0$

Thompson Sampling

For each round tobserve $H_{t-1} = H$, for some feasible (t - 1)-history H: Draw arm a_t independently from distribution $p_t(\cdot | H)$, where $p_t(a|H) \coloneqq \Pr[a^* = a|H_{t-1} = H]$ for each arm a Bayesian regret analysis

$$BR(T) = O(\sqrt{\mathrm{KT}\log(T)})$$

Benchmark

Outline

- Motivation
- Stochastic bandits
- Bayesian bandits
- Lipschitz bandits

A Classical Dilemma

Round	1	2	3	4	5	6	7	8	9	10
Left	0				10	0				10
Right		10	0	0			10	0	0	

Continuum-armed bandits (CAB)

Lipschitz condition:

 $|\mu(x) - \mu(y)| \le L \cdot |x - y|$ for any two arms $x, y \in X = [0,1]$

Fixed discretization

Discretization: Finite set of arms $S \subset X$

Best arm in *S*: $\mu^*(S) = \sup_{x \in S} \mu(x)$

Discretizatin error: DE(S) = $\mu^*(X) - \mu^*(S)$

$$\mathbb{E}[R(T)] = T \cdot \mu^*(X) - W(ALG)$$
$$= (T \cdot \mu^*(S) - W(ALG)) + T \cdot (\mu^*(X) - \mu^*(S))$$
$$= R_S(T) + T \cdot DE(S)$$

where W(ALG) is the total reward of the algorithm

$$\mathbb{E}[R(T)] \le O\left(\sqrt{|S|T\log T}\right) + T \cdot DE(S)$$

Fixed uniform discretization :

Consider
$$S \subset X = [0,1], |S| = \left[\frac{1}{\epsilon}\right]$$

 $\mathrm{DE}(S) \leq L \cdot \epsilon$

$$\mathbb{E}[R(T)] \le O\left(L^{\frac{1}{3}} \cdot T^{\frac{2}{3}} \cdot \log^{\frac{1}{3}}(T)\right)$$

Lipschitz MAB

Recall CAB:

 $|\mu(x) - \mu(y)| \le L \cdot |x - y|$ for any two arms $x, y \in X = [0,1]$

Now:

 $|\mu(x) - \mu(y)| \le \mathcal{D}(x, y)$ for any two arms x, y

metric space: $X = [0,1]^d$ under l_p metric ($p \ge 1$)

Consider
$$S \subset X$$
, $|S| = \left(\left[\frac{1}{\epsilon} \right] \right)^d$

 $DE(S) \le c_{p,d} \cdot \epsilon$

Recall:

 $\mathbb{E}[R(T)] \le O\left(\sqrt{|S|T\log T}\right) + T \cdot DE(S)$

$$\mathbb{E}[R(T)] \le O\left(T^{\frac{d+1}{d+2}}(c\log T)^{\frac{1}{d+2}}\right)$$

Adaptive discretization

$$DE(S) \le \mathcal{D}(S, x^*) \coloneqq \min_{x \in S} \mathcal{D}(x, x^*)$$

Zooming Algorithm

Zooming Algorithm

Initialize set of active arms $S \leftarrow \emptyset$ For each round tActivation ruleif some arm y is not covered by confidence balls of active arms then
pick any such arm y and "activate" it: $S \leftarrow S \cup \{y\}$ Activation ruleplay an active arm x with the largest index $_t(x)$ Selection rule

Zooming Algorithm: Notations

Confidence radius:

$$r_t(x) = \sqrt{\frac{2\log T}{n_t(x) + 1}}, \qquad |\mu(x) - \mu_t(x)| \le r_t(x)$$

Confidence Ball:

 $B_t(x) = \{ y \in X \colon \mathcal{D}(x, y) \le r_t(x) \}$

Zooming Algorithm: Activation Rule

Suppose arm y not active and $\mathcal{D}(x, y) \ll r_t(x)$

invariant:

all arms are covered by confidence balls of the active arms

Activation rule:

If some arm y becomes uncovered by confidence balls of the active arms, activate y

Zooming Algorithm: Selection Rule

 $index_t(x) = \bar{\mu}_t(x) + 2r_t(x)$

Recall UCB1: $UCB_t(x) = \bar{\mu}_t(x) + r_t(x)$

Selection rule:

Play active arm with the largest index

$\mathbb{E}[R(T)] \le O\left(T^{\frac{d+1}{d+2}}(c\log T)^{\frac{1}{d+2}}\right)$

Conclusion

Summary:

- Stochastic bandits
- Bayesian bandits
- Lipschitz bandits

Next:

Contextual bandits

References:

Introduction to Multi-Armed Bandits

– Aleksandrs Slivkins

Reinforcement Learning : An introduction (second edition)

– Richard S. Sutton, Andrew G. Barto

Bandit Algorithms

– Tor Lattimore, Csaba Szepesvári