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Deficiencies of classical Reinforcement Learning

e Huge state and action spaces

e C(Credit assighment

e Transfer learning

e Overfitting (Overspecialization)

e Knowledge representation



Hierarchical Reinforcement Learning in a nutshell

Q Beat eggs with sugar Add flour and cocoa -
Q Crack eggs into bowl Pour sugar into bowl -
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Benefits of Hierarchical Reinforcement Learning

e Structured exploration in state and action spaces
e Easier propagation of rewards

® Enables transfer learning

® Generalization through abstraction

e Better knowledge representation



Semi-Markov Decision Processes (SMDP) and Options
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Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning (Sutton et al., 1999)
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Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning (Sutton et al., 1999)
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Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning (Sutton et al., 1999)
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Feudal Reinforcement Learning (Dayan and Hinton, 1993)
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Challenges of Hierarchical Reinforcement Learning

® Learning options
e Meaningful hierarchies
e Collapsing hierarchies into single policy

e Updating lower-level policies affects higher-level performance
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FeUdal Networks for Hierarchical Reinforcement Learning

(Vezhnevets et al., 2017)
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FeUdal Networks for Hierarchical Reinforcement Learning
(Vezhnevets et al., 2017)
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FeUdal Networks for Hierarchical Reinforcement Learning
(Vezhnevets et al., 2017)
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