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Deep Learning in One Slide

What is it:
Extract useful patterns from data.
How:
Neural network + optimization
How (Practical):
Python + TensorFlow & friends
Hard Part:
Good Questions + Good Data
Why now:
Data, hardware, community, tools, investment
Where do we stand?
Most big questions of intelligence have not been
answered nor properly formulated

Exciting progress:

* Face recognition

* Image classification

* Speech recognition

e Text-to-speech generation

e Handwriting transcription

* Machine translation

* Medical diagnosis

e Cars: drivable area, lane keeping
* Digital assistants

* Ads, search, social recommendations
* Game playing with deep RL



Deep Learning is Representation Learning

Representation Learning:
the automated formation of useful representations from data.

Deep
Learning

Representation

Learning

Machine
Learning

Artificial
Intelligence

Output
(object identity)

3rd hidden layer

(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)



Representation Matters

Task: Draw a line to separate the blue curve and red curve
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Representation Matters

Representation: Representation:
The Earth is fixed center of The Sun is fixed center of
our Solar System our Solar System

How we represent the world can make the complex
appear simple both to us humans and to the
machine learning models we build.

Geocentric Model Heliocentric Model




"Al began with an ancient wish to forge the gods.”
-Pamela McCorduck, Machines Who Think, 1979
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3% of the neurons and 0.0001% of the synapses in the brain. Visualization of MNIST dataset classification.
Thalamocortical systemvisualization via DigiCortexEngine.

www.cybercontrols.org




Neuron: Biological Inspiration for Computation

impulses carried
toward cell body

' y branches
dendrites ( V/ of axon

nucleus

' axon

terminals

N\ impulses carried

away from cell body
cell body

Neuron: computational building block for the brain.
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@ synapse
axon from a neuron
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output axon

activation
function

(Artificial) Neuron: computational
building block for the “neural network”

Why does it work?

http://cs231n.github.io/neural-networks-1/



Content

@ Universal Approximation Theorem
Common DL Architectures
O Selected NNs in details

CNN (+ResNet), RNN (+LSTM), Transformer (+Attention)

Deep Double Decent



Universal approximation theorem

‘A feed-forward network with a single hidden layer containing a finite
number of neurons can approximate continuous functions on compact

subsets of R”, under mild assumptions on the activation function.”

-- Universal Approximation Theorem, Wikipedia
Two caveats of “any function”:
1. “approximation” instead of “exactly”;
2. the continuous functions;

Lazy version:
“A Neural Network can approximate almost any functions.”
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Universal approximation theorem

how to construct a neural network which approximates a
function with just one input and one output

13



Universal approximation theorem




Universal approximation theorem
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Common architecture of neural networks

4 Supervised Learning

-

1. Feed Forward Neural Networks
Input: Network:
P Output:
Afew Dense N ' - i
numbers Encoder » Representation Prediction }<
B R
2. Convolutional Neural Networks
Input: c
P MNetwork: Output:
Ci lutional . _—
An image p -Onvelutiona » Representation Prediction }1—

Encoder

3. Recurrent Neural Networks

Input:

Sequence

Network:

Recurrent

Output:

Encoder

»  Representation

Prediction }<—

4. Encoder-Decoder Architectures

Input:

Image,
Text,
etc.

Network:

Network:

Any ; Any
]—» Representation —»
Encoder P Decoder

Qutput:

Image,
Text,
etc.

Ground Truth:

Ground Truth:

-==+ Prediction .

Ground Truth:

--=-< Prediction |

N

Ground Truth:
Image,
==== Text,
i oete

\

Unsupervised Learning

5. Autoencoder

Input: Network: Network:  Ground Truth:
Image, . 5
Text, —» any Representation any - Exac.t L !
ote Encoder Decoder i\ ofinput

6. Generative Adversarial Networks

| Throw away after training

Input: Network: Output: Network:
MNoise ——» Generator —» — — Discriminator —» [iza B
Image ‘ Real or Fake
Y
,,,,,, HE—
! Real
|1 Image

Reinforcement Learning

7. Networks for Actions, Values, Policies, and Models

Input: Network: Output: Ground Truth:

. World Any I . } '
tat t = d
State Sample Encoder Representation ‘ Action Rewar




FFNNSs

4 N
1. Feed Forward Neural Networks
o —— Human Annotated
npuz- eLwork. Output: Ground Truth:
A UEL > Dense » Representation » Prediction [4----+ Prediction |
numbers Encoder/ :
\ Y,

« dating back to 1940s;

» data passes from input to output in a single pass without any “state memory” of what came before.
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CNNs

i 2. Convolutional Neural Networks )
Human Annotated
Input: Network: Output: Ground Truth:
An image Cor;?:tjc';::rnal Representation ——» Prediction 4—-——-% Prediction I
\. J

« Densely-connected layers + convolutional layers (convolutional encoder).
« Feed forward neural networks that use a spatial-invariance trick to efficiently learn local patterns;

(most commonly, in images)
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RNNSs

s N
3. Recurrent Neural Networks
Input: Network: Human Annotated
: Output: Ground Truth:
Sequence ——— R:::;;‘:t » Representation ——» Prediction |[«-|-- —- Prediction
N J

« Have cycles and therefore have “state memory”;
« Can be unrolled in time to become feed forward networks where the weights are shared;

« CNN — weights shared across “space” v.s. RNN — weights shared across “time”; - sequential data
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Encoder-Decoder Architectures

( N
4. Encoder-Decoder Architectures Human Annotated
Input: Network: Network: Output: Ground Truth:
Image, Image, ' Image,
Text, —» A1 Representation Any —»  Text, €t--- -' Text,
Encoder Decoder - :
etc. etc. ' etc. |
g ) e mmc e d

e.qg. image caption: encoder-CNN, decoder-RNN;

« FFNNs — dense encoder, CNNs — convolutional encoder, RNNs — recurrent encoder;
» Encoder: find patterns in raw data to form compact, useful representations;

« Decoder: generate high-resolution data from those representations.
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Common architecture of neural networks

Supervised Learning

-

1. Feed Forward Neural Networks

Input:

A few
numbers

Network:

Dense

h 4

Encoder

Representation

Output:

Prediction ’<—

2. Convolutional Neural Networks

Input:

An image

MNetwork:

Output:

| Convolutional

h J

Encoder

Representation

Prediction }1—

3. Recurrent Neural Networks

Input:

Sequence

Network:

Output:

Recurrent
Encoder

»  Representation

Prediction }<—

4. Encoder-Decoder Architectures

Input:

Image,
Text,
etc.

Network:

Representation

—»

Any
Encoder

Network:

Any
Decoder

Qutput:

Image,
Text,
etc.

Ground Truth:

Ground Truth:

R

Ground Truth:

--=-< Prediction |

Ground Truth:
Image,
==== Text,
i oete

Unsupervised Learning

5. Autoencoder

Input: MNetwork: Network: Ground Truth:
Image, . i
Text, +—» LA Representation il - Exa;t Sl
Encoder Decoder i\ ofinput
etc. i :
6. Generative Adversarial Networks
| Throw away after training
Input: Network: Output: ; Network:
Noise —» Generator —» — — Discriminator —m e
Image ‘ Real or Fake
Y
,,,,,, HE—
! Real
|1 Image

Reinforcement Learning

7. Networks for Actions, Values, Policies, and Models

Input: Network: Output:

. Warld Any I i } ;
tat t ==
State Sample Encoder L2 e e ‘ SeLen

Ground Truth:

{ Reward




Autoencoders

4. Encoder-Decoder Architectures

Human Annotated

Input: Network: Network: Output: Ground Truth:
Image, Image, : Image,
T:t)::t., —> Enﬁ22;>_' Representation 4<eﬁ2::|er — 'I:t)((:t., <« ———-E 'I:t)::t., :
- A
5. Autoencoder
Input: Network: Network:  Ground Truth:
Image, | i
An . An i Exact copy
Text, —» i —» Representation —» V - =P . 2V i
otc Encoder Decoder of input
\. /

« self-supervised: the ground truth data comes from the input data, no human effort is required;

« Application: unsupervised embeddings, image denoising, etc.
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Generative Adversarial Networks (GANSs)

a framework for training networks optimized for generating new
realistic samples from a particular representation.

4 N\
6. Generative Adversarial Networks

Network: Output: Throw away dfter training
Input: ; Network: |
Noise Generator FElE ——-> Discriminator —» FIER NI
Image Real or Fake |
a i
: I
...... doooo !
Real !
Image i

- /

24

images generated by BigGAN.




The GAN Zoo

[ hindupuravinash / the-gan-zoo ©uUnwatch~ | 516 | WStar | 7.9k | YFork 17k
<> Code Issues 11 Pull requests 10 Actions Projects 0 Wiki Security Insights -
Alist of all named GANs!
machine-learning ~ gan  generative-adversarial-network
D 175 commits ¥ 4 branches [ 0 packages © 0 releases A8 20 contributors g MIT
Branch: master New pull request Create new file | Upload files = Find file
‘, hindupuravinash Delete .DS_Store Latest commit 375f2be on Sep 30, 2018
W .vscode added github stats pull and requirements.txt 2 years ago
B LICENSE Initial commit 3 years ago
E) READMEj2.md Add code repo for ALL Fixes #47 2 years ago
E) README.md Update GANSs till Sept end 17 months ago
B The_GAN_Zoo.jpg Initial Commit 3 years ago
E) cumulative_gans.jpg Update GANs till Sept end 17 months ago
E) gans.tsv Update GANs till Sept end 17 months ago
E) requirements.txt added github stats pull and requirements.txt 2 years ago + . . .
« 500+ different named GAN variations

E) update.py added github stats pull and requirements.txt 2 years ago I r n n V rl I n -
README.md

The GAN Zoo

Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative

ways in which researchers are naming these GANs! So, here's a list of what started as a fun activity compiling all named

GANs!

[____J



Common architecture of neural networks

Supervised Learning

P
1. Feed Forward Neural Networks
Input: Network:
SR Dense » Representation
numbers Encoder a P

Output:

Prediction ’<—

2. Convolutional Neural Networks
Input: c
P MNetwork: Output:
C lutional . -
An image p -Onvelutiona » Representation Prediction -
Encoder

3. Recurrent Neural Networks
Input: Network:
Output:
Sequence o »  Representation Prediction -
Encoder

4. Encoder-Decoder Architectures

Input: Network: Network:
Image,
Any ; Any
Text Representation —»
ote ! Encoder P Decoder

Qutput:

Image,
Text,
etc.

Ground Truth:

Ground Truth:

-==+ Prediction .

Ground Truth:

--=-< Prediction |

Ground Truth:
Image,
==== Text,
i oete

Unsupervised Learning

5. Autoencoder

Input: Network: Network:  Ground Truth:
Image, . 5
Text, —» any Representation any - Exa;t L !
ote Encoder Decoder i\ ofinput

6. Generative Adversarial Networks

| Throw away after training

Input: Network: Output: Network:
Noise —» Generator —» — — Discriminator —» [iza B
Image ‘ Real or Fake
Y
,,,,,, HE—
! Real
|1 Image

Reinforcement Learning

7. Networks for Actions, Values, Policies, and Models

Input: Network: Output: Ground Truth:

. World Any ] . } '
tat t = d
State Sample Encoder Representation ‘ Action Rewar:




Deep Reinforcement Learning (Deep RL)

' N
7. Networks for Learning Actions, Values, Policies, and/or Models
Input: Network:
Output: Ground Truth:
Environment Any . .
— Representation —®| Action [«-4 Reward
Sample Encoder
. vy

- Based on what the NN is tasked with learning:
policy-based, value-based, and model-based,;
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Supervised Learning

Selected NNs in Detail

1. Feed Forward Neural Networks

Input:

A few
numbers

Network:

Dense

Output:

Encoder

h 4

Representation

» Prediction }< =

Ground Truth:

.

/T

2. Convolutional Neural Networks

Input: c
P MNetwork: Output:
C luti | . -
An image p -Onvelutiona » Representation » Prediction -
Encoder
vy
™y

3. Recurrent Neural Networks

Input:

Sequence

Network:

Recurrent

Output:

Encoder

»  Representation

Prediction }<—

4. Encoder-Decoder Architectures

Input:

Image,
Text,
etc.

Network: Network:
Any ; Any
]—» Representation —»

Encoder P Decoder

Qutput:

Image,
Text,
etc.

---+ Prediction .

-=-=-+ Prediction

Ground Truth:
Image,
==== Text,
¢ etc. !

Ground Truth:

Ground Truth:

Unsupervised Learning

5. Autoencoder

Input: MNetwork: Network:
Image E
4 Any : Any 1
Text — Ri tat e o}
ee::’ Encoder Epresentation Decoder

\

Ground Truth:

PR

Exact copy -
of input

-

6. Generative Adversarial Networks

| Throw away after training

Prediction:
Real or Fake

Input: Network: Output: ; Network:
) Fake T
Noise —» Generator —» [ — Discriminator —
3 A
,,,,,, HE—
! Real
|1 Image

Reinforcement Learning

7. Networks for Actions, Values, Policies, and Models

Input: Network: Output:

World Any I . } '
tat t = d
State Sample Encoder Representation ‘ Action Rewar

Ground Truth:




Pure Perception is HARD

Meural Netwark Output:

CNN is a revolutionary tool in
the Computer Vision field.
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Image Understanding is HARD

Man in swan tent photographing
swans
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What the computer sees

= 82% cat
15% dog
2% hat

1% mug

image classification

Convolutional filters:
Images are Numbers take advantage of spatial invariance;




CNN

] m — — CAR
B o — — TRUCK
N & | — VAN
' s — - =
' [] [] — BlCYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN :OL“':::TED SOFTMAX

~

FEATURE LEARNING
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why CNN works

== Bl
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| £y |

EENEEn
cox HEE
el S I el 1

[0.899, 0.628, ...]

[0.826, 0.267, ...]

“Exploring Neural Networks with Activation Atlases”, distill, 2019

33 https://distill.pub/2019/activation-atlas/



Why CNN over FFNN?

Convolutional Neural Networks

Regular neural network (fully connected):

input layer
hidden layer 1 hidden layer 2

Convolutional neural network:

depth
A 0 JIC K K height

00000
- ~BOCOON] - —1

width

Nl

Each layer takes a 3d volume, produces 3d volume with some
smooth function that may or may not have parameters.

34

Spatial variant v.s. Spatial invariant;

Scale ill v.s. Scale well;
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Human error (5.1%)
surpassed in 2015

2017
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Classification: CNNs beat Human

AlexNet (2012): First CNN (15.4%)
« 8layers

* 61 million parameters

ZFNet (2013): 15.4% to 11.2%
* 8 layers

* More filters. Denser stride.

VGGNet (2014): 11.2% to 7.3%

*  Beautifully uniform:
3x3 convy, stride 1, pad 1, 2x2 max pool

* 16 layers

* 138 million parameters

GoogleNet (2014): 11.2% to 6.7%
* Inception modules
* 22 layers

* 5 million parameters
(throw away fully connected layers)

ResNet (2015): 6.7% to 3.57%
* More layers = better performance

* 152 layers

CUImage (2016): 3.57% to 2.99%

* Ensemble of 6 models

SENet (2017): 2.99% to 2.251%

* Squeeze and excitation block: network
is allowed to adaptively adjust the
weighting of each feature map in the
convolutional block.



ResNet (residual network)

» Is deeper the better? VVanishing Gradient!

1.01

B Activation Function

W Derivative 1
"““'o'oo‘ 1 v, ..... )
b
AlexNet: 8 layers
VGGNet: 16 layers
GoogleNet: 22 layers

X
weight layer
F(x) l relu .
weight layer identity
F(x)+x

The Residual Block

ResNet: 152 layers!
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ResNet

Plain _"®* he

| K :@ | K -@ TN Unrolled

RNN K T T RNN

T Xp X

* Unfol

Unfo . R
ResNet 1K 1K i
i\ . ) ResNet With
ecurren @ = by a4 @ ***  Weight Sharing
Form K |«— T
X

1]

Figure 11: A ResNet can be reformulated into a recurrent form that is almost identical to a conventional RNN,

"Bridging the gaps between residual learning, recurrent neural networks and visual cortex.” (2016)

* RNNs without the explicit time based construction;
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Supervised Learning

Selected NNs in Detail

1. Feed Forward Neural Networks

Input: Network:
Afew Dense » Representation
numbers Encoder 7 s

Representation

Network:

Any | ‘h
Decoder I

Ground Truth:

PR

Exact copy -
of input

2. Convolutional Neural Networks

Input: Network:
. Convolutional .
An image - » Representation

6. Generative Adversarial Networks

-
Unsupervised Learning
5. Autoencoder
Output: Ground Truth: oS Network:
T Image, A
» Prediction }<—----| Prediction : Text o ny
; : ! Encoder
| S — ' etec.
\
N
p
Output: Ground Truth:

3. Recurrent Neural Networks

| Throw away after training

Prediction:
Real or Fake

Input: Network:
Recurrent .
Sequence »  Representation
4 Encoder e

4. Encoder-Decoder Architectures

Input: Network:
Image,
Any ; Any
Text Representation —»
ote ! Encoder P Decoder

Network:

Output: Ground Truth: Input:

Network:

! | Input: Network: Output: Network:
» Prediction «-|---+ Prediction |
e ' Noise —® Generator —» Fake —» Discriminator —»
) Image |
| I S
By ||| N — J I
Real
Image
Output: Ground Truth: . oo
Prediction }<—----€ Prediction : . .
e : Reinforcement Learning
/

7. Networks for Actions, Values, Policies, and Models

Output:

I—P{ Representation H Action }o--{ Reward

Ground Truth:

etc. : etc.

Image, ' Image, World Any
Text, L= Text, ; State Sample Encoder




RNN (LSTM)

one to one one to many many to one many to many many to many

I image captioning sentiment analysis Machine Translation Video Labelling (per frame)

Vanilla NN RNNs are amazing. But tricky to train.
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RNN(LSTM)

)
:
&

Recurrent Neural Networks have loops.
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RNN(LSTM)

@—>—®

)
:
&

Input: (example: word of a sentence)
Hidden state: function of previous hidden state and new input
Output: (example: predict next word in the sentence)

An unrolled recurrent neural network.

41
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&> —@

Long-Term Dependency

Context

!

“Bob is eating an apple.” “Bob likes apples. He is hungry and decided to
have a snack. So now he is eating an apple.”

Q)
A

i
;

SR S A A
Sl S S S S

@—>—@
&)

& ® ®
ARg iy
® & o

In theory, RNNs could learn this long-term dependencies.
In practice, it is difficult.
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RNN v.s. Long short-term memory (LSTM)

1 0 — > <

Neural Network Pointwise Vector
Layer Operation Transfer

& 6T9 O, &

A

; S
IS = A A 7.

| I |
® ® © &) ® &)

Concatenate Copy

The repeating module in a standard RNN The repeating module in a standard LSTM
contains a single layer. contains four interacting layers.
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LSTM: Pick What to Forget and What To Remember

] O—>>->—<

Neural Network Pointwise Vector
Layer Operation Transfer

W,

A

Concatenate Copy

&
T

A

E e

& )

>

|
&

Bob and Alice are having lunch. Bob likes apples. Alice likes

oranges. She is eating an orange.

44

Conveyer belt for previous state and new data:
1.Decide what to forget (state)
2.Decide what to remember (state)

3.Decide what to output (if anything)



LSTM Conveyer Belt

e State run through the cell
* 3 sigmoid layers output deciding which information

is let through (~1) and which is not (~0)

45



LSTM Conveyer Belt

fo =0 (Wy-lhi—1, 2] + by)

Step 1: Decide what to forget / ignore

46



LSTM Conveyer Belt

it — O'(Wi'[ht_l,fl?t] —+ bz)
tanh(We - [hi—1,2¢) + be)

0
||

Step 2: Decide which state values to update (w/sigmoid)
and what values to update with (w/ tanh)

47



LSTM Conveyer Belt

ffT %tr-%§ Cy = fi % Cr_q +1iy % C,

Step 3: Perform the forgetting and the state update

48



LSTM Conveyer Belt

S
]
|

U(Wo [ht—laxt] + bo)
o; * tanh (C})

>
~
|

Step 4: Produce output with tanh [-1, 1] deciding the values
and sigmoid [0, 1] deciding the filtering

49



Applications

[ ]
Inout: Text --- up to 100 characters, lower case letters work best
put: Deep Learning for Self Driving Cars
Awesome sauce Output: Dé’ ep Le o r'n
Vi Y, ?
{\O(/ SGJZF”_?}’I;I/I'V; qus
° J
o . Outputs
[3 e l 1o}
W R o o
[
e
XZ Hidden Layers
[....] [....] .... Alex Graves. "Generating
Echt dicke Kiste sequences with recurrent neural
networks." (2013).
Machine Translation Handwriting Generation from Text
(]
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Applications

[ ]
Correct descriptions. Relevant but incorrect
S2VT: A small bus is running into a building.
woman, crowd, cat, J
camera, holding, purple
i .na\.llnllem:::rmerawlthnu_vonwﬁa:;\,,wd ]
- A woman hr;ld'rnga:al. BB = A B |
a man sitting on a couch with a dog #1 A woman holding a J S2VT: A herd of zebras are walking in a field. |S2VT: A man is cutting a piece of a pair of a paper.
a man sitting on a chair with a dog in his lap i i
Venugopalan et al.
"Sequence to sequence-video to text." 2015.
[[osne |+ s b s fof s o s H;m s A s :
:,/ i :.,_/ e LT Code: https://vsubhashini.github.io/s2vt.html
Image Caption Generation Video Description Generation
(]
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Supervised Learning

Selected NNs in Detail

1. Feed Forward Neural Networks

Input: Network:
Afew Dense » Representation
numbers Encoder 7 s

Representation

Network:

Any | ‘h
Decoder I

Ground Truth:

PR

Exact copy -
of input

2. Convolutional Neural Networks

Input: Network:
. Convolutional .
An image - » Representation

6. Generative Adversarial Networks

-
Unsupervised Learning
5. Autoencoder
Output: Ground Truth: oS Network:
T Image, A
» Prediction }<—----| Prediction : Text o ny
; : ! Encoder
| S — ' etec.
\
N
p
Output: Ground Truth:

3. Recurrent Neural Networks

| Throw away after training

Input: Network:
Recurrent .
Sequence »  Representation
4 Encoder e

4. Encoder-Decoder Architectures

Input: Network:
Image,
Any ; Any
Text Representation —»
ote ! Encoder P Decoder

Network:

I—P{ Representation H Action }o--{ Reward

! | Input: Network: Output: Network:
» Prediction «-|---+ Prediction |
e ' MNoise ——» Generator —» Fake ! Discriminator —» o vl
) Image | Real or Fake
P
N HE—
Real
Image
Output: Ground Truth: . oo
Prediction }<—----€ Prediction : . .
e : Reinforcement Learning
) 7. Networks for Actions, Values, Policies, and Models
Output: Ground Truth: Input: Network: Output: Ground Truth:

etc. : etc.

Image, ' Image, World Any
Text, L= Text, ; State Sample Encoder




Seg2Seq: Encoder & Decoder

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

Je suis etudiant j—> ENCODER DECODER
—_—

0.03

Q
o
=
—'
lul
>
=

0.81

-0.62
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LSTM: Unrolled Process

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

Encoding Stage Decoding Stage

Encoder Decoder
RNN RNN

Je suis étudiant

54



Attention is all you need

“Bob likes apples. He is hungry and decided to
have a snack. So now he is eating an apple.”

l l l | l l |
® ® ® @ @ o o — e e ]
1 1 I !

A—A— AI— A — A— A
6 & b & &
Decoder do _ d; — d2 —_— ds

“Bob likes apples. He is hungry and decided to | | | |
have a snack. Alice likes oranges and she is

having lunch with Kate and Bob in the park. He
IS eating an apple.”

LSTMs does not solve the problem of RNNs completely:
when sentences are long, the model often forgets the
content of distant positions in the sequence

55



LSTM v.s.

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

Attention

Encoding Stage Decoding Stage
Encoder Decoder
RNN RNN
Je suis étudiant
Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION
Encoding Stage Decoding Stage

Encoder
RNN

Attention

Decoder
RNN

Je suis étudiant

56




Je

sSuis

étudiant

Attention

Encoder
hidden
state

hidden
state #1

hidden
state #2

hidden
state #3
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Transformer

The Transformer — a model that uses attention to boost the speed with which these models can be trained.

\
INPUT
. . . THE
Je suis étudiant | =——b C— TRANSFORMER —>|! am a student
J
| am a student
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\ S

INPUT | Je suis étudiant
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Transformer

The Transformer — a model that uses attention to boost the speed with which these models can be trained.

INPUT
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— —
Je suis étudiant O/ TRANSFORMER | am a student

| am a student

Speed, accuracy, parallelization. (f

N O N)

ENCODERS * DECODERS

. J

INPUT | Je  suis étudiant
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Transformer: more encoder & decoder

(]
| am a student | am a student
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Transformer: more network

(]
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Transformer: Self-Attention

“The animal didn't cross the street because it was too tired”

Layer:| 5 %| Attention:| Input - Input &/

ENCODER #2 k\

)

_B

; ) The_ The_
animal animal
r+ I r- [ . )
didn_ didn_
ENCODER#1 [, T T O\ . ;
Feed Forward Feed Forward t_ t_
Neural Network Neural Network Cross Cross
7 ) the the_
street street
2/ [ A . p
1 1 because_ because_
it_ it_
was_ was_
Self-Attention too foo
tire tire
\_ 7 7 %
| I d_ d_
x: [ x2 [N
Thinking Machines

More details: http://jalammar.github.io/illustrated-transformer/

62

When encoding "it" in encoder #5 (the top encoder in the stack):

part of the attention mechanism was focusing on "The Animal”, and baked

a part of its representation into the encoding of "it".



Transformer
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Deep Double Descent

Classical Regime Modern Regime
Bias-Variance Tradeoff Larger Model is Better
A A
4 Y
; :
\ 1
0.5 \ |
1
_ : -<—— Critical Regime

2 04 '
L i
= !
© 0.3 !
= i
~ 1
02 H

,9 :4— Interpolation Threshold
]
0.1 :
1
1
1
0.0 :

1 10 20 30 40 50 60
ResNet18 Width Parameter

@ Test Train

“An effect occurs in CNNs, ResNets, and transformers: performance first improves, then gets worse, and

then improves again with increasing model size, data size, or training time.”
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Challenges “conventional wisdoms.”

» Bias-variance trade-off: “larger models are worse.”
 Modern NN: “larger models are better.”

-+ “early stopping” is sometimes good.
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Test / Train Error
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Effective model complexity (EMC)
the maximum number of samples on which it can
achieve close to zerotraining error.

Under-paremeterized regime: EM(C(T) < n:
any perturbation of T that increases its
effective complexity will decrease the test error.

Over-parameterized regime EMC(T) > n:
any perturbation of T that increases its
effective complexity will decrease the test error.

Critically parameterized regime EMC(T) =~ n:

a perturbation of T that increases its
effective complexity might decrease or increase the
test error.



Deep Double Descent: A Stable Phenomenon

Model-wise Double Descent
Epoch-wise Double Descent

Sample-wise Non-monotonicity
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Take-away

Model behaves unexpectedly in transition regime

Training longer reverses overfitting

N
N

4k Samples
—e— 18k Samples

- Double the training epoch is a technique in some task

N
o

[
@

Bigger models are worse

For models in this range
4.5x more samples harm test loss

=
o

More data hurts

-
'S

Cross-Entropy Test Loss
S

=
o

@

0 25 50 75 100 125 150 175 200
Transformer Embedding Dimension (dmoder)

“While this behaviour appears to be fairly universal, we don’t yet
fully understand why it happens, and view further study of this
phenomenon as an important research direction.”
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Input Cell

© Backfed Input Cell

A Noisy Input Cell

@ ridden Cell

© Probablistic Hidden Cell

@ spiking Hidden Cell

©® cepsutecel

@ outputcell

@ Matchinput Output Cell

@ Recurrent Cel

@ Memorycell

@ Gated Memory Cell
Kernel

© convolution or Pool

A mostly complete chart of

Neural Networks wrrmmson

©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
WY, NN NN
RN RN R
Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

a

Markov Chain (MC) Hopfield Network (HN) ~ Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

IXIXIXIX] 8

Generative Adversarial Network (GAN)

eep Convolutional Inverse Graphics Network (DCIGN)
—~ N —~
O/O\ >§ /o\o O/O\
~NOCTD A0 O
~ 4 ~

Liquid State Machine (LSM)  Extreme Learning Machine (ELM)  Echo State Network (ESN)

o
VAV aVaw
g WAV W\

Deep Residual Network (DRN) Differentiable Neural Computer (ONC) Neural Turing Machine (NTM)
o o o

e Teeee

Capsule Network (CN)

X IX XX

i

Attention Network (AN)

' \’I .‘. Kohonen Network (KN)
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RNN = LSTM —>Attention = Transformer

Attention at time step 4



RNN = LSTM —>Attention = Transformer

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage Attention Decoding Stage




RNN = LSTM —>Attention = Transformer

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage Attention Decoding

Attention
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RNN = LSTM —>Attention = Transformer

[ ]
X wa
Input Thinking Machines
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