Seminar in Deep Reinforcement Learning

The Path to Continual Learning
Curriculum Learning

Ramon Witschi, ETH Computer Science MSc, 19.05.2020



What is a Curriculum?
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Curriculum over Training Data!


https://dl.acm.org/doi/10.1145/1553374.1553380

1 Start with simple examples
2 Gradually add more difficult ones

3 Arrive at target training distribution
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Empirical Results
Training & sometimes Test Scores


https://dl.acm.org/doi/10.1145/1553374.1553380

Faster Training on Linear
Regression (Convex Optimization)


https://arxiv.org/abs/1802.03796

Curriculum Learning meets Reinforcement Learning

Intrinsic Motivation and
Automatic Curricula via
Asymmetric Self-Play

Reverse Curriculum Generation Mix & Match — Agent Curricula for
for Reinforcement Learning Reinforcement Learning


https://arxiv.org/abs/1806.01780
https://arxiv.org/abs/1707.05300
https://arxiv.org/abs/1703.05407
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Model-Free Reinforcement Learning

Sample Inefficient
Jointly learn Environment and optimize for Reward
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“"Unsupervised” Exploration!



Framework

Self Play Episode (no supervision -- internal reward only) Target Task Episode
(supervision from external reward

Alice’s turn Bob’s turn Bob applied to target task
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TRPO + Self-play
Reinforce + Self-play
TRPO + VIME

TRPO + SimHash




Internal Reward Structure

Bob fast
or
slow

RA — maX(O, tB — tA)




creates a Curriculum
over Exploration Tasks!



Internal Reward Structure
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Uniform Sampling (baseline)
Oracle (rejection sampling)
Brownian from Good Starts

Brownian from All Starts
Asymmetric Self Play Start Generation
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Goal-Oriented Target Tasks
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How do We Train the Agent?



Random Sampling of Starting States?






Add Reqularization Term?






What's the Trick?
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Easy to Win, if you Start at the Goal!



Reverse Curriculum

1 Start almost there
2 Startincreasingly further away

3  Profit from work already done
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Reverse Curriculum

1 Start almost there
2 Startincreasingly further away

3  Profit from work already done



creates a Curriculum
over Start States!



States of Intermediate Difficulty (SolDs)

1. States Close to s9 may be good Start States
2. Random Walk in State-Space

3. Brownian Motion in Action-Space
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S9 goal states we want to reach from everywhere.
sY9. one goal state is provided
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Iteration 1:
e Run Brownian motion

e Obtain trajectories from collected starts to train policy
e | abel and filter starts based on training trajectories
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Iteration 2:
Run Brownian motion

Obtain trajectories from collected starts to train policy
Label and filter starts based on training trajectories
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Iteration 2:

Run Brownian motion
Obtain trajectories from collected starts to train policy
Label and filter starts based on training trajectories
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Iteration 3:
e Run Brownian motion

e Obtain trajectories from collected starts to train policy
e |abel and filter starts based on training trajectories
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Iteration 4:
e Run Brownian motion

e Obtain trajectories from collected starts to train policy
e | abel and filter starts based on training trajectories
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Iteration 5:
e Run Brownian motion

e Obtain trajectories from collected starts to train policy

e |abel and filter starts based on training trajectories
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Uniform Sampling (baseline)
Brownian from Good Starts
Brownian from All Starts
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Rethinking the Notion of Curriculum
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Curriculum Automatic!



What's the Difficulty of an Agent?



Agents

¥

Neural Networks!

*for all practical purposes
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Difficulty
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Scheduler: Tune Mixture Parameter
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Population Based Training ©



Population Based Training



Population Based Training

1 Tuning several mixture agents in parallel
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2 AgentA periodically communicates with some B



Population Based Training

1 Tuning several mixture agents in parallel
2 AgentA periodically communicates with some B

3 Badly performing: Copy weights and
hyperparameters ()



Explore Search Space
with badly performing Agents






DMLab Average (Action Spaces)

w— ME&M
- Small Action Space
Big Action Space

500 1000 1500 2000 2500
Frames per Game (1eb6)




Curriculum Learning
Is Here to Stay!






Take Care!



