Seminar in Deep Reinforcement Learning The Path to Continual Learning Curriculum Learning

Ramon Witschi, ETH Computer Science MSc, 19.05.2020

What is a Curriculum?

0 -1 + - × ÷

0 -1 + - × ÷

 $\begin{array}{cccc} x & x^2 & x^3 \\ \sqrt{} & < & \sum \end{array}$

 $\nabla \quad \bigotimes \quad \bigotimes \quad \Box$

Curriculum over Training Data!

Curriculum Learning (ICML, 2009) – Bengio et al.

2 Gradually add more difficult ones

3 Arrive at target training distribution

1 Start with simple examples

2 Gradually add more difficult ones

3 Arrive at target training distribution

1 Start with simple examples

2 Gradually add more difficult ones

3 Arrive at target training distribution

Empirical Results Faster Training & sometimes higher Test Scores

Faster Training proven on Linear Regression (Convex Optimization) 😳

Curriculum Learning by Transfer Learning: Theory and Experiments with Deep Networks – Weinshall, Cohen & Ami

Curriculum Learning meets Reinforcement Learning

Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play

Sukhbaatar et al

Reverse Curriculum Generation for Reinforcement Learning

<u>Florensa et al.</u>

Mix & Match – Agent Curricula for Reinforcement Learning

Czarnecki et al.

Curriculum Learning meets Reinforcement Learning

Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play

Sukhbaatar et al

Reverse Curriculum Generation for Reinforcement Learning

<u>Florensa et al.</u>

Mix & Match – Agent Curricula for Reinforcement Learning

Czarnecki et al.

Model-Free Reinforcement Learning

Sample Inefficient ⁽²⁾ Jointly learn Environment and optimize for Reward

"Unsupervised" Exploration!

Framework

Internal Reward Structure

$$R_{A} = \max(0, t_{B} - t_{A}) \xrightarrow{Bob fast}{0} 0 \qquad (S)$$

Automatically creates a Curriculum over Exploration Tasks!

Internal Reward Structure

Curriculum Learning meets Reinforcement Learning

Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play

Sukhbaatar et al

Reverse Curriculum Generation for Reinforcement Learning

<u>Florensa et al.</u>

Mix & Match – Agent Curricula for Reinforcement Learning

Czarnecki et al.

Binary Reward Signal 😕

Binary Reward Signal 😕

+ Model-Free Reinforcement Learning 😕

Binary Reward Signal 😕

+ Model-Free Reinforcement Learning 😕

How do We Train the Agent?

Random Sampling of Starting States?

Add Regularization Term?

What's the Trick?

Easy to Win, if you Start at the Goal!

Reverse Curriculum

1 Start almost there

2 Start increasingly further away

3 Profit from work already done

Reverse Curriculum

1 Start almost there

2 Start increasingly further away

3 Profit from work already done

Reverse Curriculum

1 Start almost there

3

2 Start increasingly further away

Profit from work already done

Automatically creates a Curriculum over Start States!

States of Intermediate Difficulty (SoIDs)

1. States Close to s^g may be good Start States \mathbb{P}

2. Random Walk in State-Space 😕

3. Brownian Motion in Action-Space 🙂

States of Intermediate Difficulty (SoIDs)

1. States Close to s^g may be good Start States \mathbb{Q}

- 2. Random Walk in State-Space 😕
- 3. Brownian Motion in Action-Space 😊

States of Intermediate Difficulty (SoIDs)

1. States Close to s^g may be good Start States \mathbb{P}

2. Random Walk in State-Space 😕

3. Brownian Motion in Action-Space 🙂

S^g: goal states we want to reach from everywhere.

s^g: one goal state is provided

- Run Brownian motion
- Obtain trajectories from collected starts to train policy
- Label and filter starts based on training trajectories

- Run Brownian motion
- Obtain trajectories from collected starts to train policy
- Label and filter starts based on training trajectories

- Run Brownian motion
- Obtain trajectories from collected starts to train policy
- Label and filter starts based on training trajectories

- Run Brownian motion
- Obtain trajectories from collected starts to train policy
- Label and filter starts based on training trajectories

- Run Brownian motion
- Obtain trajectories from collected starts to train policy
- Label and filter starts based on training trajectories

- Run Brownian motion
- Obtain trajectories from collected starts to train policy
- Label and filter starts based on training trajectories

- Run Brownian motion
- Obtain trajectories from collected starts to train policy
- Label and filter starts based on training trajectories

- Run Brownian motion
- Obtain trajectories from collected starts to train policy
- Label and filter starts based on training trajectories

- Run Brownian motion
- Obtain trajectories from collected starts to train policy
- Label and filter starts based on training trajectories

- Run Brownian motion
- Obtain trajectories from collected starts to train policy
- Label and filter starts based on training trajectories

- Run Brownian motion
- Obtain trajectories from collected starts to train policy
- Label and filter starts based on training trajectories

Curriculum Learning meets Reinforcement Learning

Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play

Sukhbaatar et al

Reverse Curriculum Generation for Reinforcement Learning

Florensa et al.

Mix & Match – Agent Curricula for Reinforcement Learning

<u>Czarnecki et al.</u>

Rethinking the Notion of Curriculum

Curriculum not Automatic!

What's the Difficulty of an Agent?

Agents are Neural Networks!

*for all practical purposes

Architectural Components or # Performable Actions or # Jointly-Learnable Tasks and # Training Iterations

Architectural Components or **#** Performable Actions or # Jointly-Learnable Tasks and # Training Iterations

Architectural Components or **#** Performable Actions or # Jointly-Learnable Tasks and **#**Training Iterations

Could use hand crafted scheduler 😕

Could use naive hyperparameter tuning 8

Could use hand crafted scheduler 😕

Could use naive hyperparameter tuning (8)

Population Based Training ③

1 Tuning several mixture agents in parallel

1 Tuning several mixture agents in parallel

2 Agent A periodically communicates with some B

- 1 Tuning several mixture agents in parallel
- 2 Agent A periodically communicates with some B
- 3 Badly performing: Copy weights and hyperparameters (α)

Explore Search Space with badly performing Agents

Curriculum Learning Is Here to Stay!

Take Care!