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What is a Curriculum?
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💡

Curriculum over Training Data!

Curriculum Learning (ICML, 2009) – Bengio et al. 

https://dl.acm.org/doi/10.1145/1553374.1553380


1 Start with simple examples

2 Gradually add more difficult ones

3 Arrive at target training distribution
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Empirical Results
Faster Training & sometimes higher Test Scores

Curriculum Learning (ICML, 2009) – Bengio et al. 

https://dl.acm.org/doi/10.1145/1553374.1553380


Faster Training proven on Linear d
Regression (Convex Optimization) ☺

Curriculum Learning by Transfer Learning: Theory and Experiments with Deep Networks – Weinshall, Cohen & Amir

https://arxiv.org/abs/1802.03796


Mix & Match – Agent Curricula for 
Reinforcement Learning 

Reverse Curriculum Generation 
for Reinforcement Learning

Intrinsic Motivation and 
Automatic Curricula via 
Asymmetric Self-Play

Czarnecki et al.Florensa et al.Sukhbaatar et al.

Curriculum Learning meets Reinforcement Learning

https://arxiv.org/abs/1806.01780
https://arxiv.org/abs/1707.05300
https://arxiv.org/abs/1703.05407


Mix & Match – Agent Curricula for 
Reinforcement Learning 

Reverse Curriculum Generation 
for Reinforcement Learning

Intrinsic Motivation and 
Automatic Curricula via 
Asymmetric Self-Play

Czarnecki et al.Florensa et al.Sukhbaatar et al.

Curriculum Learning meets Reinforcement Learning

https://arxiv.org/abs/1806.01780
https://arxiv.org/abs/1707.05300
https://arxiv.org/abs/1703.05407


Model-Free Reinforcement Learning

Sample Inefficient  
Jointly learn Environment and optimize for Reward



💡

“Unsupervised” Exploration!



Framework





Internal Reward Structure 

𝑅𝐴 = max 0, 𝑡𝐵 − 𝑡𝐴

𝐵𝑜𝑏 𝑓𝑎𝑠𝑡
𝑜𝑟

𝒕𝒐𝒐 𝑠𝑙𝑜𝑤
0 



Automatically creates a Curriculum 
over Exploration Tasks!  🎉
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Goal-Oriented Target Tasks
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Binary Reward Signal  

+  Model-Free Reinforcement Learning  
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How do We Train the Agent?



Random Sampling of Starting States?





Add Regularization Term?





What’s the Trick?



💡

Easy to Win, if you Start at the Goal!



Reverse Curriculum

1 Start almost there

2 Start increasingly further away

3 Profit from work already done
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Reverse Curriculum

1 Start almost there

2 Start increasingly further away

3 Profit from work already done



Automatically creates a Curriculum 
over Start States!  🎉



States of Intermediate Difficulty (SoIDs)

1. States Close to 𝑠𝑔 may be good Start States 💡

2. Random Walk in State-Space  

3. Brownian Motion in Action-Space  ☺
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Rethinking the Notion of Curriculum











Curriculum not Automatic!



What’s the Difficulty of an Agent?



💡

Agents are Neural Networks!

*for all practical purposes
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Difficulty ✓







Scheduler: Tune Mixture Parameter 𝜶

Could use hand crafted scheduler  

Could use naive hyperparameter tuning  

Population Based Training  ☺



Scheduler: Tune Mixture Parameter 𝜶

Could use hand crafted scheduler  

Could use naive hyperparameter tuning  

Population Based Training  ☺



Scheduler: Tune Mixture Parameter 𝜶

Could use hand crafted scheduler  

Could use naive hyperparameter tuning  

Population Based Training  ☺



Scheduler: Tune Mixture Parameter 𝜶

Could use hand crafted scheduler  

Could use naive hyperparameter tuning  

Population Based Training  ☺



Population Based Training



Population Based Training

1 Tuning several mixture agents in parallel
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Population Based Training

1 Tuning several mixture agents in parallel

2 Agent A periodically communicates with some B

3 Badly performing: Copy weights and 
hyperparameters (𝜶) 



Explore Search Space
with badly performing Agents







Curriculum Learning
Is Here to Stay! ☺



Take Care!



Take Care!


