Continual Learning

Nicolas Zucchet - Deep Reinforcement Learning Seminar - 19.05

Motivation

Why Continual Learning?

How Humans learn?

tasks to learn underlying tasks

How Humans learn?

reuse of important experiences

Continual learning (CL) is the ability of a model to learn continually from a stream of data, building on what was learnt previously, hence exhibiting positive transfer, as well as being able to remember previously seen tasks.

Similar to: sequential, incremental, lifelong learning

Related to: meta, multi-task, transfer, few-shot learning

Different approaches

- → Increasing size networks
 - ♠ Reinforcement Continual Learning (RCL)
- → Fixed size networks
 - ◆ Uncertainty Guided CL with Bayesian Neural Networks (UCB)
- → Mixing data from different tasks
 - ◆ Experience Replay for CL

Desired properties

Presence of transfer

Online learning

Bounded size

Resistance to catastrophic forgetting

Reinforced Continual Learning

J. Xu et al., 2018

Motivation

Increasing network size

RL to find the increase

Network construction

 Y_1

Network construction

Network construction

Final network

Expansion

Objective: best performing model without paying too much

 S_t embedding of the task

Agent: Actor-Critic architecture

 $a_{1:m}$ number of neurons to add for each layer

$$R_t = Acc_t(S_t, a_{1:m}) + Comp_t(S_t, a_{1:m})$$

Results

- No catastrophic forgetting
- Economic

Figure 3: Average test accuracy v.s. model complexity for RCL, DEN and PGN.

Pros and cons

Pros

- No catastrophic forgetting
- Final network economical (number of neurons)

Cons

- Huge training time
- Drawbacks of RL without its advantages (state is not used)

Uncertainty guided CL with bayesian neural networks

S. Ebrahimi et al., 2019

Principle

Probabilistic weights

Posterior
$$\mathbb{P}(w|\mathcal{D}) = \frac{\mathbb{P}(w)\mathbb{P}(\mathcal{D}|w)}{\mathbb{P}(\mathcal{D})}$$
 intractable! $w_i \sim \mathcal{N}(\mu_i, \sigma_i), \quad \theta = (\mu, \sigma)$ $q(w|\theta)$ value value

$$\theta^* = \operatorname{argmin}_{\theta} D_{KL}(q(w|\theta)||\mathbb{P}(w|\mathcal{D}))$$

Algorithm (Bayes by Backprop)

M.C. approximation using N samples $w^{(i)} \sim q(w|\theta)$

$$\mathcal{L}_{BBB}(\theta, \mathcal{D}) \approx \sum_{i=1}^{N} \log(q(w^{(i)}|\theta)) - \log(\mathbb{P}(w^{(i)})) - \log(\mathbb{P}(\mathcal{D}|w^{(i)})) - \log(\mathbb{P}(\mathcal{D}|w^{(i)})) - \log(\mathbb{P}(w^{(i)})) - \log(\mathbb{P}$$

For each task:

Algorithm

Specific learning rate for each parameter

Update the learning rate between each task

$$\alpha_{\mu}^{(t+1)} = \alpha_{\mu}^{(t)} \sigma$$

$\alpha_{\mu}^{(t)}$	
1	
0.5	
0.5	

μ	σ		$\chi_{\mu}^{(t-}$
2	0.1		0.
4	3		1.
1.5	1		0.5

Learning on a new task:

$$\begin{array}{cccc} \theta^{(t)} \\ \alpha^{(t)} \end{array} & \longrightarrow & \alpha_{\mu}^{(t+1)} = \alpha_{\mu}^{(t)} \sigma & \longrightarrow & \theta^{(t+1)} = BBB(\theta^{(t)}, \alpha_{\mu}^{(t+1)}) \end{array}$$

Parameter evolution

Results

Each task = 2 digits

Method

VCL

IMM

EWC

HAT

ORD-FT

ORD-FE

BBB-FT

BBB-FE

UCB-P (Ours)

UCB (Ours)

ORD-JT*

BBB-JT*

VCL-Vadam†

VCL-GNG†

Catastrophic forgetting measure

(a) 5-Split MNIST, 5 tasks.

BWT

ACC

- 99.17

- 96.50

-0.5698.20

-4.2095.78

0.00 99.59

-9.18 90.60

0.0098.54

-6.45 93.42

0.0098.76

-0.7299.32

0.00 99.63

0.00 99.78

0.0099.87

BBB-JT*

-11.20 88.54

Each task = one permutation

(b) Permuted MNIST, 10 permutations. (c) Alternating CIFAR10/100

0.0098.12

Method

PathNet

LWF

LFL

IMM

PNN

EWC

HAT

BBB-FE

BBB-FT

BBB-JT*

UCB-P (Ours)

UCB (Ours)

BWT

0.00 28.94

-37.9 42.93

-24.22 47.67

-12.23 69.37

0.0070.73

-1.53 72.46

-0.04 78.32

-0.04 51.04

-7.43 68.89

-1.89 77.32

-0.72 **79.44**

1.52 83.93

ACC

Method #Params BWT ACC SI ‡ 0.1M-86.0 EWC ‡ 0.1M-88.2 HAT ‡ - 91.6 0.1MVCL-Vadam† 0.1M-86.34 VCL-GNG† 0.1M- 90.50 **VCL** -7.90 88.80 0.1MUCB (Ours) 0.1M-0.38 91.44 LWF -31.17 65.65 1.9M -7.14 90.51 IMM 1.9MHAT 1.9M0.0397.34**BBB-FT** 1.9M-0.5890.01**BBB-FE** 0.0293.541.9MUCB-P (Ours) 1.9M -0.95 97.24 UCB (Ours) 1.9M0.03 97.42

1.9M

Mean accuracy on all the tasks

Each task = 2/20 classes

Joint training

Pros and cons

Pros

- Stability
- Know when the network cannot learn more
- General framework

Cons

- Huge training time
- Low plasticity

Experience Replay for CL

D. Rolnick et al., 2018

Motivation

Hippocampal replay:

- reduce catastrophic forgetting
- improve generalisation

Experience replay

Experience replay

Experience replay

Training modes

Without replay

with V-Trace learning algorithm

Benefits of experience replay

Mix new/old experience

Pros and cons

Pros Cons

- Insights on why experience replay works
- Nice example of Neuroscience justifying AI algorithms

Thank you!