
Distributed
    Computing 

FS 2020 Prof. R. Wattenhofer
Beni Egressy

Principles of Distributed Computing

Exercise 9: Sample Solution

1 Communication Complexity of Set Disjointness

a) We obtain

MDISJ =



DISJ 000 001 010 011 100 101 110 111 ← x
000 1 1 1 1 1 1 1 1
001 1 0 1 0 1 0 1 0
010 1 1 0 0 1 1 0 0
011 1 0 0 0 1 0 0 0
100 1 1 1 1 0 0 0 0
101 1 0 1 0 0 0 0 0
110 1 1 0 0 0 0 0 0
111 1 0 0 0 0 0 0 0
↑ y


b) When k = 3, a fooling set of size 4 for DISJ is, e.g.,

S1 := {(111, 000), (110, 001), (101, 010), (100, 011)}.

Entries in MDISJ corresponding to elements of S1 are marked dark gray. Note that a fooling
set need not be on a diagonal of the matrix. E.g.

S2 := {(001, 110), (010, 001), (011, 100), (100, 010)},

marked light gray in MDISJ.

c) In general, S := {(x, x) | x ∈ {0, 1}k} is a fooling set for DISJ. First, we note that for
any two elements (x1, y1), (x2, y2) of any fooling set x1 6= x2. Otherwise we would have
(x1, yj) = (x2, yj) for j ∈ {1, 2} and thus f(x2, y1) = f(x1, y2) = f(x1, y1) = f(x2, y2) =: z,
contradicting the definition of a fooling set. Similarly y1 6= y2.

• For any (x, y) ∈ S, DISJ(x, y) = 1, by our definition of S.

• Now consider any (x1, y1) 6= (x2, y2) ∈ S. Since x1 6= x2, then either x1 has some
element that x2 does not, or x2 has some element that x1 does not (or both). Wlog x1

has some element that x2 does not. But then x1 and y2 = x2 are not disjoint so that
DISJ(x1, y2) = 0.

So S is indeed a fooling set. And The size of S is 2k, so k is a lower bound for the CC by
the result from the lecture.



2 Distinguishing Diameter 2 from 4

a) • Choosing v ∈ L takes O(D): Use any leader election protocol from the lecture. E.g.,
the node with smallest ID in L can be elected as a leader. Then this node will be v.
Note that during the leader election protocol if after D rounds no messages are received,
then the nodes can conclude that all nodes are in H.

• Computing a BFS tree from a vertex usually takes O(D). Since in our setting all graphs
are guaranteed to have constant diameter, the time required for this is O(1). As node
v is in L, at most |N1(v)| ≤ s executions of BFS are performed. These can be started
one after each other and yield a complexity of O(s).

• The comment states: Computing an H-dominating set DOM takes time O(D) = O(1).

• Since |DOM | ≤ n logn
s , the time complexity of computing all BFS trees from each

vertex in DOM (one after each other) is O(n logn
s ).

• Checking whether all trees have depth of at most 2 can be done in O(D) = O(1) as
well: Each node knows its depth in any of the computed trees. If its depth is 3 or
4, it floods “diameter is 4” to the graph. If a node gets such a message from several
neighbors, it only forwards it to those from which it did not receive it yet. If any node
did not receive message “diameter is 4” after 4 rounds, it decides that the diameter is
2. Otherwise it decides that the diameter is 4. This decision will be consistent among
all nodes.

• By adding all these runtimes, we conclude that the total time complexity of Algorithm

2-vs-4 is O
(
s + n logn

s

)
.

b) By deriving O
(
s + n logn

s

)
as a function of s we can argue that O

(
s + n logn

s

)
is minimal

for s =
√
n log n. Thus the runtime of the Algorithm is O(

√
n log n).

c) Since in this case no BFS tree can have depth larger than 2 the algorithm returns “diameter
is 2”.

d) Using the triangle inequality we obtain that d(w, v) ≥ d(u, v) − d(u,w) = 3 thus the BFS
tree of w has at least depth 3. Therefore Algorithm 2-vs-4 decides “diameter is 4”.

e) Let w be the leader elected in step 2 of Algorithm 2-vs-4. If the BFS started in w has depth
at least 3, we are done. In the other case it is d(u,w) ≤ 2. Using d) we conclude that
d(u,w) = 2. Let w′ be a node that connects u to w. Since w′ ∈ N1(w), Algorithm 2-vs-4
executes a BFS from w′. Then we apply d) using that w′ ∈ N1(u).

f) Since DOM is a dominating set for H = V \L = V , it follows immediately that the algorithm
executes a BFS from a node w ∈ DOM ∩N1(u) 6= ∅. Now apply d).

g) A careful look into the construction of family G reveals that we essentially showed an
Ω(n/ log n) lower bound to distinguish diameter 2 from 3. Since the graphs considered
here cannot have diameter 3, the studied algorithm does not contradict this lower bound.
Suppose we had to decide between diameter 2 and 3 (instead of 2 and 4) and we try using
this exact algorithm. Indeed if the algorithm finds a BFS tree of depth greater than 2, then
the diameter is 3. However, if all BFS trees found are diameter 2 or less, the diameter could
still be 3.

h) Consider a clique (with n nodes, n large enough) and remove an arbitrary edge (u, v). Since
d(u, v) = 2, the graph has diameter 2. We have L = ∅ and {w} is an H-dominating set for
all u 6= w 6= v. If DOM = {w}, then Algorithm 2-vs-4 executes exactly one BFS (from w)
which has depth 1 which disproves the claim. Note that this proof works for all s ≤ n− 2.

2


