Exercise 6

Lecturer: Mohsen Ghaffari

Network Decompositions

Exercise 1: Explain how given a $(\mathcal{C}, \mathcal{D})$ weak-diameter network decomposition of graph G, we can deterministically compute a $(\Delta + 1)$ -coloring of the graph in $O(\mathcal{CD})$ rounds. Here, Δ denotes an upper bound on the maximum degree of the graph, and is given to the algorithm as an input.

Solution: We will color graphs G_1, G_2, \ldots, G_c one by one, each time considering the coloring assigned to the previous subgraphs. Suppose that vertices of graphs G_1, G_2, \ldots, G_i are already colored using colors in $\{1, 2, \ldots, \Delta + 1\}$. We explain how to color G_{i+1} in $O(\mathcal{D})$ rounds. Consider the clusters X_1, X_2, \ldots, X_ℓ of G_{i+1} and notice their two properties: (1) they are mutually nonadjacent, (2) for each cluster X_j , its vertices are within distance \mathcal{D} of each other (where distances are according to the base graph G). For each cluster X_j , let node $v_j \in X_j$ who has the maximum identifier among nodes of X_j be the leader of X_j . Then, let v_j aggregate the topology of the subgraph induced by X_j as well as the colors assigned to nodes adjacent to X_j in the previous graphs G_1, G_2, \ldots, G_i . This again can be done in $O(\mathcal{D})$ rounds, thanks to the fact that all the relevant information is within distance $\mathcal{D} + 1$ of v_j . Once this information is gathered, node v_j can compute a $(\Delta + 1)$ -coloring for vertices of X_j , while taking into account the colors of neighboring nodes of previous graphs, using a simple greedy procedure. Then, node v_j can report back these colors to nodes of X_j . This will happen for all the clusters X_1, X_2, \ldots, X_ℓ in parallel, thanks to the fact that they are non-adjacent and thus, their coloring choices does not interfere with each other.

Exercise 2: In this exercise, we prove that every *n*-node graph *G* has an $(\mathcal{C}, \mathcal{D})$ (strongdiameter) network decomposition for $\mathcal{C} = O(\log n)$ and $\mathcal{D} = O(\log n)$. The process that we see that be viewed as a simple and efficient sequential algorithm for computing such a network decomposition.

We determine the blocks $G_1, G_2, ..., G_C$ of network decomposition one by one, in C phases. Consider phase *i* and the graph $G \setminus (\bigcup_{j=1}^{i-1} G_j)$ remaining after the first i-1 phases which defined the first i-1 blocks G_1, \ldots, G_{i-1} . To define the next block, we repeatedly perform a ball carving starting from arbitrary nodes, until all nodes of $G \setminus (\bigcup_{j=1}^{i-1} G_j)$ are removed. This ball carving process works as follows: consider an arbitrary node $v \in G \setminus (\bigcup_{j=1}^{i} G_j)$ and consider gradually growing a ball around v, hop by hop. In the k^{th} step, the ball $B_k(v)$ is simply the set of all nodes within distance k of v in the remaining graph. In the very first step that the ball does not grow by more than a 2 factor — i.e., smallest value of k for which $|B_{k+1}(v)|/|B_k(v)| \leq 2$ — we stop the ball growing. Then, we carve out the inside of this ball i.e., all nodes in $B_k(v)$ — and define them to be a cluster of G_i . Hence, these nodes are added to G_i . Moreover, we remove all boundary nodes of this ball —i.e., those of $B_{k+1}(v) \setminus B_k(v)$ from the graph considered for the rest of this phase. These nodes will never be put in G_i . We will bring them back in the next phases, so that they get clustered in the future phases. Then, we repeat a similar ball carving starting at an arbitrary other node v' in the remaining graph. We continue a similar ball carving until all nodes are removed. This finishes the description of phase *i*. Once no node remains in this graph, we move to the next phase. The algorithm terminates once all nodes have been clustered.

Prove the following properties:

1. Each cluster defined in the above process has diameter at most $O(\log n)$. In particular, for each ball that we carve, the related radius k is at most $O(\log n)$.

Solution: We show that the ball carving finishes in $\lceil \log n \rceil$ steps, which implies that the radius is at most $\lceil \log n \rceil$ as well. First, note that whenever we do not stop the ball growing, the size of a ball doubles, as $|B_{k+1}(v)] \ge 2 \cdot |B_k(v)|$. Thus, if we did not stop the ball growing within k steps, the ball $B_k(v)$ has size $|B_k(v)| \ge 2^k$. After $k \ge \lceil \log n \rceil + 1$ steps, this would mean that $B_k(v)$ contained at least $2^k = 2^{\lceil \log n \rceil + 1} > n$ nodes, a contradiction.

2. In each phase *i*, the number of nodes that we cluster —and thus put in G_i — is at least 1/2 of the nodes of $G \setminus (\bigcup_{j=1}^{i-1} G_j)$.

Solution: Note that every node is either clustered or not, thus we show that the number of nodes included in G_i is at least as large as the number of nodes that are not clustered. Let us focus on a cluster created by a vertex v, which has radius k. By the stopping condition, $|B_{k+1}(v)|/|B_k(v)| \leq 2$ must hold. This implies $|B_k(v)| \geq 1/2|B_{k+1}(v)|$ or that at least 1/2 of the nodes removed by this step are included in G_i . As is this is true for any ball, it proves the desired statement.

3. Conclude that the process terminates in at most $O(\log n)$ phases, which means that the network decomposition has at most $O(\log n)$ blocks.

Solution: In every step we remove at least 1/2 of the remaining nodes. Thus after building G_i at most $n/2^i$ vertices remain. After $\lceil \log n \rceil$ phases this means that at most $n/2^{\lceil \log n \rceil} = 1$ vertex remains which will trivially form the last cluster.

Exercise 3 (optional): Develop a deterministic distributed algorithm with round complexity poly(log n) for computing an $(\mathcal{C}, \mathcal{D})$ (strong-diameter) network decomposition in any n-node network, such that $\mathcal{C} = O(\log n)$ and $\mathcal{D} = O(\log n)$.