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Exercise 13: Sample Solution

1 Determining the Median

As stated in the hint, we start with initializing the nodes to give them IDs from 1, . . . , n. Then,
the node with ID i transmits its token in time slot i. Each node uses two integer variables n−,
n+ to count how many other nodes have a token that is smaller/bigger than its own token. Once
a node has received the tokens of all other nodes, it just needs to check if n+ = n−. The node
whose token is the median can simply broadcast it afterwards.
Let us briefly analyze the time and space used by this. We know from the lecture that initialization
takes O(n) rounds. Sending all tokens afterwards takes another n rounds, i.e., does not increase
the asymptotic runtime.
Each node needs to store a new ID of up to n, which takes up O(log n) space. The variables n−,
n+ from the algorithm can also be stored by using O(log n). Note that we do not need to store
the values of the tokens of other nodes. Therefore, we only need O(log n) space in total.
The correctness follows by the construction of the algorithm. The unique node whose upper and
lower counter has the same value can broadcast its token and thus all nodes are aware that it is
the median.
Remark: We can further reduce the memory usage if, instead of storing n+ and n−, we only
store the difference n+ − n− in a variable called η. Every time a node receives a token which is
bigger than its own token, it increments η. If a node receives a token smaller than its own token,
it decrements η. The median of all tokens will then be found in the node which has η = 0.
Remark: Note that the lecture script only claims that our uniform initialization algorithm finishes
in expected timeO(n). However, one can also show that this algorithm finishes inO(n) time w.h.p.,
and with a slight modification, we can ensure that the nodes use no more than O(log n) space in
this algorithm. Hence we can indeed begin our solution with the initialization of the nodes.

2 Maximum

See Algorithm 1 below for a pseudocode description of the algorithm. We will now proceed to
analyze the runtime of this algorithm.
A round is good if at least half the vertices exit in that round. Observe that at most log(n) good
rounds are needed to find the maximum. Since the leaders are chosen randomly and independently
in each round, a round is good with probability at least 1

2 . Let the random variable G be the
number of good rounds after 4c · log(n) rounds, for c ≥ 1. The expectation of G is bounded by

E[G] ≥ 1

2
4c · log(n) = 2c · log(n) ≥ 2 · log(n)



Algorithm 1 Algorithm for determining the maximum

1: while TRUE do
2: elect leader
3: leader broadcasts value
4: if own value is bigger then
5: broadcast own value
6: end if
7: if no transmitter then
8: leader has max
9: else if single transmitter then

10: transmitter has max
11: else if own value ≤ leader then
12: exit
13: end if
14: end while

Using the Chernoff bound and setting δ = 1
2 we get the following as probability of failure (i.e., not

having enough good rounds):

Pr[G < log(n)] = Pr[G < (1− δ)2 · log(n)]

≤ Pr[G < (1− δ)E[G]]

≤ e− δ
2

2 E[G]

≤ e− 1
4 c log(n)

= n−
c
4

Additionally, we have a failure probability of at most n−c
′

every time we elect a leader. Note that
we look at the probability of succeeding in 4c · log(n) rounds, and we perform one leader election
in each of these rounds. We set c′ = c

4 ; this is possible, since our leader election algorithm allows

us to reduce the probability of failure to n−c
′

for any constant c′ of our choice.
With the union bound we can derive

Pr[fail] = P

[
{G < log(n)} ∪

⋃
i

{leader election in round i failed}

]
| Union Bound

≤ n−c
′
+ 4c · log(n)n−c

′

= (1 + 4c · log(n))n−c
′

| n > 1, c ≥ 1

≤ 5c · log(n)n−c
′

= 2log(5c) · log(n)n−c
′

< 2log(5c)·log(n)n−c
′

= n−c
′+log(5c)

= n−α

where α is independent of n and can be set arbitrarily high by choosing the constant c′.
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