Exercise 3

Lecturer: Mohsen Ghaffari

1 Color Reduction in Vertex-Coloring

Exercise

(1a) Design a single-round algorithm that transforms any given k-coloring of a graph with maximum degree Δ into a k^{\prime}-coloring for $k^{\prime}=k-\left\lfloor\frac{k}{(\Delta+2)}\right\rfloor$, assuming $k^{\prime} \geq \Delta+1$.
(1b) Use repetitions of this single-round algorithm, in combination with the $O\left(\log ^{*} n\right)$-round $O\left(\Delta^{2} \log \Delta\right)$-vertex-coloring that we saw in class, to obtain an $O\left(\Delta \log \Delta+\log ^{*} n\right)$-round $(\Delta+1)$-coloring algorithm.

2 SuperImposed Codes

Here, we use the concept of cover free families to obtain an encoding that allows us to recover information after superimposition. That is, we will be able to decode even if k of the codewords are superimposed and we only have the resulting bit-wise OR.

Exercise

(2a) Concretely, we want a function Enc: $\{0,1\}^{\log n} \rightarrow\{0,1\}^{\log m}$ - that encodes n possibilities using $\log m$-bit strings - such that the following property is satisfied: $\forall S \neq S^{\prime} \subseteq$ $\{1, \ldots, n\}$ such that $|S| \leq k$ and $\left|S^{\prime}\right| \leq k$, we have that $\vee_{i \in S} \operatorname{Enc}(i) \neq \vee_{i \in S^{\prime}} \operatorname{Enc}(i)$. Here \vee denotes the bit-wise OR operation. Present such an encoding function, with a small m, that depends on n and k.

3 Yet Another Coloring

Here, we see yet another deterministic method for computing a $(\Delta+1)$-coloring in $O(\Delta \log \Delta+$ $\left.\log ^{*} n\right)$ rounds. First, using what we saw in the class, we compute an $O\left(\Delta^{2} \log \Delta\right)$-coloring $\phi_{\text {old }}$ in $O\left(\log ^{*} n\right)$ rounds. What remains is to transform this into a $(\Delta+1)$-coloring, in $O(\Delta \log \Delta)$ additional rounds.

Exercise The current $O\left(\Delta^{2} \log \Delta\right)$-coloring $\phi_{\text {old }}$ can be written using $C \log \Delta$ bits, assuming a sufficiently large constant C. This bit complexity will be the parameter of our recursion. Partition G into two vertex-disjoint subgraphs G_{0} and G_{1}, based on the most significant bit in the color $\phi_{\text {old }}$. Notice that each of G_{0} and G_{1} inherits a coloring with $C \log \Delta-1$ bits. Solve the $\Delta+1$ coloring problem in each of these independently and recursively. Then, we need to merge these colors into a $\Delta+1$ coloring for the whole graph.
(A) Explain an $O(\Delta)$-round algorithm, as well its correctness proof, that once the independent $(\Delta+1)$-colorings of G_{0} and G_{1} are finished, updates only the colors of G_{1} vertices to ensure that the overall coloring is a proper $(\Delta+1)$-coloring of $G=G_{0} \cup G_{1}$.
(B) Provide a recursive time-complexity analysis that proves that overall, the recursive method takes $O(\Delta \log \Delta)$ rounds.

