Exercise 10

Lecturer: Mohsen Ghaffari

1 Pipelining

We consider an arbitrary n-node network $G=(V, E)$ with diameter D. Moreover, we work in the CONGEST model of distributed computing where each node has an $O(\log n)$-bit unique identifier and per round, each node can send $O(\log n)$ bits to each of its neighbors.

Exercises

(1a) Suppose that each node $v \in V$ is given k different inputs $x_{1}(v), x_{2}(v), \ldots, x_{k}(v)$, each being a $\Theta(\log n)$-bit number. The objective is to for all nodes to know the outputs $y_{i}=\min _{v \in V} x_{i}(v)$, for each $i \in\{1,2, \ldots, k\}$. Devise a deterministic distributed algorithm for this problem with round complexity $O(D+k)$.
(2a) Suppose there are k messages $m_{1}, m_{2}, \ldots, m_{k}$, each initially placed at an arbitrary node of the network (many or even all of the messages may be placed on the same node). Consider the following basic algorithm: per round, each node v picks one of the messages m_{i} that it has (from the beginning or received in the past) and send m_{i} it to all of its neighbors; node v will never send m_{i} again. Notice that a node will not send two of the messages at the same time. Prove that if we run this algorithm for $O(D+k)$ rounds, all nodes will receive all the messages.

2 Minimum Spanning Tree

Consider an undirected connected graph $G=(V, E)$ where $n=|V|$. Suppose that each node $v \in V$ has selected one of its incident edges (v, u) as the proposal edge of v, let us denote it $e_{v}=(v, u)$. For instance, in the MST algorithm of Boruvka, this would be the minimum-weight edge incident on v. Notice that the two endpoints of an edge might propose this one edge simultaneously. Consider the random process that each node flips a fair coin for itself and then, we mark the proposed edge $e_{v}=(v, u)$ of node v only if v draws tail and u draws head.

Exercises

(2a) Prove that, in expectation, we mark at least $n / 8$ edges.
(2b) Prove that, if we contract all the marked edges, the resulting graph has at most $7 n / 8$ nodes, in expectation.
(2c) Consider repeating the above process for $20 \log n$ iterations: In each iteration, we contract all the marked edges, and maintain only the "outgoing edges", i.e., those edges that have exactly one endpoint in this contraction. Then, select one min-weight outgoing edge per new node, and repeat the marking process as above using one coin toss per each new node. Use (2b) to prove that, after $20 \log n$ iterations, with high probability, we have contracted everything to a single node.

