
Chapter 6

Storage & File Systems

How does your computer persistently store your data?

6.1 Storage Interface

Definition 6.1 (Storage Device, Pages, Address Space). A storage device
consists of n pages (also known as sectors or blocks in the literature) of fixed
size, e.g. 512 bytes per page. The address space of the device is 0 to n − 1.
To write to or read from a storage device, the OS specifies the address(es) of the
page(s) it wants to access, and in case of a write, it also specifies the data to be
written.

Remarks:

• There are many different types of storage devices: HDDs, SSDs, tapes,
DVDs, etc.

• For an operating system to be able to handle this diversity of devices,
there are standardized interfaces for storage media. An interface con-
sists of a standardized hardware connector and a protocol to interact
with the device. Examples are IDE, SATA, and SAS.

• Internally, a storage device is free regarding how it manages its space.
We discuss HDDs and SSDs as examples.

6.2 HDDs

Definition 6.2 (Magnetic Storage). Magnetic storage is an electronic storage
medium that uses magnetized areas on a surface to store information. To set
a bit to 1, the area storing the bit is polarized in one way, and for a 0 in the
opposite way.

Definition 6.3 (Hard Disk Drive, HDD). An HDD is a magnetic storage device
that consists of circular platters that are put on top of each other on a spindle
(a rotating cylinder in the middle). Each platter stores data on its surfaces,
and each surface contains tracks that are subdivided into sectors (we will refer

61

62 CHAPTER 6. STORAGE & FILE SYSTEMS

to them as pages). A reading/writing head per surface allows storing and
reading data.

0

1 2

3

4
5

6 7
8

9
10

1112
13

14
15

16 17 18
19

20
21

22
23

242526

Figure 6.4: Left: schematic of an HDD with 3 platters. Right: geometry of a
single platter with 3 tracks and a total of 27 pages.

Remarks:

• One could put multiple read/write heads per surface into the HDD,
or give each head its own motor to move independently of the others.
Neither of these options is put into practice in modern HDDs.

• Since inner tracks closer to the spindle cover less area than outer
tracks further away, inner tracks have fewer pages per track.

• On real HDDs, the platter is often subdivided into zones of tracks
where all tracks in a zone have the same number of pages. Tracks are
so thin that hundreds of tracks fit within the width of a human hair.
In total, a modern HDD contains several billion pages.

• Multi-page operations are possible; indeed, many file systems will read
or write 4KB (or more) at a time. If an untimely power loss occurs,
only a portion of a larger write may complete (this is called a torn
write). However, manufactures guarantee that a single page is written
atomically (the page will either complete fully or not at all).

• A request to read from/write to the disk is called an access request.
How fast can we service an access request?

Definition 6.5 (I/O time). The I/O time TI/O it takes to transfer data
to/from a page S is

TI/O = Tseek + Trotation︸ ︷︷ ︸
Tpositioning

+Ttransfer

where the seek time Tseek is the time it takes to move the read/write head to
the track on which S lies, the rotational delay Trotation is the time it takes
the platter to rotate to S, and the transfer time Ttransfer is the time it takes
to transfer data to/from S. The positioning time Tpositioning is the sum of



6.2. HDDS 63

seek time and rotational delay, i.e. the time it takes for the head to move to the
beginning of S.

Remarks:

• Notice the page labels in Figure 6.4. Page 12 on the outer track is
offset by some angle to page 11 on the middle track. This is called
track skew ; when we want to first access page 11 and then page 12,
the head has to be repositioned, and during this time, page 12 would
have passed under the read/write head if page 12 was next to page 11.
Thus we would have to wait almost a full rotation until being able to
access page 12. The purpose of the track skew is to minimize Trotation
when accessing pages in order.

• HDD manufacturers provide average seek time, number of rotations
per minute, and maximum transfer speed in their data sheets. From
these values, we can calculate the average I/O time we can expect for
a given access request.

• Usually we are interested in the amount of data we can transfer per
unit of time.

Definition 6.6 (Rate of I/O). The rate of I/O RI/O we get for an access
request A is

RI/O =
size of A

TI/O

Example 6.7. We are given an HDD with average seek time 6ms that rotates at
a frequency of 12000RPM (rotations per minute) and has a maximum transfer
speed of 100MB/s. Assuming 1MB = 1000KB, what is the I/O rate for an
access request of 4KB to a uniformly random position on the disk?

To solve this, we find that

• Tseek = 6ms

• A uniformly random position is on average half a rotation away from the
current head position. We get 12000 rotations in 60s, thus 1/2 rotation
takes 1/2 · 1/200s = 2.5ms = Trotation.

• With a maximum transfer speed of 100MB/s, transferring 4KB takes
4KB/(100MB/s) = 40µs = 0.04ms = Ttransfer

We get

RI/O =
size of A

TI/O
=

4KB

6ms+ 2.5ms+ 0.04ms
≈ 0.47MB/s

64 CHAPTER 6. STORAGE & FILE SYSTEMS

Remarks:

• Ttransfer is a function of page size, number of pages per track, and
rotations per minute.

• We considered a specific access pattern: small, uniformly random ac-
cesses. If we want to access data that is stored in sequence, we will
get a different I/O rate.

• System designers devise disk scheduling algorithms to reorder access
requests such that the I/O rate is high. In Linux, the disk scheduler
used by the OS can be changed at runtime.

6.3 Disk Scheduling

We list some of the most common disk scheduling algorithms and shortly sum-
marize their strengths and weaknesses in Figure 6.8, and Figure 6.9 shows the
head movements those algorithms produce for an example sequence of requests.

Algorithm Description

First Come First
Serve (FCFS)

Process requests in the order they arrived.

Shortest Seek Time
First (SSTF)

Pick request on nearest track.

Shortest Positioning
Time First (SPTF)

Pick request with shortest positioning time.

Elevator (SCAN) Move the head like an elevator, inside to outside and
back again, and service all pending requests on the
way.

C-SCAN Similar to SCAN; starting from the current head posi-
tion, service requests in ascending order towards the
outermost track, then move head without servicing
any requests to the now-innermost request.

F-SCAN Like SCAN, but service requests in batches; wait with
sending a new batch of requests to disk until the last
one was fully serviced.

Figure 6.8: Some of the most common disk scheduling algorithms.

Remarks:

• FCFS can be quite inefficient depending on the sequence of requests
sent to disk.

• While usually an improvement over FCFS, SSTF/SPTF suffer from
starvation: if there is always a request on the current track, requests
on other tracks will never be served.

• Since knowledge of the disk geometry is necessary to determine accu-
rate seek/positioning time estimates for SSTF/SPTF, and this knowl-
edge is not available to the operating system, these algorithms are best



6.4. SSDS 65

0 24 43 53 62 115 130 144 183 199

F
C

F
S

Track Number

S
S
T

F
,

S
P

T
F

S
C

A
N

C
-S

C
A

N

Figure 6.9: Head movements for different scheduling algorithms. The head
starts at track 53 in each example run, and the sequence of requests sent to the
disk is for pages on tracks 115, 183, 43, 130, 24, 144, 62.

employed by the HDD controller. The disk looks like an array of blocks
to the operating system, thus it can implement the SSTF/SPTF-
analogue nearest block first (NBF), where the next request issued to
disk is the one with the block number closest to the last request sent
to disk.

• With SCAN, the pages on outer and inner tracks wait longer between
separate accesses than pages on middle tracks; C-SCAN provides a
more uniform TI/O for pages independent of their position on the
disk.

• F-SCAN solves the starvation problem by not accepting new requests
during a pass over the platter. Requests issued by the OS during a
pass will be buffered until the next pass.

• The operating system also schedules its requests: e.g., the OS may
want to allocate certain I/O rates for some processes, or it may want
to make sure some I/O requests are serviced before a deadline.

6.4 SSDs

In the past few years, random-access persistent storage in the form of solid-state
drives (SSDs) has been continuously gaining on HDDs in market share.

Definition 6.10 (Flash Memory). Flash memory is an electronic storage
medium without moving parts. To set a bit to 1, electrons are trapped within a
transistor via a momentary surge of power, and can only be released via another
surge of power.

66 CHAPTER 6. STORAGE & FILE SYSTEMS

Figure 6.12: The architecture of an SSD.

• We will be discussing NAND-based flash drives, the most common tech-
nology used in storage devices. While NOR flash has some advantages
over NAND flash, its write/erase times are significantly higher, making it
less attractive as a technology for storage media.

• Unlike HDDs, flash-based SSDs have no mechanical components, and in
fact are in many ways more similar to DRAM as they are “random access”
devices. Their access times are less dependent on which pages are accessed.

Definition 6.11 (Blocks, Pages, Page States, Programming, Erasing). An SSD
consists of equal-sized pages that are grouped into equal-sized blocks. A page
can be in one of three states: it contains valid data, invalid data, or it is
erased. Only an erased page can have new data written to it (can be pro-
grammed). In order to erase a page, the whole block containing the page has
to be erased. Erasing a block deletes all data from all pages in the block. Pro-
gramming a page sets its state to valid. If the data in a valid page p is updated
by writing it to a different page p′, then p becomes invalid.

Block 0 1
Page 0 1 2 3 4 5 6 7

Content a′ a
State v e e i e e e e

Figure 6.13: A very small SSD containing 8 pages grouped into 2 blocks of 4
pages each; invalid pages are marked “i”, valid pages “v”, and erased pages “e”.

Remarks:

• Each page of an SSD contains two parts: the data area where the
actual data is stored, and the out of band area where metadata about
the page is stored. Blocks also have an out of band area associated
with them. We omitted the out of band areas in Figure 6.13.



6.5. FLASH TRANSLATION LAYER 67

• Every time we erase a block that still has some valid data, the valid
data has to be rescued to the SSD. This is called an internal write re-
quest. Write requests sent by the OS are called external write requests.
Internal write requests cause write overhead.

• Flash cells can only be written a certain number of times before they
wear out from the power spikes required to program and erase. Once
a cell has worn out, it can no longer be erased (it can still be read).
We want to balance the write accesses to wear all pages out evenly.
This is called wear leveling.

• SSDs contain more space than they tell the operating system. The
extra space (called space overhead) gives engineers the possibility to
optimize write overhead and wear leveling to an extent.

• To be able to make use of the space overhead, SSDs map the addresses
accessed by the OS to actual physical locations on the flash chips.

6.5 Flash Translation Layer

Definition 6.14 (Logical Address, Physical Address, Flash Translation Layer).
The addresses in access requests sent by the OS to the SSD are called logical
addresses. When a write request for a logical address arrives at the SSD, the
SSD chooses a physical address where the data will be written. The SSD
stores the mapping from logical to physical addresses, and this mapping is called
the flash translation layer (FTL).

Remarks:

• The information whether a physical page is valid, invalid, or erased,
is maintained in the FTL.

• If no FTL is used and instead every logical page is stored in the equiva-
lent physical page, we speak of direct mapping. This is quite inefficient:
Whenever a page is overwritten, we have to erase the entire block and
issue internal requests for all valid pages in the block, increasing write
overhead enormously. Blocks that have frequently-written pages also
wear out fast.

• While the system is running, the FTL is stored in volatile memory.
But the FTL has to be available after a power-down. There are two
general approaches: Use the out of band area of pages and blocks to
store mapping information (as well as which version of a logical page
is the most recent one), and reconstruct the FTL after a reboot, or
use dedicated space on flash that persistently stores the FTL during
power-down.

• For the approach where the FTL is persisted in a dedicated area, we
need to make sure that an unexpected power loss is handled correctly.
For this purpose, enterprise-grade SSDs usually contain large capac-
itors or batteries that have enough energy to write the FTL from
volatile memory to flash in case of a power failure.

68 CHAPTER 6. STORAGE & FILE SYSTEMS

Example 6.15 (Page Level FTL). We give an example of a page level FTL.
Initially, the mapping is empty, and all pages are erased. For simplicity, every
write goes to the next available erased page, and we erase round-robin. The rows
“Table” and “State” describe the mapping and validity information stored in the
FTL, respectively.

Table
Block 0 1 2
Page 0 1 2 3 4 5 6 7 8 9 10 11

Content ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
State e e e e e e e e e e e e

First we write logical pages 0 to 4.

Table 0→ 0, . . . , 4→ 4
Block 0 1 2
Page 0 1 2 3 4 5 6 7 8 9 10 11

Content 0 1 2 3 4 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
State v v v v v e e e e e e e

Next we write (update) logical pages 2 to 8.

Table 0→ 0, 1→ 1, 2→ 5, . . . , 8→ 11
Block 0 1 2
Page 0 1 2 3 4 5 6 7 8 9 10 11

Content 0 1 2 3 4 2 3 4 5 6 7 8
State v v i i i v v v v v v v

Now we write logical page 6 (erase block 0, write back 0 and 1).

Table 0→ 1, 1→ 2, 2→ 5, 3→ 6, 4→ 7, 5→ 8, 6→ 0, 7→ 10, 8→ 11
Block 0 1 2
Page 0 1 2 3 4 5 6 7 8 9 10 11

Content 6 0 1 ⊥ 4 2 3 4 5 6 7 8
State v v v e i v v v v i v v

Remarks:

• In Example 6.15, we assumed that the SSD always erases the oldest
block when it needs to free up space for new writes. While this ap-
proach is perfectly fair with regard to wear leveling, there are many
other more intricate algorithms that generate less write overhead for
typical workloads.

• One simple approach is to always erase the block with the least valid
pages; while this reduces write overhead, it may impact wear leveling
negatively.



6.6. LOGICAL FILE SYSTEM 69

• Another approach often used in the literature is to separate logical
pages into “hot pages” that are written often and “cold pages” that
are written rarely. The hot and the cold pages can then be grouped
together into different areas on the SSD.

• The FTL algorithms that do well in simulations take into account
how long a block has not been written to, how many valid and invalid
pages are in it, and how often it has been erased before.

• In a block-level FTL logical blocks are mapped to physical blocks.
If the SSD has 4 pages per block, logical pages 0,1,2,3 are grouped
together to form logical block 0. Whenever any page of a logical block
is written, the whole logical block has to be written, producing more
write overhead.

• Hybrid FTLs often do block-level mapping with a small page-level
part for the most updated logical pages. Conversely, some hybrid
FTLs work on page-level in general and group together cold pages
into blocks.

6.6 Logical File System

To organize the data we want to permanently store, we need to arrange it in a
retrievable way on a storage device, and at runtime also in memory. Most file
systems follow the scheme we present here.

Definition 6.16 (Logical File System, Physical File System, Virtual File Sys-
tem). The data structures maintained in memory by the OS to manage stored
data is the logical file system. The arrangement of the data on a storage
device is the physical file system (or file system implementation). The
software connecting those two is called the virtual file system (VFS on Linux,
or installable file systems on Windows).

Remarks:

• The logical file system exposes an API to the user to create, read, or
modify files.

• The virtual file system makes it possible for the OS to have a unified
view of the (logical) file system while having different implementations
of (physical) file systems existing in the background.

Definition 6.18 (Directory Tree). The directory tree is a tree rooted at the
directory “/”. Every object in the logical file system can be found via its
absolute path starting from the root directory, or via a relative path starting
from a directory one is currently in.

70 CHAPTER 6. STORAGE & FILE SYSTEMS

Figure 6.17: The “file-system interface” is the logical file system, the “VFS
interface” is the virtual file system, and the “local file systems” are physical file
systems.

Remarks:

• The directory tree is the logical file system view used in UNIX variants.
Windows can have multiple drive letters, creating a “directory forest”.

• The absolute path to file vlc is /app/vlc; if we have already navigated
to directory /app/, the relative path is just vlc.

• One could allow cycles in the directory “graph”, and some file systems
do. The UNIX ecosystem has a lot of tools that will break if they run
into a cycle. For this reason, it is easier to keep the file system cycle-
free.

• Note that file /film/AI.mp4 has the file extension “.mp4”; file exten-
sions are not necessary, but merely a useful convention that allows the
OS to associate files with applications.

• Android and iOS also have directory trees, but they are hidden.

• How can a logical file system like this be represented on physical stor-
age? First, we need a way to store and find the data that belongs to
a file.

6.7 Physical File System

A storage device can be subdivided into multiple partitions to hold multiple
physical file systems. The information which parts of the storage device belong
to which partition is recorded in a partition table (different names for data
structures that serve this function in different operating systems exist). We
describe how a single physical file system can be implemented.



6.7. PHYSICAL FILE SYSTEM 71

/

film

AI.mp4

app

vlc chrome

tmp

Figure 6.19: An example of a directory tree of a logical file system. The dashed
nodes are files, the solid nodes are directories.

Definition 6.20 (Blocks, Inodes, Pointers). The physical file system groups
multiple storage device pages into a block (somtimes also cluster or allocation
unit). Every file in the physical file system is represented uniquely by an inode.
The data of the file is referenced via direct, single indirect, double indirect, or
triple indirect pointers that encode on which blocks the data is.

Remarks:

• Both files and directories are represented by inodes; as such, “direc-
tories are files”.

• An inode contains some metadata about the file, such as its type
(file, directory, or one of 5 other types in UNIX), its owner, access
limitations (we will see those later), file size, etc.

• The content of small files can be referenced via direct pointers, which
point to data blocks holding file data. Larger files also use indirect
pointers. Very small files can be stored in the inode directly.

• File sizes are limited by how large data blocks are in two regards: with
larger blocks each block can store more data, and indirect pointers can
point to more blocks.

• How are inodes managed on the storage device?

Definition 6.22 (Superblock, Bitmaps, Regions). At a specified location on the
storage device, we find the volume control block (superblock in the UNIX file
system, master file table in NTFS) that gives us the necessary information
about the file system - the type of the file system (FAT, NTFS, ext4, . . . ), where
to find the inode of the root directory, etc. The inode region and the data
region contain inodes and data blocks, respectively. The inode bitmap has as
many bits as there are inodes in the inode region, and an inode in the inode
region is in use if and only if the corresponding bit in the inode bitmap is set to
1. The data bitmap fulfills the same role for the data region.

72 CHAPTER 6. STORAGE & FILE SYSTEMS

Figure 6.21: The structure of an inode. Direct pointers to blocks are referred
to as “direct blocks” here. The inode in this example does not have a triple
indirect pointer.

Figure 6.23: A high level view of how the file system is arranged on the storage
device. S is the superblock, i the inode bitmap, d the data bitmap, I the inode
region, and D the data region. The numbers refer to blocks. i is usually smaller
than d.

Remarks:

• Figure 6.23 gives a schematic of an inode-based file system. Inode
and data bitmap are quite small since we only need a single bit per
inode/data block to determine whether the inode/data block is in use
or not. The inode region also quite small – multiple inodes fit into
a block of the storage device – the data region takes up most of the
space.

• When we want to create a new file, we need to find space for two
things: a free inode in the inode region we can use to represent the
file, and enough space in the data region to store the data of the file.
The two bitmaps will tell where to find this space.

• When we edit a file, we have to write the new data to the data region



6.7. PHYSICAL FILE SYSTEM 73

and update the pointers in the file’s inode, thus we do not need to
change the inode bitmap.

• Inodes do not store file data or even a name for the file, but only
metadata about the file and pointers to the file data. Per design,
the information what a directory contains is stored in the data blocks
that belong to the directory. Specifically, the data blocks of a directory
store key-value pairs (name: inode number).

Definition 6.24 (Hard Link, Soft Link). A hard link is an entry in a directory
that refers to an inode, i.e. a key-value pair (name: inode number) in the
directory data. Thus, the same inode (the same file!) can be accessed via multiple
hard links. A soft link (or symbolic link or symlink) is a file with its own
inode whose only content is the absolute path of the file it points to, the target.

Remarks:

• Neither hard nor soft links create copies of file data, they are only
different ways of pointing to a file!

• Hard links and soft links are not opposing concepts: there can be hard
links to a soft link, and there can be soft links to a hard link.

• There is no way to tell which of two hard links to the same inode is
the “real” one.

• Hard links face certain restrictions: they can only point to files inside
the current file system, and creating additional hard links to directo-
ries is not allowed (because this could introduce cycles to the directory
tree). Sometimes it might be convenient or necessary to have links to
files in other file systems, or shorthands for directories, and soft links
can help.

• Since hard links to directories are not allowed by many UNIX variants,
there is a canonical (i.e., unique) path to every directory, following
hard links.

• Soft links can point to directories, which could break tools that require
the directory graph to be a tree. However, soft links are recognisable
as soft links (they have a flag in their inode’s metadata to indicate
this), and so those tools can ignore soft links by simply not following
them. With hard links, this is not possible.

• Since every hard link is conceptually intended to be its own link to
the file, we can only delete a file when no more hard links to it exist.
The metadata of an inode contains a field to store how many hard
links to the file exist. Only when this counter reaches 0 can the inode
and associated data be freed.

• A soft link is a file of its own, and when the file it points to is moved/re-
named/deleted, the soft link points to a now-inexistent file – this is
called a broken, dead, orphaned, or dangling link.

74 CHAPTER 6. STORAGE & FILE SYSTEMS

6.8 Virtual File System

Definition 6.25 (Mounting a File System). To access a file system, the oper-
ating system has to mount it: it has to associate it to a particular directory
(the mountpoint) in the directory tree.

Remarks:

• When you boot your computer, your operating system will mount the
partition holding your boot file system to /boot. The file /etc/fstab
on UNIX variants contains a list of all file systems that will be mounted
during the boot process.

• UNIX has a file system mounted to the mountpoint /dev that contains
mostly device files which provide raw access to devices; for example,
the file /dev/cdrom contains the raw bytes of the CD in your drive.
Similarly, /proc is a filesystem with a file for each process that’s cur-
rently running, and /sys contains configuration files for the kernel.

• To mount a storage device, the virtual file system needs to know how
to interact with the physical file system on the storage device. For
this, a driver for the physical file system needs to be installed. For the
Linux VFS, drivers for around 40 different physical file systems exist.

• You can also mount non-storage file systems. You can mount a pro-
gram that generates its answers to file system requests from the op-
erating system on the fly. The file /dev/zero just returns 0-bytes
(as many as you ask for). It doesn’t exist anywhere physically and is
generated on the fly.

• You can also mount a device that is not in the same physical location
as your computer; a remote file system via a network.

Definition 6.26 (Portable Operating System Interface, POSIX). It is a family
of standards that defines an operating system interface and environment to make
applications portable across operating systems.

Remarks:

• The standard specifies programming interfaces, command interpreter
and common utility programs among other services.

• POSIX is supported by various Operating Systems including macOS,
mostly supported by Linux; also Windows has some POSIX-compliant
parts.

Definition 6.27 (File Permissions). In POSIX, access to a file is managed
via permissions (or privileges) assigned to a user, a group of users, and
everyone (other). Every file is assigned a user as its owner, and a group as
its group owner.



6.8. VIRTUAL FILE SYSTEM 75

Remarks:

• Permissions can be managed by restricting the owner’s/group owner’s/
everyone’s permissions to read, write, or execute a file. Permissions
are attributes of a file. They are represented in the permissions string
(or mode word or mode).

• Mode, owner, and group owner are stored in the inode of a file; see
the corresponding entries in Figure 6.21.

• If you own a file, you need user permissions to access it. If you are
only in the owner group of the file, you need group permissions. If you
are neither owner nor in the owner group of the file, then you need
other permissions.

• To access (read, write, or execute) a file, one needs execute permissions
for every directory in the file’s canonical path. The execute permission
bits of a directory are also called the search bits. Read permissions for
a directory allow to read the names in the directory, but not follow
them.

• Programs generally inherit their permissions from the user that starts
them. If the suid bit of the file is set, the program inherits user
permissions from the owner of the executable file instead; the sgid bit
does the same for group permissions.

• Only the owner of a file can change its permissions, and he can do so
without having any permissions for the file.

• The program sudo can allow a user to run a program with the per-
missions of another user, by default the superuser (also called root)
who has unrestricted permissions for every file; these permissions of
the superuser are hardcoded.

Chapter Notes

Hard disk drives were introduced in the 1950s. As all computing equipment,
they were originally huge machines; the IBM 350 drive introduced in 1956 was
the size of two tall refrigerators and offered space for just 3.75MB of data. They
only became commonplace equipment in household PCs by the second half of
the 1980s. See [6] and [1] to get an overview over the technological details
regarding how HDDs operate. Regarding disk scheduling algorithms, [7, 3] are
good starting points.

While still not as common as HDDs, SSDs are expected to become the
default technology in the coming years by many experts. The tradeoffs between
space overhead and write overhead are not understood very well yet; there
is very little theory on the matter, and the known algorithms are heuristics
without good upper bounds; see [2] regarding the worst-case tradeoff between
space overhead and write overhead. [8] is a decent starting point for algorithms
designed to reduce write overhead while providing a measure of wear leveling.
For a recent survey of FTL techniques, see [5]. There are also file systems that
try to minimize the impact of how files are managed on the performance SSDs

76 CHAPTER 6. STORAGE & FILE SYSTEMS

can provide. [4] is one of many attempts at building a file system specifically
for SSDs.

This chapter was written in collaboration with Georg Bachmeier.

Bibliography

[1] Dave Anderson, Jim Dykes, and Erik Riedel. More than an interface-scsi vs.
ata. In FAST, volume 2, page 3, 2003.

[2] Philipp Brandes and Roger Wattenhofer. Space and write overhead are
inversely proportional in flash memory. In Proceedings of the 8th ACM
International Systems and Storage Conference, page 9. ACM, 2015.

[3] David M Jacobson and John Wilkes. Disk scheduling algorithms based on
rotational position. Palo Alto, CA: Hewlett-Packard Laboratories, 1991.

[4] Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho. F2fs:
A new file system for flash storage. In FAST, pages 273–286, 2015.

[5] Dongzhe Ma, Jianhua Feng, and Guoliang Li. A survey of address translation
technologies for flash memories. ACM Computing Surveys (CSUR), 46(3):36,
2014.

[6] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling.
Computer, 27(3):17–28, 1994.

[7] Margo Seltzer, Peter Chen, and John Ousterhout. Disk scheduling revisited.
In Proceedings of the Winter 1990 USENIX Technical Conference, pages
313–323. Washington, DC, 1990.

[8] Benny Van Houdt. Performance of garbage collection algorithms for flash-
based solid state drives with hot/cold data. Performance Evaluation,
70(10):692–703, 2013.


