
Distributed
 Computing

FS 2019 Prof. R. Wattenhofer

Computer Engineering II
Solution to Exercise Sheet Chapter 6

Basic

1 HDDs

a) For a random workload, we can assume that the head is equally likely to be on each page.
As the outer tracks have more pages, the head is more likely to be on the outer tracks
than in the middle tracks. Therefore, a new request that is a bit towards the outer track
than in the middle track is served faster. (To calculate this exactly, one can assume that
each track has data proportional to its distance from the center. Then, solve the equation
involving the unknown track to which the expected seek time from any page is minimized.)

b) SSTF: starvation occurs if requests for a few closely grouped tracks come in frequently. For
example: if requests for the outermost tracks are arriving so frequently that there always
exists one unprocessed request at any time, then any request for the innermost track will
not be processed.
SPTF: any form of continuous sequential access over few tracks (going back and forth) will
result in requests for far away tracks never being processed.
SCAN, C-SCAN: if requests for the current track are being issued all the time, then neither
of these modes will ever leave the track.
F-SCAN solves the problem for SCAN and C-SCAN by not considering requests that come
in during a pass over the platter. The whole set of requests that exist at the beginning of
a pass will be processed by the end of it, and requests coming in during the pass will only
be procssed in the next pass.

c) It does not allow for any simple optimizations, such as grouping requests to sectors that
lie close to each other or minimizing positioning times.

d) We need three values to find out how long it takes to read one sector: the time to seek the
correct track Tseek, the time to rotate the platter to the correct position Trot, and the time
to read the sector Ttransfer.

HDD 1 with 9000 rpm:
Tseek = 5ms
For random access, Trot is half the time it takes for the disk to rotate since in expectation,
a random destination is exactly half a rotation away.

Trot = 1
2

1
9000min ≈ 3.33ms

Ttransfer = 4KB
120MB/s ≈ 32.6µs

This gives a rate of I/O of roughly RI/O
4KB

5ms+3.33ms+0.0326ms ≈ 0.478MB
s . Since all sectors’

positions are independent of each other, we can just divide the amount of data we want
to read by the rate of I/O to get the time it will take in expectation to perform the read.
Therefore, it takes HDD 1 roughly 200MB

0.478MB/s ≈ 418s to process a 200MB random access

workload.

HDD 2 with 5400 rpm:
Tseek = 3ms

Trot = 1
2

1
5400min ≈ 5.56ms

Ttransfer = 4KB
120MB/s ≈ 32.6µs

This gives a rate of I/O of roughly RI/O
4KB

3ms+5.56ms+0.0326ms ≈ 0.466MB
s . It takes HDD 2

roughly 200MB
0.466MB/s ≈ 429s to process a 200MB random access workload.

2 SSDs

Block 0 1
Page 0 1 2 3 4 5 6 7

Content ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
State i i i i i i i i

We start with an empty SSD with all cells being invalid (i). Programmed cells will be marked
as valid (v), programmable ones as erased (e). We have to erase any invalid pages before pro-
gramming them.

To save some space, we will only list the content and state of pages after this, plus the map-
ping table for the page-mapped SSD.

The command write(x) content Y comes from the OS and means “write content Y to
logical address x”. A logical address is an abstraction presented to the OS by the storage device;
the OS only sees an array of disk positions it can operate on. This way, the OS can deal with
completely different devices without knowing anything but this abstraction about them. The
device itself translates every logical address to a physical address, i.e. in the case of SSDs: every
logical address is mapped to some page of the SSD.

For direct mapped SSDs, logical addresses are directly used as physical addresses. For page-
mapped SSDs, the FTL stores which logical page is mapped to which physical page. We will
denote “logical address a is located at physical address b” by “a → b”.

Garbage collection only happens in SSDs that use an FTL; its purpose is to make pages that
are invalid useable again.

Direct mapped SSD:

write(0) content A

Content A ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
State v e e e i i i i

write(6) content B

Content A ⊥ ⊥ ⊥ ⊥ ⊥ B ⊥
State v e e e e e v e

write(4) content C

Content A ⊥ ⊥ ⊥ C ⊥ B ⊥
State v e e e v e v e

2

write(1) content D

Content A D ⊥ ⊥ C ⊥ B ⊥
State v v e e v e v e

write(0) content E
First erase block 0, remember what was in page 1; the SSD has some RAM built in that can be
used for buffering, or to remember the contents of a block that is about to be erased as in our
scenario.

Content ⊥ ⊥ ⊥ ⊥ C ⊥ B ⊥
State e e e e v e v e

Now program the new content of page 0 and the old content of page 1.

Content E D ⊥ ⊥ C ⊥ B ⊥
State v v e e v e v e

write(4) content F
erase first

Content E D ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
State v v e e e e e e

program

Content E D ⊥ ⊥ F ⊥ B ⊥
State v v e e v e v e

Page-mapped SSD:
The row “Table” contains the pairs “logical page → physical page”.

write(0) content A

Table 0→ 0
Content A ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

State v e e e i i i i

write(6) content B

Table 0→ 0, 6→ 1
Content A B ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

State v v e e i i i i

write(4) content C

Table 0→ 0, 6→ 1, 4→ 2
Content A B C ⊥ ⊥ ⊥ ⊥ ⊥

State v v v e i i i i

3

write(1) content D

Table 0→ 0, 6→ 1, 4→ 2, 1→ 3
Content A B C D ⊥ ⊥ ⊥ ⊥

State v v v v i i i i

write(0) content E

Table 0→ 4, 6→ 1, 4→ 2, 1→ 3
Content A B C D E ⊥ ⊥ ⊥

State i v v v v e e e

garbage collection
First, we copy the live pages from block 0 to end of log and update our mapping information;
this is usually done first so the data isn’t lost in case of a power failure.

Table 0→ 4, 6→ 5, 4→ 6, 1→ 7
Content A B C D E B C D

State i i i i v v v v

Then we can erase block 0:

Table 0→ 4, 6→ 5, 4→ 6, 1→ 7
Content ⊥ ⊥ ⊥ ⊥ E B C D

State e e e e v v v v

write(4) content F

Table 0→ 4, 6→ 5, 4→ 0, 1→ 7
Content F ⊥ ⊥ ⊥ E B C D

State v e e e v v i v

garbage collection
Copy the live pages from block 1 to the next erased page, update FTL:

Table 0→ 1, 6→ 2, 4→ 0, 1→ 3
Content F E B D E B C D

State v v v v i i i i

Erase block 1:

Table 0→ 1, 6→ 2, 4→ 0, 1→ 3
Content F E B D ⊥ ⊥ ⊥ ⊥

State v v v v e e e e

4

Advanced

3 Disk Scheduling

a) FCFS serves the requests in the order of their arrival times. The time taken to serve the
first request is N/2 − 1. Afterwards, every request is served by travelling to the other
extreme and takes N − 1 steps. Thus, a total time of (2k− 1)(N − 1) + (N/2− 1) is taken.

For SSTF, the head starts moving towards the first request at track 1, once the request
appears. Once the head reaches track 1 all the requests have appeared, since N ≥ 4 and all
the requests arrive within the first time unit. Thus, SSTF processes the remaining requests
at track 1, and then travels to the other extreme to process the remaining requests. The
total time taken by SSTF is thus N/2− 1 + N − 1 = 3N/2− 2. This is independent of k
and thus SSTF is much better than FCFS here.

b) The idea is to construct a sequence that requires SSTF to move back and forth to satisfy
all the requests but FCFS is finished in a single forward and backward pass. To construct
such a sequence, we place two requests on both sides of the current head position, so that
the request on the opposite side is closer than the request on the same side. Consider
the following example sequence: requests arrive within the first time unit to the following
tracks in order: 8, 9, 12, 7, 1. As given, the initial position of the head is track 8.

The FCFS serves the first request on track 8 as soon as the request appears and then moves
on to track 9 when that request appears. When track 9 is serviced, all the requests have
appeared, and the request 12 is served before 7 and 1. The time taken is 4 units to serve
the requests 8, 9, 12 and 11 units to serve the request 7 and then 1. The total time taken
by FCFS is thus 4 + 11 = 15 units.

The SSTF algorithm serves the request at track 8 as soon as it appears. When track 9
request appears, the head start moving towards it. Once SSTF serves track 9 request, all
other requests have appeared. The request at track 7 is at a distance 2 from 9 where as the
request 12 is at a distance 3. So, track 7 gets served next and the distance yet covered by
the head is 1 + 2 = 3. Next, track 12 is at a distance of 5 where as track 1 is at a distance
of 6. So, tracks 12 and then 1 get served in order. The total distance covered by head is
then 3 + 5 + 11 = 19. So. FCFS is better here.

c) Say the head is positioned at track d. As each track is equally likely to be addressed, the
expected cost Cd is

Cd = Σd−1
i=1

i

N
+ ΣN−d

i=1

i

N
.

Since requests are uniformly distributed across tracks, track d is equally likely to be any
track. Thus, the total expected cost C for FCFS is

C = ΣN
d=1

Cd

N

= ΣN
d=1

1

N

(
Σd−1

i=1

i

N
+ ΣN−d

i=1

i

N

)
=

1

N2
ΣN

d=1

(
(d− 1)2

2
+

(N − d)2

2

)
=

1

N2
ΣN

d=1

(
d2 − d(N + 1) +

N2 + 1

2

)
=

1

N2

(
N3

3
− N2(N + 1)

2
+

(N2 + 1)N

2

)
=

(
N

3
− 1

2
+

1

2N

)
≈ N

3
.

5

Since, there is a time of N between successive requests, there is only one outstanding
request to serve for SSTF. Thus, SSTF also incurs the same expected cost as FCFS here.

4 File System

a) In an inode-based file system, every file (also directory) is represented by exactly one in-
ode. The content of the inode representing a file is a set of pointers to the data blocks that
contain the data of the file (plus a bunch of meta data that we don’t care about here). For
files, the data is just their content. For directories, the data is a set of mappings (name:
inode number). The bitmaps are only used to decide which cells in the inode region/-
data region can be written to.

Note that Unix-like operating systems have file systems where each directory includes two
subdirectories by default: . (“dot”) and .. (“dot-dot”). dot refers to the directory itself,
dot-dot to its parent directory — which only in case of the root directory is the directory
itself. We will not show entries for either.

The file system starts out with the inode 0 representing the empty root directory; there is
nothing in its data block yet since it is empty. Black cells in the bitmaps indicate that the
respective bits are set. The numbers in inodes are the pointers to the data blocks of the
represented file.

Super

0

i-bmap d-bmap inodes data

data

Initially, only inode 0 exists and contains a single pointer to data block 0. This inode repre-
sents the root directory. Since the root directory is initally empty, there is no data stored in the
data block.

Command: mkdir /a

To create directory /a, we need a new inode — the inode bitmap tells us that inode 1 can
be written — and reserve space for the directory — the data bitmap tells us that data block 1
is empty. We need to update the content of the root directory to include subdirectory /a. The
mapping “a:1” means that the subdirectory a is represented by inode 1.

6

Super

0 1

a: 1

i-bmap d-bmap inodes data

data

Command: mkdir /b

Super

0 1
a: 1
b: 2

2

i-bmap d-bmap inodes data

data

Command: echo “This is a long text file” > /b/a.txt

To create file /b/a.txt, we need a new inode — the inode bitmap tells us that inode 3 can be
written — and reserve space for the file — the data bitmap tells us that data blocks 3 and 4 are
empty. We need to update the content of the directory /b to include the information that file
/b/a.txt is represented by inode 3. Note that inode 3 contains two pointers: one to data block
3, and one to data block 4.

Super

0 1
a: 1
b: 2

a.txt: 3
This
is a

2 3,4

i-bmap d-bmap inodes data

long
text
file

data

Command: echo “This is another long text file” > /a/b.txt

7

Super

0 1
a: 1
b: 2

b.txt: 4 a.txt: 3
This
is a

2 3,4
5,6

i-bmap d-bmap inodes data

long
text
file

This
is
another

long
text
file

data

Command: rm /b/a.txt

Super

0 1
a: 1
b: 2

b.txt: 4
This
is a

2
5,6

i-bmap d-bmap inodes data

long
text
file

This
is
another

long
text
file

data

Note what happens according to our solution when we delete a file: the inode bitmap marks
the inode that represented the file as legal to be written to, the data bitmap does the same for
the data blocks that contained the file, and the directory containing the file has the mapping
from filename to inode removed. The content of the file itself is still on the disk! In fact, de-
pending on the specific file system, even the pointer information stored in the inode may or may
not still be on the disk, with just the inode bitmap indicating that that specific place in the
inode can be written to. The ext2 file system did not delete the contents of an inode when a file
was deleted, making file recovery as easy as flipping a bit in the inode bitmap along with the
corresponding bits in the data bitmap (assuming none of the data blocks or the inode had been
overwritten since the file was deleted). ext3 started setting all pointer fields stored in an inode
that represents a deleted file to 0, which means the content of the inode was actually erased.
The solution presented here assumes that the content of an inode that represents a deleted file
is erased, while the content of the data blocks containing a deleted file are not.

Command: echo Hi > /a/a.txt

Super

0 1
a: 1
b: 2

b.txt: 4
a.txt: 3

Hi
2 3

5,6

i-bmap d-bmap inodes data

long
text
file

This
is
another

long
text
file

data

b) • Super: get starting address of inode region

8

• Inode table at index 0: get address(es) of ’/’ block(s)

• ’/’ block: get address of ’/a’ inode

• ’/a’ inode: get address(es) of ’/a’ block(s)

• ’/a’ block: get address of ’/a/b.txt’ inode

• ’/a/b.txt’ inode: get address(es) of ’/a/b.txt/’ block(s)

One important side note: the inode bitmap and the data bitmap are not involved when
reading files (and therefore also not when resolving a path); they are only involved when
we need to know where we can store now file data, or when we delete existing files.

c) • Hard links are stored in the directory data blocks and point to the linked file’s inode,
i.e. a hard link is not a separate file, it is simply the tupel (name : inode number)
as an entry in a directory’s data black. In this sense, a hard link is a “normal” link.
Each file has at least one hard link.

• A soft link is a file that has its own inode. Its data block stores a path which has to be
resolved to get to the linked file. Thus, two paths have to be resolved when accessing
a soft link.

5 Permissions

a) weakuser would need user execute permissions since he is the file owner. Even if the
execute bit for other was set, weakuser would not be able to execute the file. Similarly,
because user is not the owner of the file but is in its owner group, the group execute bit
would have to be set for user to be able to execute it.

b) He can do all three. When the OS decides whether weakuser can execute the file, it checks
whether he is the owner (he isn’t), then if he is in the owner group. Since weakuser is
in the owner group, and the group has execute permissions, he can execute the file. Only
once the file is being executed will the suid bit change the user permissions of the new
process in which the file is being executed to those of user. In short: to execute a file, the
suid/sgid have no influence, only once the file is being executed does the newly started
process get influenced by them.

Notice that the user permissions have S, i.e. the suid bit is set, but the owner does not
have permissions to execute the file.

c) weakuser is other for that directory, and other does not have read privileges.

d) Set other read bit on /secret/subdir/avengers.mp4; user can do this since he
owns the file — he does not need write permissions for it! To resolve the path, other needs
execute permissions for all directories on the path, which he has. Notice that other does
not have read permissions for /secret/subdir/, but he doesn’t need those to resolve
the path; he would only need them if he wanted to list the content of /secret/subdir/.

e) First we create the directory tree; the solution below shows a directory tree rooted at
directory permissions test in my home directory on Ubuntu.

Figure 1: Creating the directory tree.

9

Next we set the permissions.

Figure 2: Setting permissions.

A short explanation for the command chmod: if we interpret a triad of the permission string
as a binary number, we get a value between 0 and 7: read permissions are the 4-bit, write permis-
sions are the 2-bit, execute permissions are the 1-bit. For example, 3 means “write and execute
privileges” since 3 = 2 + 1. Thus chmod 437 file will make the permission string of a regular
file file to -r---wxrwx. Alternatively, you can set or remove (+ or -) read/write/execute
permissions (r/w/x) for owner/group owner/other (u/g/o). For example, chmod o+rw file
gives (+) read (r) and write (w) permissions to other (o) for file.

If you check the permissions now (e.g. the command ll permissions test/secret/ will
tell you the permission string for permissions test/secret/), you will see the permissions
are set correctly for every file except permissions test/secret/destroy.fh since we have
not yet set the sgid bit for that file yet. The reason we didn’t show that yet is to illustrate that
once we change the owner of a file using the command chown as in the following figure, both
suid and sgid get cleared. You need superuser privileges to use chown — you cannot “gift”
someone with a file unless you have superuser privileges.

Figure 3: chown newOwner:newGroupOwner file changes the owner and group owner of
file to newOwner and newGroupOwner respectively.

Figure 4: Checking permissions after changing owners and group owners using chown. The
terminal on Ubuntu offers different color codings for some permission strings.

We now set the suid/sgid bits that we want again:

Figure 5: Setting the suid bit for groupFile again...

10

Figure 6: ...and the sgid for permissions test/secret/destroy.sh. We need sudo
here if we are not logged in as weakuser since only the owner and the superuser can set file
permissions.

As an example, we check the permissions for two files:

Figure 7: Checking permissions for permissions test/secret/...

Figure 8: ...and for permissions test/secret/subdir/avengers.mp4.

You can verify that the permissions and owners for the rest of the directory tree are set
correctly as well.

11

