e
ETH P

Distributed ‘»,’/‘5,:;‘.

Eidgendssische Technische Hochschule Ziirich ““ 5%
Swiss Federal Institute of Technology Zurich Computmg ‘?‘\ Pl
FS 2019 Prof. R. Wattenhofer

Computer Engineering II
Solution to Exercise Sheet Chapter 8

Quiz

1 Quiz

a) The correct answer is iii): The number of collisions goes up.
Some buckets will have fewer than % keys in them on average, and some significantly more.
Since the number of collisions is quadratic in the number of keys in a bucket, this means
that we get more collisions than if the hash function wasn’t biased.

For a specific example, consider the case of 2 buckets, one with x keys in it and the other
with y keys. If we increase x and decrease y, what happens to the number of collisions,

which is (5) 4+ (§)? We show what happens to the proportional term z? + y2.

(x+d)?+(y—d)?=a+2dx+d*+9° - 2dy + d* = 2% + y* + 2d(z — y) + d*

If initially, z = y — which is the case in expectation if we distribute keys evenly among
the buckets — then we see that moving d keys from one bucket to the other results in

(z+d?+@y—d? =2+ +2dz—y)+d> = 2> + 1> + d*> > 2% + 3>

b) We only need to consider:

i) Number of keys
iii) Size of hash table

v) Method for resolving collisions

If we insert many keys into a fixed size hash table, then we get more collisions and thus need
to do more work to resolve those collisions than if we only insert few keys. Analogously, if
we insert a fixed number of keys into a small hash table, then we get more collisions than
if we insert them into a large hash table. Finally, the method of resolving collisions makes
a difference, as can be seen for example in Table 8.18 in the script.

Altogether, we need to consider the number of keys, the size of the hash table, and the
method we use for resolving collisions. More succinctly, it is the ratio between number of
keys and size of the table that is relevant, and this is the load factor.

The genius of universal hashing is precisely that we do not need to consider the distribution
of keys; we know that in expectation, we get a good hash function in few tries no matter
what the distribution of keys looks like.

As for similarities between keys, some applications require “similar” keys to be close to
each other in the hash table, and there are techniques to handle this. In general, this is
not a requirement we need to consider.



c) If every single operation has to be fast, hashing is a bad choice; in the worst case, a single
search operation can take linear time if we have to look at every bucket for hashing with
probing, or if all keys are in one bucket for hashing with chaining. The guarantees we get
from hashing are in expectation — at least one of insert/delete/search can only be fast in
expectation and will cost more than constant time in the worst case.

Basic

2 Trying out hashing

Solution to our exercise:

12 3 4 5 6 7 8 9 10

Linear 22 | 88 4115 |28 | 17|59 | 31|10
Quadratic 22 88 | 17 | 4 28 | 59 | 15 | 31 | 10
Double hashing || 22 59 | 17 | 4| 15 | 28 | 88 31|10

To give an example of how to arrive at this, we show how the insert operations go with linear
probing:

ho(10) =10+ 1-0 mod 11 = 10

(

(
ho(4) =4+4+1-0 mod 11 =4
ho(15) =15 +1-0 mod 11 = 4
hi(15) =15+1-1 mod 11 =5
ho(28) =28 +1-0 mod 11 = 6
ho(17) =174+ 1-0 mod 11 = 6
hi(17) =17+1-1 mod 11 =7
ho(88) =88 +1-0 mod 11 =0
hi(88) =88+ 1-1 mod 11 =1
ho(59) =5941-0 mod 11 =4
hi(59) =59+ 1-1 mod 11 =5
ha(59) = 59+ 1-2 mod 11 = 6
ha(59) =59 +1-3 mod 11 =7
ha(59) =59+ 1-4 mod 11 =8

3 Using hash tables

a) Build a hash table M from T'. For each key k € S, search whether the key is in the hash
table M. If every search says “yes, that’s here”, answer “yes”. Else, answer “no” after the
first search that came back “not in the set”.

b) Our cost is the time for building plus the time for searching.
Since the input is static, we use perfect static hashing, and we get expected cost in the
order of O(q + r): building the table costs expected time linear in |T'| = r, and searching
all keys in S in the table costs (worst case for perfect static hashing) |S| = ¢ time.

The time complexity of a simple algorithm that sorts and compares the elements in the
two sets is O(qlog ¢ + rlogr), which asymptotically worse than the time complexity of the
algorithm that uses hash tables (O(q +)).



Advanced

4 r-independent hashing

The difference between universal hashing and r-independent hashing is this: with universal hash-
ing, if we fix any two keys and sample a hash function from a universal family, then the chance
of the two keys colliding under that hash function is at most % r-independent hashing is not
defined via collisions, but via the possible combinations of buckets into which a random hash
function will put any 7 fixed keys, and the statement here is: they are equally likely to be put
into any bucket combination from (0,...,0) to (m —1,...,m — 1), i.e. for each of those combi-
nations, the chance of getting those hashes is % The purpose of this exercise is to show that

r-independence is a strictly stronger property than universality.

a) Let H be 2-independent. By the definition of 2-independence, for any two distinct keys k #
we have Pr[h(k) = a1 and h(l) = as] = -5 for any ay,as € M if we sample h € H uniformly.
Therefore:

I
",
=,
=
S
S~—
Il
(e}
o
=
2
=
I
D,

3

m

Therefore, if h is 2-independent, then h is universal.

An alternative proof: we know that Pr[h(k) = a1 and h(l) = as] = # for any ay,as € M.
There are exactly m possible vectors (a,a) € M? that constitute all possible collisions, and since

each of them has probability #, we get a total collision probability of -7 = L

m

b) Let k = (0,...,0) and I € M* k # [ arbitrary. Since h,(k) = 0 for all choices of a, for any
pair of hashes (r,q) € M? with r # 0, we have Pr[(h,(k), ha(l)) = (r,q)] = 0 # 3. Thus, the
family defined in the script is not 2-independent.

5 Not quite universal hashing

The trick is similar to 4b). If we pick keys k = (0,...,0)and l = (1,1,0,...,0), then h, (k) = 0 for
all a, and hy(l) =0 < a3 +az =0 mod m. Since a1,as > 0, this means ay = m —a;. There are

m—1 choices for a1, each of which uniquely determines a, and so Pr[hq (k) = ha(l)] = =15 > L.

6 Obfuscated quadratic probing

a) What the algorithm does is this: it iterates j from 0 to m — 1, and in every iteration, it
increases ¢ by the current j. Thus, if i; denotes the value of i in the jth iteration, then

10 = h(k)

i1 =h(k) +1

io=h(k)+1+2



Thus if we denote our paramterized hash function as h;(k) = i; mod m, we only have to express
the partial sum in ¢; as a quadratic function to prove that this is an instance of quadratic probing.
This particular partial sum is well known:

J ..
g+ 1 1,

Q=" =gty

n=0

Therefore, hj(k) = h(k) + £j + $j* mod m.

b) To prove that the probing sequence of every key covers the whole table, we show that any two
steps of the sequence are distinct. Thus, let k& be some key and let r,s € [m] with » < s. Now
we have

hr(k) = hs(k) mod m
&= h(k) + %7‘ + % = h(k) + %s + %SQ mod m
& %7‘24—%7’: %32+%$ mod m
& %ser%sf%rz % =0 mod m

This is the case if and only if there exists an integer ¢ such that

1,1, 1, L,
58 s — gt mgr=tm
1
2

(s—r)(s+r—+1) =2t

—rPts—r)=tm

The last step used that m = 2P. We now show that this equation has no solution. Notice that
t > 0 since the left hand side of the equation is positive.

Exactly one of (s—r) and (s+7+1) can be even: if (s—r) is even, then (s—r)+2r+1 = (s+r+1)
is odd, and vice versa. Thus, 27! can divide at most one of (s — r) and (s + r + 1) since only
even numbers have 2 as a factor.

Since r < s <m — 1, we know that (s —r) < m = 2P < 2PT1 50 2PT! cannot divide (s —r). We
also know that (s +7r+1) < (m—1)+ (m —2)+1 < 2m = 2PT! and so 2P™! cannot divide
(s + 7+ 1) either. Therefore, 2P*1 divides neither.

Since only one of (s —r) and (s + 7 + 1) is even, i.e. only one of them has 2 as a factor, 2°T!
would have to divide one of these two terms if it were to divide their product. Since 2P*! divides
neither of them, we conclude that (s —7r)(s+r+1) = ¢2P*! wit ¢ > 0 has no solutions, therefore,
h.(k) # hs(k) mod m.



7
)

b)

d)

Robin Hood hashing

Suppose a collision happens and the two objects have probe sequence lengths (psl) ¢ and
7. No matter which object we choose to keep in the bucket, the other object will travel the
same length in its probing sequence from that point on, denoted k, since the next empty
bucket is the same for both objects. Therefore, the sum of the probe sequence length will
remain the same and equal to i+ j+ k. Thus, the expected value of the psl does not change
with the Robin Hood modification.

Every time we have two colliding objects, we move the one with the shorter psl. Since
linear probing suffers from primary clustering, both object from this point on will need the
same number of probes to find an empty bucket. Thus, the longest psl cannot be longer
since we started with the shorter psl.

Similarly to the previous question, it is easy to see that the shortest psl will be larger
compared to the hashing with linear probing. Thus, the variance decreases. More formally,
suppose we have two colliding objects k1 and ko and their corresponding probing sequence
length (in collision) are ¢ and j, respectively, where ¢ < j. Then we have three possibilities:

o i < j < E(psl): If we move k; then the variance will decrease more than in the case
we moved ks.

e i < E(psl) < j: If we move k; we decrease the variance, while if we move ko we
increase it.

e E(psl) < i< j: If we move k; we increase the variance less than if we move ks.

Thus, in any case, moving the object with the smallest probing sequence position is bene-
ficial towards decreasing the variance of the psl.

If we delete an object and do not mark the bucket then every time we search for an object
we need to search the entire hash table to be sure it does not exist. Instead of leaving the
bucket empty we place a marker (tombstone). This way, we can stop the search if we find
an empty bucket (but not a marked one).

Although the table might be almost empty, we still have to go through the entire probing
sequence we used to insert the objects. Thus, the search operation can be very inefficient,
since at the worst case we have to go through the entire table.

To improve the performance we suggest a similar modification to the delete operation as
we originally did to the insert operation (backward shift deletion). Specifically, every time
we want to delete an object we do the following procedure: After we locate the object to
be deleted, we do another linear probing until we find either an empty bucket or a bucket
where the object was placed with the first probe; we will refer to this bucket as the stop
bucket. Then, we delete the object and we shift backward all the buckets between the
deleted bucket and the stop bucket. Then, we mark the last bucket (previous to the stop
bucket) as empty.

The idea behind this modification is to keep the average psl as well as the variance of the
psl low even after a large number of deletions, and hence improve the efficiency of the
search operation.



	Quiz
	Trying out hashing
	Using hash tables
	r-independent hashing
	Not quite universal hashing
	Obfuscated quadratic probing
	Robin Hood hashing

