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[Meta-Learning is to tell] agents to learn how to
learn new tasks faster by reusing previous
experience, rather than considering each new task
In isolation.

—Chelsea Finn
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Intuition

* Maximising the
‘sensitivity’ of the loss
function of tasks w.r.t
parameters

* By pre-training
parameters for all tasks

e Sensitivity is high if
small local changes
lead to large
iImprovement for tasks
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Figure 1. Diagram of our model-agnostic meta-learning algo-
rithm (MAML), which optimizes for a representation ¢ that can
quickly adapt to new tasks.




Algorithm

e The parameters after gradient decent updates on task |
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e QOur objective function (for a distribution of tasks) is
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Regression Experiment

e Sinusoid Function with amplitude in [0.1, 0.5] and
phase in [0, 1]

e A model of 2 layers each with size 40 and RelLu-
activation

e Compared with ground truth and model pre-trained on
same metadata



Regression Experiment
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Regression Experiment

K-shot regression, k=10
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RL Experiment

Continuous control as proposed in Duan et al. 2016
2 hidden layers of size 100 with RelLu activation

TRPO as metaoptimizer and vanilla policy gradient as
actual update

Compared with ground truth and model pre-trained on
same metadata



RL Experiment
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RL Experlment

n: https://si ogle.com/view/maml



https://sites.google.com/view/maml

Wrap up MAML

Model-agnostic: compatible with any gradient trained
model

Flexible: take advantage of any amount of data with any
number of gradient steps

Simple: No additional parameters needed

Disadvantage: need to compute higher order derivatives
during meta-training



RL2
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General Architecture
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Implementation

RL problems seen as MDPs or POMDPs
RNN implemented by GRU network
First-order TRPO as training algorithm

GAE to further reduce variance



Multi-Armed Bandits




Multi-Armed Bandits

Normalised
total reward

Setup Random Gittins TS OTS UCB1 e-Greedy Greedy RL?
n=10,k=5 5.0 6.6 5.7 6.5 6.7 6.6 6.6 6.7
n =10,k =10 5.0 6.6 5.5 6.2 6.7 6.6 6.6 6.7
n =10,k = 50 5.1 6.5 5.2 5.9 6.6 6.5 6.5 6.8
n =100,k =5 49.9 78.3 74.7 77.9 78.0 75.4 74.8 78.7
n =100,k =10 49.9 82.8 76.7 81.4 2.4 77.4 77.1 83.5
n =100,k =50 49.8 85.2 64.5 67.7 84.3 78.3 78.0 84.9
n=>500,k=5 249.8 405.8 402.0 406.7 405.8 388.2 380.6 401.6
n =500,k =10 249.0 437.8 429.5 4389 437.1 408.0 395.0 432.5
n =500,k =50 249.6 463.7 427.2 437.6 457.6 413.6 402.8 438.9
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Tabular MDPs




Tabular MDPs

Random PSRL OPSRL UCRL2 BEB ¢-Greedy Greedy RL?

100.1 138.1 144.1 146.6 150.2 132.8 134.8 156.2
250.2 408.8  425.2 424.1 427.8  377.3 368.8 445.7
499.7 904.4  930.7 918.9 917.8  823.3 769.3 936.1
749.9 1417.1  1449.2  1427.6 1422.6  1293.9 1172.9  1428.8
999.4 1939.5 1973.9 1942.1 1935.1 1778.2 1578.5  1913.7
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Visual navigation

(a) Sample observation (b) Layout of the 5 X 5 maze in (a) (c) Layout of a 9 X 9 maze



Visual navigation

(a) Average length of successful trajectories

(b) %Success

(¢) %Improved

Episode Small Large Episode Small Large
1 524 +1.3 180.1 £6.0 1 99.3% 97.1%
2 39.1£0.9 151.84+5.9 2 99.6%  96.7%
3 426 £1.0 169.3+6.3 3 99.7%  95.8%
4 43.5+1.1 162.3+6.4 4 99.4%  95.6%
5 439+ 1.1 169.3 6.5 5 99.6% 96.1%

Small Large
91.7% 71.4%




Visual navigation
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Total reward

Visual navigation

0 500 1000 1500 2000 2500 3000 3500
Iteration



Wrap up RL2

Fast reinforcement learning via slow reinforcement
learning using RNN states

Comparable to theoretical optimum in small problem
setting

Scalable to complicated vision tasks

Potential improvement for RL algorithm and network
architecture



Summary

Learning
How to Learn




Thanks for listening
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