Seminar in Deep Reinforcement Learning

Introduction

Disclaimer: This is a seminar...

(almost) no basics

participation required

Format

- Assigned papers
- 35 min presentation
- 10 min facilitated discussion
- Voluntary coding challenge

Grade =

presentation + active participation (+ challenge)

19.02.2019	Introduction
26.02.2019	Distributional Deep Reinforcement Learning
05.03.2019	Continuous Control
12.03.2019	Variance Reduction
19.03.2019	Overestimation in Q-Learning / Distributed Deep Reinforcement Learning
26.03.2019	Learning from Artificial Demonstrations
02.04.2019	Exploration-Exploitation Trade-off in Deep Reinforcement Learning

09.04.2019	Off-Policy Learning
16.04.2019	Hierarchical Deep Reinforcement Learning
30.04.2019	Multi-Agent Deep Reinforcement Learning
07.05.2019	Multitask/Transfer Deep Reinforcement Learning
14.05.2019	Model Based Deep Reinforcement Learning
21.05.2019	Meta Learning / Human Influence Coding Challenge Hand-In
28.05.2019	Discussion & Coding Challenge

 $R=\sum_t \gamma^{\iota} r_t$ $\gamma \in (0,1]$

 $R = \sum_{t=0}^{T_e} \gamma^t r_t$ $\gamma \in (0,1]$

$$egin{aligned} R^{\pi} = \sum_{t=0}^{T_e} \gamma^t r_t \ \pi(a|s_t) = Pr(a|s_t) \end{aligned}$$

Estimate remainder of R^{π} in each state s_t

$$V^{\pi}(s_t) = \mathbb{E}_{\pi}[\sum_{t'=t}^{T_e} \gamma^{t'-t} r_{t'}]$$

$$Q^{\pi}(s_t, a_t) = r_t | a_t + \mathbb{E}_{\pi | a_t} [\sum_{t' = t+1}^{T_e} \gamma^{t' - t} r_{t'}]$$

$$\pi^{greedy}(a|s_t) = \mathbf{1}_{a=\max_{a'}} Q^*(s_t,a')$$

 $V^{\pi}(s_t) = \mathbb{E}_{\pi}[\sum_{t'=t}^{T_e} \gamma^{t'-t} r_{t'}]$ $r = \mathbb{E}_{\pi}[r_t] + \gamma \mathbb{E}_{\pi}[\sum_{t'=t+1}^{T_e} \gamma^{t'-t-1} r_{t'}]$ $\mathcal{I} = \mathbb{E}_{\pi} |r_t| + \gamma V^{\pi}(s_{t+1})$

 $Q^{\pi}(s_t, a_t) = r_t |a_t + \mathbb{E}_{\pi | a_t} [\sum_{t' = t+1}^{T_e} \gamma^{t' - t} r_{t'}]$ $= r_t | a_t + \gamma V^\pi(s_{t+1})|$

 $V^{greedy}(s_t) = \max_{a'} Q^{greedy}(s_t, a')$

Q-Learning

Watkins (1989)

$$egin{aligned} Q^{greedy}(s_t,a_t) &= r_t | a_t + \gamma \max_{a'} Q^{greedy}(s_{t+1},a') \ & ext{iff } Q^{greedy} \equiv Q^* \ y(s_t,a_t) &:= r_t | a_t + \gamma \max_{a'} ilde{Q}(s_{t+1},a') \ & ext{} \delta_{TD} = y(s_t,a_t) - ilde{Q}(s_t,a_t) \ & o ext{minimize } \delta_{TD}^2 \end{aligned}$$

Classical RL vs Deep RL

Human-level control through DRL (Mnih et al., 2015)

DQN

Deep Learning Works for... RL?

- …large data sets… many interactions
- ...with Jabeled data points...
 self-labeled
 - → target network

• ...which are iid

→ replay buffer

Target Network

$$egin{aligned} y(s_t,a_t) &:= r_t | a_t + \gamma \max_{a'} ilde{Q}_{ heta^-}(s_{t+1},a') \ \delta_{TD} &= y(s_t,a_t) - ilde{Q}_{ heta}(s_t,a_t) \ & o ext{minimize} \ \delta_{TD}^2 \end{aligned}$$

Replay Buffer

$$egin{aligned} R^{\pi} &= \mathbb{E}_{\pi}[\sum_{t=0}^{T_e} \gamma^t r_t] \ \pi_{\overline{ heta}}(a|s_t) &= Pr(a|s_t) heta) \end{aligned}$$

 $\mathbb{E}_{\pi}[(\sum_{t=0}^{T_e} \gamma^t r_t)(\sum_{t=0}^{T_e}
abla \log \pi(a_t | s_t))]$

Causality $= \mathbb{E}_{\pi} [\sum_{t=0}^{T_e} (\sum_{t'=t}^{T_e} \gamma^{t'-t} r_{t'})
abla \log \pi(a_t | s_t)]$

 $= \mathbb{E}_{\pi} [\sum_{t=0}^{T_e} V^{\pi}(s_t)
abla \log \pi(a_t | s_t)]$

 $= \mathbb{E}_{\pi} [\sum_{t=0}^{T_e} (V^{\pi}(s_t) - b)
abla \log \pi(a_t | s_t)]$

Asynchronous Methods for DRL (Mnih et al., 2016)

A3C

Asynchronous Methods for DRL (Mnih et al., 2016)

$$\max_{ heta} \mathbb{E}_{\pi_{ heta}} [\sum_{t=0}^{T_e} (V^{\pi_{ heta}}(s_t) - b) \log \pi_{ heta}(a_t | s_t)]$$

$$b = { ilde V}_\phi(s_t)$$

 $V^{\pi_{ heta}}(s_t) pprox \sum_{t'=t}^{t+n} \gamma^{t'-t} r_{t'} + \gamma^n ilde{V}_{\phi}(s_{t+n})$

A₃C

Deep Learning Works for... RL?

- …large data sets… many interactions
- ...with Jabeled data points...
 multi-step target
- ...which are iid

multiple actorsentropy regularization

Entropy Regularization

... act as random as possible

$$egin{aligned} \max_{ heta} \mathbb{E}_{\pi_{ heta}} [\sum_{t=0}^{T_e} (V^{\pi_{ heta}}(s_t) - b) \log \pi_{ heta}(a_t | s_t) \ &- \lambda \pi_{ heta}(a_t | s_t) \log \pi_{ heta}(a_t | s_t)] \end{aligned}$$

DQN vs A3C sample efficient | sample inefficient slow to train | fast to train (almost) deterministic | stochastic only 1 network 2 (1.5) networks

Coding Challenge

https://github.com/OliverRichter/Coding_Challenge

DRL in the bigger picture

- Contextual Multi-Armed Bandits
- Model Predictive Control
- Optimal Control

Policy Gradient Derivation

 $abla \mathbb{E}_{\pi}[R(\tau)] =
abla \int R(\tau) \pi(\tau) d au$ $=\int R(\tau)\nabla\pi(\tau)d\tau$ $=\int R(au)\pi(au)rac{
abla\pi(au)}{\pi(au)}d au$ $=\int R(\tau)\pi(\tau)\nabla\log\pi(\tau)d\tau$ $\mathbb{E}_{\pi}[R(au) \nabla \log \pi(au)]$

 $\pi_ heta(au) = \mathcal{P}(s_0) \prod_{t=0}^{T_e} \pi_ heta(a_t|s_t) p(s_{t+1}|s_t,a_t)$ $o
abla_ heta \log \pi_ heta(au) = \sum_{t=0}^{T_e}
abla_ heta \log \pi_ heta(a_t|s_t)$ $\mathbb{E}_{\pi}[R(au) \nabla \log \pi(au)]$ $= \mathbb{E}_{\pi}[(\sum_{t=0}^{T_e} \gamma^t r_t)(\sum_{t=0}^{T_e}
abla \log \pi(a_t | s_t))]$