# Distributional Deep Reinforcement Learning (Part 1) 

Adrian Meier

February 26, 2019

A Distributional Perspective on Reinforcement Learning Marc G. Bellemare, Will Dabney, Rmi Munos. ICML 2017.

Consider $Y$ to be the random variable that describes the result of rolling a six-sided die once.

$$
R(Y)= \begin{cases}-2, & \text { for } Y=1 \\ 1, & \text { otherwise }\end{cases}
$$

$\mathbb{E}[R(Y)]=\frac{1}{6} \cdot(-2)+\frac{5}{6} \cdot 1=\frac{1}{2}$

Expected return hides intrinsic randomness.


## Key idea

Consider the value distribution $Z$ of the random return, to capture randomness

$$
\mathbb{E}(Z)=Q
$$

- in the reward $R$
- in the transition $P^{\pi}$
- in the next-state value distribution $Z\left(X^{\prime}, A^{\prime}\right)$


## Recall Bellman's equations

$$
Q^{*}(x, a)=\mathbb{E} R(x, a)+\gamma \mathbb{E}_{P} \max _{a^{\prime} \in A} Q^{*}\left(x^{\prime}, a^{\prime}\right)
$$

Optimality operator $T$, repeated application to some $Q_{0}$ converges exponentially to fixed point $Q^{*}$.

$$
T Q(x, a):=\mathbb{E} R(x, a)+\gamma \mathbb{E}_{P} \max _{a^{\prime} \in A} Q\left(x^{\prime}, a^{\prime}\right)
$$

How to write a Bellman equation using the value distribution?

$$
Z(x, a) \stackrel{\mathrm{D}}{\xlongequal{\mathrm{D}}} R(x, a)+\gamma Z\left(X^{\prime}, A^{\prime}\right)
$$

Find an operator which is a contraction mapping to show convergence.

Need a suitable measure of distance between distributions .

## Distance functions between probability distributions

Kullback-Leibler divergence:

$$
D_{\mathrm{KL}}(P \| Q)=\sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)}\right)
$$

Wassertein metric:

$$
w_{p}(X, Y)=\left(\int_{0}^{1}\left|F_{X}^{-1}(t)-G_{Y}^{-1}(t)\right|^{p} d t\right)^{\frac{1}{p}}
$$



$$
T Z(x, a) \stackrel{D}{=} R(x, a)+\gamma \max _{a^{\prime} \in A} Z\left(X^{\prime}, A^{\prime}\right)
$$

Converges to a sequence of optimal policies using the Wasserstein metric.

## Distributional RL algorithm sketch

1. From $x, a$, sample a transition
2. Compute sample backup
3. Minimize Wasserstein loss

## Modeling the value distribution

Discrete distribution, supported by N equispaced atoms between $V_{\text {min }}$ and $V_{\text {max }}$.

Bellman update is projected to the atoms by multiclass classification.

Choice of 51 atoms found to be highly expressive while remaining computationally friendly.

## Categorical 'C51' Algorithm

1. From $x, a$, sample a transition
2. Compute sample backup
3. Project onto approximation support
4. Minimize KL-divergence

## C51 iteration step visualized



## Demo and discussion

Link to video

## Conclusion

C51 drew lots of attention.

Can be further improved with known algorithmic optimizations.

Introduced a gap between theory and practice.

