Off-Policy Learning (Part 1)

Safe and Efficient Off-Policy Reinforcement Learning
Munos, R., Stepleton, T., Harutyunyan, A. and Bellemare, M., NeurlPS 2016

The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning
Gruslys, A., Azar, M.G., Bellemare, M.G. and Munos, R., ICLR 2018

HaoChih, Lin

2019-April-09

Safe and Efficient Off-Policy Reinforcement Learning

Retrace(A) is a convergent off-policy multi-step algorithm extending the DQN agent

Safe and Efficient Off-Policy Reinforcement Learning

The Retrace algorithm comes with the theoretical guarantee that in
finite state and action spaces, repeatedly updating our current
estimate Q produces a sequence of Q functions which converges to
Q7T for a fixed 1 or to Q* if we consider a sequence of policies T
which become increasingly greedy w.r.t. the Q estimate

Preliminary (Off-policy)
Learning the state (action) value function for a policy x:

Q"(x,a) =E;[n+yrn + Vit X0 = x, 80 = J

You can learn optimal control if it is a greedy policy to the current estimate
Q(x; a) e.g. Q-learning
On-policy: learning from data collected by =
Off-policy: learning from data collected by 1 # =
Off-policy methods have advantages:
o Sample-efficient (e.g. experience replay)
o Exploration by

Preliminary (Off-policy)
Off-policy Learning
e Target policy () : deterministic (optimal greedy)

e Behavior policy () : stochastic (exploratory)
e Assumption of coverage: z(als) > 0 implies i(als) > 0

Preliminary (Importance Sampling)
Off-policy Learning

Target policy () : deterministic (optimal greedy)
Behavior policy (i) : stochastic (exploratory)
Assumption of coverage: z(als) > 0 implies «(als) > 0
Importance sampling:
Pr{A;, Si11, Astr1, ..., ST | S, Apr—1 ~ T}

- 'T(AJS)D(St41|St, Ae)T(Asg1|Ses1) - - - p(ST|ST-1, AT—1)

H AA|5A P 5A+1|5A AA)

Preliminary (Importance Sampling)

Off-policy Learning

Target policy () : deterministic (optimal greedy)
Behavior policy (i) : stochastic (exploratory)
Assumption of coverage: z(als) > 0 implies «(als) > 0
Importance sampling:

Pr{A;, Si11, Astr1, ..., ST | S, Apr—1 ~ T}

= T (Ae|S)p(St41[St, A)T(Aes1|Se41) - - - (ST | ST—1, AT 1)

T-1
= Hﬂ*(AA,|5'A,)])(5’A,+1|SA,,AA.),
k=t

+ 2l (AR|SK)P(Skr1 | Sky Ar)
I112) # (Al S)p(Sks1] Sk, Ar)

PP =

Preliminary (Importance Sampling)

Off-policy Learning

Target policy () : deterministic (optimal greedy)
Behavior policy (i) : stochastic (exploratory)
Assumption of coverage: z(als) > 0 implies «(als) > 0
Importance sampling:

Pr{A;, Si11, Astr1, ..., ST | S, Apr—1 ~ T}

= T (Ae|S)p(St41[St, A)T(Aes1|Se41) - - - (ST | ST—1, AT 1)

T-1
= Hﬂ*(AA,|5'A,)])(5’A,+1|SA,,AA.),
k=t

T2l (Ag Sk) TS HSids)
12 1 Ak Sk) pTS TSI

PP =

Preliminary (Importance Sampling)
Off-policy Learning

Target policy () : deterministic (optimal greedy)
Behavior policy (i) : stochastic (exploratory)
Assumption of coverage: z(als) > 0 implies «(als) > 0
Importance sampling:
Pr{A;, Si11, Astr1, ..., ST | S, Apr—1 ~ T}

= T (Ae|S)p(St41[St, A)T(Aes1|Se41) - - - (ST | ST—1, AT 1)

T-1
= Hﬂ*(AA,|SA,)])(5’A,+1|SA,,AA.),
k=t

ey T (Ak] Sk pTSTTTHS d) ﬁ 1 (ArlSk)
T 1 (Ak]Sk)pTSTTTFSids) o H(ARISE)”

P =

Preliminary (Importance Sampling)

Importance Sampling

e Usage:
o Wanted: the expected returns (values) under the target policy: o (St)

Preliminary (Importance Sampling)
Importance Sampling
e Usage:
o Wanted: the expected returns (values) under the target policy: ¢)__ (Sf)

T
o Got: Returns Gt based on the wrong (behavior) policy: ¢, = Y AR,

E[GT‘SI‘] — "l‘v-’l;(St) k=t+1

Preliminary (Importance Sampling)

Importance Sampling

e Usage:
o Wanted: the expected returns (values) under the target policy: ¢ (Sf)

T
o Got: Returns Gt based on the wrong (behavior) policy: ¢, = Y AR,

E[G¢|St]| = vp(St) Pre

o Solution: introduce the importance sampling (for discrepancy correction):
E[Pt:T—l(;t ’ S't] = "L’W(»St)

The ratio o(t: T-1) transforms the returns to have the right expected value

Preliminary (Importance Sampling)

Importance Sampling

e Usage:
o Wanted: the expected returns (values) under the target policy: o (Sf)

T
o Got: Returns Gt based on the wrong (behavior) policy: ¢, = Y AR,

E[G¢|St] = vp(St) Pre

o Solution: introduce the importance sampling: PrT—_1 =
E[/)t:T—l(;t | Sf] = "(,,?W(St)

The ratio o(t: T-1) transforms the returns to have the right expected value

Preliminary (Importance Sampling)
Importance Sampling
e Problem of variances: =

o Example: an episodes has 100 stepsand y=0. G.=) 7" 'R,
The return from time 0 will then be just GO = R1 Rt

Preliminary (Importance Sampling)

Importance Sampling

e Problem of variances: =
o Example: an episodes has 100 stepsand y =0. Gi= > 7""'R,
The return from time 0 will then be just GO = R1 e
o lIts importance sampling ratio will be a product of 100 factors:
m(Ao|So) T(A1|S1) m(Ag9|S90)
,Ll(A0|So) H(A1|Sl) .Ll(A99|Sgg)

Preliminary (Importance Sampling)

Importance Sampling

e Problem of variances: =
o Example: an episodes has 100 stepsand y =0. G: = > ARy
The return from time 0 will then be just GO = R1 e
o lIts importance sampling ratio will be a product of 100 factors:
m(Ao|So) T(A1|S1) = m(Agg|So9)
U(Aol|So) U(A1|S1) H(Agg|So9)
o Butitis really only necessary to scale by the first factor. The other 99
factors are irrelevant, but they add enormously to its variance.

Preliminary (N-steps Returns)
N-step TD Prediction

e Monte Carlo Return:
Gt = Rf+1 -+ ’7’”Rt+2 4 ’\;"2R1+3 iy gl A,"'T_t_lRT.

e One Step Return:
Grgr = Rywi V(S),

e N steps Return:
Gl‘:H—n = RH-I i A/“]:‘)H-Q T sanne - Af‘n—lRt+n + Af‘nv'f-i-n—l(st+n)‘

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (N-steps Returns)
N-step TD Prediction

1-step TD
and TD(0) 2-stepTD 3-step TD
e Monte Carlo Return:

Gt = Riy1+vRiy2 + ¥ Reys+- -+ 'Ry, ? ? ?

M
e One Step Return: T
G = Ry 9Ve(Sea), O

O—ei—(—e—()—»

e N steps Return:
Gt:t—l—n = Rt—i—l ¥ A,"Rt+2 e A,'n_l]?t—i—n T & n"/fl—}—‘n—l(SH—‘n)-

e The natural state-value learning algorithm for using n-step returns

“G—I—n (St) = "’J;'—}—n—l (St) il [C;l‘:t—HI i ""ft—|—n—1 (St)] ; 0 oy i

co-step TD
n-step TD and Monte Carlo

cid @ Je—es—(—e—()
&— (00—

O—-e

Preliminary (A-steps Returns)

The A-return

An alternative way of moving smoothly between
Monte Carlo and one-step TD methods

Gr=(1—-X)) X G
n=1

T—t—1
G?\ = (1-=A) Z)\n_th:i—}—n + | ¥1g,
n=1

Preliminary (A-steps Returns)

The A-return

TD(\)
An alternative way of moving smoothly between ? ? CE ? S
Monte Carlo and one-step TD methods I I I I Ay
G={1—X) i - 13 CE ? ﬁ) it+1 Rip
D P S
G = (1-X) X Cuun + [N TTIG, O (E ? Siv Ruso
Bl (1—=XM)A 6 Ao
. tﬁg(“‘tgp”;‘ total area = 1 é
decay by 2. (- X Amp_4
MR ool _ S
T X el 3 =1 AE_lT T

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (A-steps Returns)

The A-return

e The A-return could be written as:

R}L _ (1_)") E Xz—lRt(n) -)\,T_,_IRr
N f(l J -

Until termination After termination

e I[fA=1, youget MC return:

RI}» _ (1_1) Eln—er(n) i lT—r—lR _ R,
n=1

e I[fA=0, youget TD(O):

R’A N (1_0) EO,,_]R[(H) + OT—r—er - I—\,r(l)
n=1

Preliminary (A-steps Returns)

The A-return

e The A-return could be written as:

T-:-

R}L =(1—A) E)\'n—er(n) -)\.T_’_IR
N $1 Y, -

Until termination After termination

t

e I[fA=1, youget MC return:

R}L _ (1_ 1) Eln—er(n) i 1T—t—1R _ R
n=1

e I[fA=0,youget TD(0):

EOM—IR(N) + OT_I_IR, - [\),(1)

n=1

R'=(1-0)

Questions:

e Can we apply to Q learning?

O

(@)

Policy evaluation:

estimate Q™ from samples collected by «
Control:

estimate Q* from samples collected by «

e Possible solution

@)

(@)

Watkins’s Q(A) [Watkins 1989] method

Cut off traces whenever a non-greedy action
is taken

Converges to Q* under a mild assumption
(first proved in Retrace paper)

Preliminary (A-steps Returns)
Watkins’s Q()‘) Watkins’s Q(\)

Sy Ay
Classic multi-step algorithm for T I I I T 7
. O St+1 Reqr
off-policy control ? ? ? ?
) ® At
This approach is an off-policy 1—a A I I . I B g
eligibility trace which updates . ? Cf Cf ;
more than one Q-value per step. (1= A)A I o
This can result in a significant i.)
increase in the speed of learning (L !
at a cost to stability Y =1 o, Hsr S5z R

® @ o Lirst non-greedy action

unproven of convergence until -1

Retrace (2016, ~30 years)

Safe and Efficient Off-Policy Reinforcement Learning

Retrace

Safe and Efficient Off-Policy Reinforcement Learning

e Proposes a new off-policy multi-step RL method: Retrace(A)

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Retrace

Safe and Efficient Off-Policy Reinforcement Learning

e Proposes a new off-policy multi-step RL method: Retrace(A)
e Theoretical advantages
o It converges for any 7, 1. (safe)

o It makes the best use of samples if 7 and 1 are close to each other (efficient)
o lIts variance is lower than importance sampling

Retrace

Safe and Efficient Off-Policy Reinforcement Learning

e Proposes a new off-policy multi-step RL method: Retrace(A)
e Theoretical advantages
o It converges for any 7, 1. (safe)
o It makes the best use of samples if 7 and 1 are close to each other (efficient)
o lIts variance is lower than importance sampling
e Empirical evaluation
o On Atari 2600, it beats one-step Q-learning (DQN) and the existing multi-step
methods (Q*(A), Tree-Backup)

Retrace

Safe and Efficient Off-Policy Reinforcement Learning

Proposes a new off-policy multi-step RL method: Retrace(A)
Theoretical advantages
o It converges for any 7, 1. (safe)

o It makes the best use of samples if 7 and 1 are close to each other (efficient)
o lIts variance is lower than importance sampling
Empirical evaluation
o On Atari 2600, it beats one-step Q-learning (DQN) and the existing multi-step
methods (Q*(A), Tree-Backup)
Proves the convergence of Watkins's Q(A) for the first time

Retrace

On-policy multi-step methods
TD()\) Behavior policy p(alx) Ot

ra

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

e A popular multi-step algorithm for on-policy policy evaluation
o A,Q(x,a) = (y\)"; where A € [0,1] is chosen to balance bias and variance
e Multi-step methods have advantages:

o Rewards are propagated rapidly
o Bias introduced by bootstrapping is reduced

Retrace

Off-policy multi-step methods
Behavior policy u(a|z)

Target policy 7(a|z) 6t
_.,«—'/'*/Cfsffr/v/l}/ xt
s
a
T

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

® 5t =r:+ VEWQ(XHL) = Q(Xt; 3t)
e Can you use 4, to estimate Q7(x.,a;) forall s <t?
o Three methods mentioned in the paper:

Retrace

Off-policy multi-step methods
Behavior policy u(a|z)
Target policy 7 (a|x) 5

x

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

o Or=r+ WEWQ(XHL) o Q(Xt; at)
e Can you use 4, to estimate Q7(x.,a;) forall s <t?

o Three methods mentioned in the paper:
Importance Sampling (IS) [Precup et al. 2000] Q™(\) [Harutyunyan et al. 2016]

Tree-Backup (TB) [Precup et al. 2000]

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Retrace

Off-policy multi-step methods: Importance Sampling (IS) [Precup et al. 2000]
Behavior policy u(a|z)

Target policy = (a|z) Ot
G~ i
s
a
€T

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

o AQ(x,a)=7(]]icsct ;E::ﬁj)&

e Pros: Unbiased estimate of Q™
e Cons: Large variance since (2s%) is not bounded

/"(35|XS)

Retrace

Off-policy multi-step methods: Importance Sampling (IS) [Precup et al. 2000]
Behavior policy u(a|z)
Target policy 7 (a|x) 5

x

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

o A Q(X7 a) — Vt(ngsgt ;E:Iz;)5t Reweight the trace by the product of IS ratios

e Pros: Unbiased estimate of Q™
e Cons: Large variance since (2:1%) is not bounded (not efficient)

1(as|xs)

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Retrace

Off-policy multi-step methods: Q"()\) [Harutyunyan et al. 2016]
Behavior policy u(a|z)

Target policy 7(a|z) 5t
_./'/"*’a’/gr/v/lvjl -------- xt
s
a
T

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

o AQ(x;a)=(7A)"0:
e Pros: Convergent if 7 and . are sufficiently close to each other or A is
sufficiently small: A < % where € := max,||7(:|x) — u(-|x)|1

e Cons: Not convergent otherwise

Retrace

Off-policy multi-step methods: Q"()\) [Harutyunyan et al. 2016]
Behavior policy u(a|z)

Target policy = (a|z) Ot
U~ Tt
T
a
xXr

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

o A:Q(x,a)= (7)) Cut traces by a constant AAt
e Pros: Convergent if 7 and 1/ are sufficiently close to each other or A is
sufficiently small: A < % where € := max,||7(:|x) — u(-|x)|1

e Cons: Not convergent otherwise (not safe)

Retrace

Off-policy multi-step methods: Tree-Backup (TB) [Precup et al. 2000]
Behavior policy u(a|z)

Target policy = (a|z) Ot

x

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

o A:Q(xa) = (PN ([heoe: 7(asl))5:

e Pros: Convergent for any = and 1. even if ;1 is unknown and/or non-Markov
e Cons: [[,<.<.m(as|x) decays rapidly when near on-policy

Retrace

Off-policy multi-step methods: Tree-Backup (TB) [Precup et al. 2000]
Behavior policy u(a|z)
Target policy 7 (a|x)

x

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

_ t . Reweight the traces by the
o A:Q(x,a)=(7A) (Hlﬁsﬁt m(as1%))0: product of target probabilities

e Pros: Convergent for any = and 1. even if ;1 is unknown and/or non-Markov
e Cons: |];<.,7m(as|x) decays rapidly when near on-policy (not efficient)

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Retrace

General off-policy return-based algorithm

=27 CIT) (1B Qs) — Qi a0))

t>0 1<s<t
0

Retrace

General off-policy return-based algorithm

AQ(x,a) = Z’yt(H Cs) (Z‘t +YERQ (Tt 41,) — Q(whatZ)

t>0 1<s<t
Ot
Definition Estimation Guaranteed Use full returns
ofe, variance convergencef (near on-policy)
Importance sampling ZEZ ig High for any 7, yes
Q™ (N) A Low for 7 close to yes

TB(\) A(as|xs) Low for any 7, p no

Retrace

General off-policy return-based algorithm

AQ(x,a) = th(H Cs) (Z‘t +YERQ (Tt 41,) — Q(xhatZ)

t>0 1<s<t

Ot
Definition Estimation Guaranteed Use full returns
of ¢, variance convergencef (near on-policy)
Importance sampling ZEZ f; High for any 7, u yes
Q™ (N) A Low for 7 close to yes
TB(\) A(as|xs) Low for any 7, p no

e None of the existing methods is perfect (low variance, safe and efficient)
o Safe: i.e. convergent for any = and 1 (Q(A))
o Efficient: i.e. using full returns when on-policy (Tree-Backup)

Retrace

Proposed Solution: Retrace(A)

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace

Proposed Solution: Retrace(A)

cs = Amin (1, ZCEE))
plas|es)

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace

Proposed Solution: Retrace(A)

cs = Amin (1, TCEE))
plas|es)

Properties:

o Low variance: since Cg < 1
7T(a3|x3)]
p(aalzs)

o Efficient (on policy): keep the traces near on policy. Note that ¢, > /\7r(as|a:s)

o Safe (off policy): cut the traces when needed Cs € [0,

Retrace

Proposed Solution: Retrace(A)

Definition Estimation Guaranteed Use full returns

of ¢ variance convergencef (near on-policy)
Importance sampling ZEZZ@ High for any 7, i yes
Q™ (N) A Low for 7 close to u yes
TB(\) el 65| 2 5) Low for any 7, i no
Retrace(\) A min (1, Zézslio Low for any 7, u yes

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace

Off-policy policy evaluation
Theorem-1: Assume finite state space. Generate trajectories according to behavior
policy 1. Update all states along trajectories according to

AQ(z,a) = Zv H Tt+7EwQ(fL‘t+1,) Q(ﬂft’atl)

t>0 1<s<t

5t

Retrace

Off-policy policy evaluation
Theorem-1: Assume finite state space. Generate trajectories according to behavior

policy 1. Update all states along trajectories according to

Qr+1(z,a) = Qk(z,a) + ax Z’Y B1 e i2f) (Tt+7]E7er($t+1a) - Qk(iﬂt,at))
t>0

Assume all states visited infinitely often.

Retrace

Off-policy policy evaluation
Theorem-1: Assume finite state space. Generate trajectories according to behavior
policy 1. Update all states along trajectories according to

Qr+1(z,a) = Qk(z,a) + ax Z’Y B1 e i2f) (Tt+7]E7er($t+1a) - Qk(iﬂt,at))
t>0

Assume all states visited infinitely often.

f 0<c, < m(@sZs) on Qr — QT

nlas|zs)

Sufficient conditions for a safe algorithm (works for any 7 and 1)

Retrace

Tradeoff for trace coefficients Cg

e Contraction coefficient of the expected operator

n=vy—(1 —W)EM{Z’Yt(Cl"'Ct)} € [0,]

o mn=ywhen ¢; =0 (one-step Bellman update)
o n=0when ¢, =1 (full Monte-Carlo rollouts)

e Variance of the estimate (can be infinite for ¢ = ZEZE;

o Large cs : uses multi-steps returns, but large variance
o Small ¢s: low variance, but do not use multi-steps returns

case)

Retrace

Retrace(A) for optimal control
Let (ux) and (7r) sequences of behavior and target policies and:

Qr11(2,0) = Qulw,0)+ax Y (\) [min (1,

>0 1<s<t

L as’$s)
pk(as|zs)

) (re+ VB Qi (@41,) —Qr(zt, ar))

Retrace

Retrace(A) for optimal control
Let (ux) and (7r) sequences of behavior and target policies and:

Qr11(2,0) = Qulw,0)+ax Y (\) [min (1,

>0 1<s<t

Tk as’a:s)
pk(as|zs)

) (re+ErQr(@es1,) —Qr(zt, ar))

Theorem 2

Under previous assumptions

Assume (7Tk) are “increasingly greedy” wrt (Q)

Then, a.s., Qk‘ =0, Q*

Retrace

Remarks

e |If (mg) are greedy policies, then ¢ = A\l{as € arg maX Qr(Ts,a)}

— Convergence of Watkin’s Q(A) to Q*
(open problem since 1989)

Under assumption of finite-state space:
e Convergence to optimal policy
e C(Cuttraces when -and only when- needed
e Adjust the length of the backup to the “off-policy-ness” of the data

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace

Retrace for deep RL
Several actor-critic architectures at DeepMind:

e ACER (Actor-Critic for Experience Replay) [Wang et al., 2017]. Policy gradient.
Works for continuous actions.

e Reactor (Retrace-actor) [Gruesly et al., 2018]. Use beta-LOOQO to update policy.
Use LSTM.

e MPO (Maximum a posteriori Policy Optimization) [Abdolmaleki et al., 2018]
Soft (KL-regularized) policy improvement.

e IMPALA (IMPortance Weighted Actor-Learner Architecture) [Espeholt et al.,
2018]. Heavily distributed agent. Uses V-trace.

Retrace

Evaluation on Atari 2600

0.2

Fraction of Games

i

40M TRAINING FRAMES

Retrace

Tree-backup

Q-Learning

Q*

0.0

1.0 0.8 0.6 0.4 0.2 0.0

Inter-algorithm Score

e Performance comparison:

©)

Fraction of Games

1.0r

0.8+

0.6}

0.4}

0.2

0.0

fa(x) =

200M TRAINING FRAMES

Retrace

Tree-backup

Q-Learning _,

‘{9 Za,g 2 }’

1.0 0.8 0.6 0.4 0.2
Inter-algorithm Score

0.0

Inter-algorithm scores are normalized so that 0 and 1 respectively correspond to
the worst and best scores for a particular game (Roughly, a strictly higher curve
corresponds to a better algorithm)
Retrace(A) performs best on 30 out of 60 games

Retrace
Evaluation on Atari 2600: Retrace vs DQN

50000

1500
140000
M — DON
) — Re
tr 2400 Retroce(\)
120000
B 40000
12004
100000
0000 1000
#0000
&00¢
0000 000
6000
40000
000
10000
20000
20000 66
o °
0 1 2 3 4 5 6 7)
sep_viad !

ooooo

cccccccc

Games: (Blue: DQN Red: Retrace)

Asteroids, Defender, Demon Attack, Hero, Krull, River Raid, Space Invaders, Star
Gunner, Wizard of Wor, Zaxxon

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Retrace
Evaluation on Atari 2600

N Retrace
® Q
S 08|
p)]
gl
[«B]
N 06|
=
é
o 041
Z.
Cg;D 02 | Mg, ~
g | Tree-backup Q-Learning
< 0 __,.

0 02 0.4 06 08 1

e Sensitivity to the value of A: .

o Retrace(A) is robust and consistently outperforms Tree-Backup
o Q* performs best for small values of A
o Note that the Q-learning scores are fixed across different A

Retrace

Conclusions

e General update rule for off-policy return-based RL
e Conditions under which an algo is safe and efficient
e \We recommend to use Retrace:
Converges to Q* (finite state/action space, policy x is increasingly greed)
Safe: cut the traces when needed
Efficient: but only when needed
Works for policy evaluation and for control
o Particularly suited for deep RL
e Extensions:
o Works in continuous action spaces
o Can be used in off-policy policy-gradient [Wang et al., 2016]

O O O O

A fast and sample-efficient Actor-Critic agent for
Reinforcement Learning (Reactor)

A fast and sample-efficient Actor-Critic agent for
Reinforcement Learning (Reactor)

[Contributions]

e Sample-efficiency:
Higher than Prioritized Dueling DQN (Wang et al., 2017) and Categorical
DQN (Bellemare et al., 2017)

e Time-efficiency:
Better run-time performance than A3C (Mnih et al., 2016).

A fast and sample-efficient Actor-Critic agent for
Reinforcement Learning (Reactor)

[Contributions]

e Sample-efficiency:
Higher than Prioritized Dueling DQN (Wang et al., 2017) and Categorical
DQN (Bellemare et al., 2017)

e Time-efficiency:
Better run-time performance than A3C (Mnih et al., 2016).

[Reactor (Retrace-Actor)]
Combining the sample-efficiency of off-policy experience replay with the
time-efficiency of asynchronous algorithms

Reactor

The Reactor is a combination of four novel contributions on top of recent
improvements to both deep value-based RL and policy-gradient algorithms.

e [-leave-one-out:
Improves the trade-off between variance and bias by using action values as a baseline.

e Distributional Retrace:
Brings multi-step off-policy updates to the distributional reinforcement learning setting

e Prioritized sequences replay:
Present the lazy initialization for more efficient replay prioritization.

e Agent Architecture:
Propose an optimized network and parallel training architecture

Reactor

B-leave-one-out

e Need a policy gradient algorithm to train the actor policy = based on current
estimate Q(z,a) of Q™ (z,a):

VV™(20) = E[2,7 £, Q" (ze, @) Vr(alz,)]

Reactor

B-leave-one-out

e Need a policy gradient algorithm to train the actor policy = based on current
estimate Q(z,a) of Q™ (z,a):

VV™(z0) = E[Y, 7' 2, Q" (24, a)Vr(alzy)]
e Simplify the notations (find a way to estimate gradient G):

G =Y,Q"(@)V(a)

Reactor

B-leave-one-out

e Need a policy gradient algorithm to train the actor policy = based on current
estimate Q(z,a) of Q™ (z,a):

VV™(z0) = E[Y, 7' 2, Q" (24, a)Vr(alzy)]
e Simplify the notations (find a way to estimate gradient G):
G =3,Q"(a)Vr(a).

e Unbiased estimate of G (sampled from behaviour policy ;. with IS ratio):

(R(a) — V)Vlogm(a)

Reactor

B-leave-one-out

e Need a policy gradient algorithm to train the actor policy = based on current
estimate Q(z,a) of Q™ (z,a):

VV™(zp) = E[Zt o4 Za QO (3, a)Vw(alxt)].
e Simplify the notations (find a way to estimate gradient G):
G=)_ Q" (a)Vn(a).
e Unbiased estimate of G (sampled from behaviour policy ;. with IS ratio):

m(a)

p(a)

GISLR —

(R(a) @V log 7 (a)

Baseline depends on the state

Reactor

B-leave-one-out

e Need a policy gradient algorithm to train the actor policy = based on current
estimate Q(z,a) of Q™ (z,a):

VV™(zp) = E[Zt o4 Za QO (3, a)Vw(alxt)].
e Simplify the notations (find a way to estimate gradient G):
G=)_ Q" (a)Vn(a).
e Unbiased estimate of G (sampled from behaviour policy ;. with IS ratio):

m(a)

p(a)

GISLR —

(R(a) @V log 7 (a)

Unbiased, but high variance, needs reducing!

Reactor

B-leave-one-out

e |eave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen
action a and current estimate Q(z,a) of Q™(z,a)

Groo = R(a)V(a) + 3,.4Q(a)Vr(a).

Reactor

B-leave-one-out

e |eave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen
action a and current estimate Q(z,a) of Q™(z,a)

Groo = R(a)V(a) + 3,.4Q(a)Vr(a).

Low variance

Reactor

B-leave-one-out

e |eave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen
action a and current estimate Q(z,a) of Q™(z,a)

Groo = R(a)V(a) + Za#dQ(a)Vw(a).

but may be biased if the estimated Q(z, a) values differ from Q" (z, a)

Reactor

B-leave-one-out

e |eave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen
action a and current estimate Q(z,a) of Q™(z,a)

Groo = R(a)V(a) + 3,.4Q(a)Vr(a).

e A better bias-variance tradeoff --> 3-LOO policy-gradient estimate:

Reactor

B-leave-one-out

e |eave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen
action a and current estimate Q(z,a) of Q™(z,a)

Groo = R(a)V(a) + Za#dQ(a)Vw(a).

e A better bias-variance tradeoff --> 3-LOO policy-gradient estimate:

G500 = B(R(a) — Q(a))Vr(a) + > ,Q(a)Vr(a),

Reactor

B-leave-one-out

leave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen
action a and current estimate Q(z,a) of Q™(z,a)

Groo = R(a)V(a) + Za.¢a,Q(a)VW(a)-
A better bias-variance tradeoff --> 3-LOO policy-gradient estimate:
G100 = B(R(a) — Q(a))Vr(a) + X-,Q(a)Vr(a),

where (3 = B(u, 11, @) can be a function of both policies, T and p, and the
selected action a

Reactor

B-leave-one-out

e Property of B-LOO for given B:

General case: G100 = B(R(a) — Q(a))Vn(a) + >, Q(a)Vn(a),

Reactor

B-leave-one-out

e Property of 3-LOO for given [3:

WhenB =1 Gioo = R(a)Vr(a)+ > aza@(@)V(a).

Reactor

B-leave-one-out
e Property of 3-LOO for given [3:

m(a)

(@)

When B = 1/u: G%_LOO = (R(a) — Q(a))Vlogm(a) + 3, Q(a)Vr(a).

-

Reactor
B-leave-one-out
e Property of 3-LOO for given [3:

m(a)

(@)

When B = 1/u: é%_mo = (R(a) — Q(a))Vlogm(a) + 3, Q(a)Vr(a).

-

e Choice of B:
o Low bias: as (a) is close to 1/p(a) or Q(z,a) closeto Q™(z,a)
o Unbiased: as (a) is equal to 1/u(a)
o Low Variance: as 3(a) is small

e Bias-Variance tradeoff:
o Choose [(a) = min (c, u_(l-ﬂ) for some constant ¢ 2 1

Reactor

Distributional Retrace
Extend C51 to multi-step Bellman backup.

e The n-step distributional Bellman target:
t+n—1

ZQi(xt—i-naa)(Szz’.la with Z? = Z ’YS_tTS -+ ’y"’zi
7 a=t

e The expectation is:

ZZZ?‘I Vs + Y (L5 @)

Reactor

Distributional Retrace

e Original Retrace:

AQ(th, (J,t) déf Zszt’ys—t(ct‘*‘l “ e CS)5;TQ

Reactor

Distributional Retrace

e Original Retrace:
def .
AQ(xt, a’t) é ZSZt’yS t(Ct+1 “ e Cs)de

e Distributional Retrace:
t+n—1

':Etaa't Z Z Ay a[Z 7 7qs + ’YnQ(xt—l-nva)] - Q(mbat)

n>1acA

S

~
n-step Bellman backup

where o, o = (ct+1 . ct+n_1) (7r(a\:ct+n) —I{a = at+n}ct+n)

Reactor

Distributional Retrace

e A mixture of n-step distribution (Retrace target distribution):

qu (¢, at)0z,;, With g; (z¢, ar) ZzanaZ% xt—i—naat—i—n)hzz(i)

i=1 n>1 a

Reactor

Distributional Retrace

e A mixture of n-step distribution (Retrace target distribution):

qu (¢, at)0z,;, With g; (z¢, ar) ZzanaZ% xt—i—naat—i—n)hzz(i)

i=1 n>1 a

e Update the current probabilities by performing a gradient step on the KL-Loss:

VKL(q*(iUt,&t)>Q(5Ct,at ZQz wtaat)VIOng(xtyat)
= |

Reactor

Distributional Retrace

e A mixture of n-step distribution (Retrace target distribution):

qu (¢, at)0z,;, With g; (z¢, ar) ZzanaZQJ xt—i—naat—i—n)hzz(i)

i=1 n>1 a

e Update the current probabilities by performing a gradient step on the KL-Loss:

VKL(q*(SUt,at)>CI(37t,at ZQz wtaat)VIOng(xtyat)
= |

e Distributional Retrace is a linear combination of n-step Bellman backups

—_—_—__R

Distributional Retrace

Reactor

\

1. Mix action-value distributidhs by 7

3. Shift distribution by 7,

"“tl ;Y

2. Shrink mixed distribution by ~

Er

4. Obtain target probabilities

Single Step (C51)

/

i AT |

Distributional Retrace

Reactor

1. Mix action-value distributidns by =

3. Shift distribution by 7,

"“tl ;Y

2. Shrink mixed distribution by ~

Er

4. Obtain target probabilities

Multi Steps
Distributional Retrace

Reactor

Prioritized sequences replay

Prioritized experience replay adds new transitions to the replay buffer with a
constant priority

Propose a way to add experience to the buffer with no priority, inserting a
priority only after the transition has been sampled and used for training.

Also, instead of sampling transitions, we assign priorities to all (overlapping)
sequences of length n.

When sampling, sequences with an assigned priority are sampled
proportionally to that priority.

Reactor
Architecture

Action value estimate

DN (= = (= e I -
A = N - e e mie.a)
LSTM ~ LST™
act act act act act act act act act act 11 5
Reactor =
act act act act act act act act act act
Cem emeeyees |

Decouple agent training:
Agent architecture Action-learning pair Network architecture

Reactor

Architecture

Action value estimate

DON = L leam -
o leam purent potey

act act
act act act
act act

act w1
ASC D = mie.a)
LSTM ~ LST™
act act act act act act act act act act I ’
"
Reactor =
act act act act act act act act act act
Cem emmeytreees |

Agent architecture 1 nread for action or learning Network architecture

Reactor

Architecture
Action value estimate
DQN
s Current policy
A3C o —
Reactor r'

Agent architecture ~ Vorker for action-learning pair Network architecture

Reactor
Architecture

poN [51 21 151 I

ASC a R = s we
© leam leam (large baich) "

Reactor =
leam leam (many TFthreads) "

Agent architecture

Action value estimate

Current policy

F

K

Instead of stacking
frame, using RNN

Network architecture

Reactor

Architecture
DAN [[(= (= [
ASC =« RN < s = w
act act act act act act act act act act W
© leam leam (largebach) "
Reactor =
e e

Agent architecture

Action value estimate

Current policy

Ss™M s

Gradient block
For stability

Network architecture

Experiments

250%

Human Normalized Score

0%

200%

150% t

100% t

50%

Reactor Ablation and Sample-Efficiency

Reactor

Millions of Training Samples

2 pale MM

TM!ON\W MY J\/ o
0 YYy S
A n
3 ?
N
©
€
2
esmmmmme Reactor (10+1) c
©
Reactor: Minus Distributional g
emmmm— Reactor: Minus Prioritization I

e Reactor: TISLR

10 50 100 200 400

250%

200% |

150%

100% }

50%

0%

Reactor Time-Efficiency

Reactor (10+1) e
Reactor (20+1)
Rainbow e

Prioritized DQN co—
A3C (16) e—

25 50 100 200
Hours of Training

TISLR -> add B-LOO -> add Prioritization -> add distributional

Reactor

Experiments
250% - Reactor Ablation and Sample-Efficiency
y MMM
¢ 200% ‘ W\‘(‘.’Mﬁw A ‘f
@ Ml
£ 150%)
©
S
2100%
c e Reactor (10+1)
©
g Reactor: Minus Distributional
0, + . . g .
£ 0% esmmmmms Reactor: Minus Prioritization
e Reactor: TISLR
0% L. : : . :
10 50 100 200 400

Millions of Training Samples

250%

N
(=)
S
X

[
%3
o
2

Human Normalized Score

50%

0%

100% }

Reactor Time-Efficiency

Reactor (10+1) e
Reactor (20+1)
Rainbow e

Prioritized DQN co—
A3C (16) e—

25 50 100 200
Hours of Training

Reactor (10+1) means:
10 workers for action-learner pair
1 worker for shared parameter server (for network)

Reactor

Experiments

Reactor performances on Atari

ALGORITHM NORMALIZED | MEAN | ELO ALGORITHM NORMALIZED | MEAN | ELO
SCORES RANK SCORES RANK
RANDOM 0.00 11.65 | -563 RANDOM 0.00 10.93 | -673
HUMAN 1.00 6.82 0 HUMAN 1.00 6.89 0
DQN 0.69 9.05 | -172 DQN 0.79 8.65 | -167
DDQN 111 7.63 -58 DDQN 1.18 7.28 -27
DUEL 1.17 6.35 33 DUEL 1.51 5.19 143
PRIOR 1.13 6.63 13 PRIOR 1.24 6.11 70
PRIOR. DUEL. 1.15 6.25 40 PRIOR. DUEL. Led 2 5.44 126
A3C LSTM 1.13 6.30 37 ACER® 500Mm 1.9 - -
RAINBOW 1.53 4.18 186 RAINBOW 2.31 3.63 270
REACTOR ND ° 1.51 4.98 126 REACTOR ND ° 1.80 4.53 195
REACTOR 1.65 4.58 156 REACTOR 1.87 4.46 196
REACTOR 500M 1.82 3.65 227 REACTOR 500M 2.30 3.47 280

Table 1: Random human starts Table 2: 30 random no-op starts.

Reactor

Experiments
Rainbow in no-op case is more sample efficiency,

Reactor performances on Atari But may be overfitting
ALGORITHM NORMALIZED | MEAN | ELO ALGORITHM NORMALIZED | MEAN | ELO
SCORES RANK SCORES RANK

RANDOM 0.00 11.65 | -563 RANDOM 0.00 10.93 | -673

HUMAN 1.00 6.82 0 HUMAN 1.00 6.89 0
DQN 0.69 9.05 | -172 DQN 0.79 8.65 | -167
DDQN 1:1) 7.63 -58 DDQN 1.18 7.28 -27
DUEL 1.17 6.35 32 DUEL L 5.19 143
PRIOR 1.13 6.63 13 PRIOR 1.24 6.11 70
PRIOR. DUEL. 1.15 6.25 40 PRIOR. DUEL. Led & 5.44 126

A3C LSTM 1.13 6.30 37 ACER® 500Mm i . .
RAINBOW 1.53 4.18 | 186 RAINBOW (2.31) 3.63 | 270
REACTOR ND ° 1.51 4.98 126 REACTOR ND ° 1.80 4.53 195
REACTOR 1.65 4.58 156 REACTOR 1.87 4.46 196
REACTOR 500M 1.82 3.65 227 REACTOR 500M 2.30 3.47 280

Table 1: Random human starts

Table 2: 30 random no-op starts.

Thank you !

