
Off-Policy Learning (Part 1)

Safe and Efficient Off-Policy Reinforcement Learning
Munos, R., Stepleton, T., Harutyunyan, A. and Bellemare, M., NeurIPS 2016

The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning
Gruslys, A., Azar, M.G., Bellemare, M.G. and Munos, R., ICLR 2018

HaoChih, Lin

2019-April-09

Safe and Efficient Off-Policy Reinforcement Learning

Retrace(λ) is a convergent off-policy multi-step algorithm extending the DQN agent

Safe and Efficient Off-Policy Reinforcement Learning

The Retrace algorithm comes with the theoretical guarantee that in
finite state and action spaces, repeatedly updating our current
estimate Q produces a sequence of Q functions which converges to
Q^π for a fixed π or to Q* if we consider a sequence of policies π
which become increasingly greedy w.r.t. the Q estimate

Preliminary (Off-policy)
● Learning the state (action) value function for a policy 𝜋:

● You can learn optimal control if it is a greedy policy to the current estimate
Q(x; a) e.g. Q-learning

● On-policy: learning from data collected by 𝜋
● Off-policy: learning from data collected by 𝜇 ≠ 𝜋
● Off-policy methods have advantages:

○ Sample-efficient (e.g. experience replay)
○ Exploration by 𝜇

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Preliminary (Off-policy)
Off-policy Learning

● Target policy (𝜋) : deterministic (optimal greedy)
● Behavior policy (𝜇) : stochastic (exploratory)
● Assumption of coverage: 𝜋(a|s) > 0 implies 𝜇(a|s) > 0

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (Importance Sampling)
Off-policy Learning

● Target policy (𝜋) : deterministic (optimal greedy)
● Behavior policy (𝜇) : stochastic (exploratory)
● Assumption of coverage: 𝜋(a|s) > 0 implies 𝜇(a|s) > 0
● Importance sampling:

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (Importance Sampling)
Off-policy Learning

● Target policy (𝜋) : deterministic (optimal greedy)
● Behavior policy (𝜇) : stochastic (exploratory)
● Assumption of coverage: 𝜋(a|s) > 0 implies 𝜇(a|s) > 0
● Importance sampling:

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (Importance Sampling)
Off-policy Learning

● Target policy (𝜋) : deterministic (optimal greedy)
● Behavior policy (𝜇) : stochastic (exploratory)
● Assumption of coverage: 𝜋(a|s) > 0 implies 𝜇(a|s) > 0
● Importance sampling:

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (Importance Sampling)
Off-policy Learning

● Target policy (𝜋) : deterministic (optimal greedy)
● Behavior policy (𝜇) : stochastic (exploratory)
● Assumption of coverage: 𝜋(a|s) > 0 implies 𝜇(a|s) > 0
● Importance sampling:

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (Importance Sampling)
Importance Sampling

● Usage:
○ Wanted: the expected returns (values) under the target policy:

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (Importance Sampling)
Importance Sampling

● Usage:
○ Wanted: the expected returns (values) under the target policy:

○ Got: Returns Gt based on the wrong (behavior) policy:

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (Importance Sampling)
Importance Sampling

● Usage:
○ Wanted: the expected returns (values) under the target policy:

○ Got: Returns Gt based on the wrong (behavior) policy:

○ Solution: introduce the importance sampling (for discrepancy correction):

The ratio 𝜌(t:T-1) transforms the returns to have the right expected value

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (Importance Sampling)
Importance Sampling

● Usage:
○ Wanted: the expected returns (values) under the target policy:

○ Got: Returns Gt based on the wrong (behavior) policy:

○ Solution: introduce the importance sampling:

The ratio 𝜌(t:T-1) transforms the returns to have the right expected value

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (Importance Sampling)
Importance Sampling

● Problem of variances:
○ Example: an episodes has 100 steps and 𝛾 = 0.

The return from time 0 will then be just G0 = R1

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (Importance Sampling)
Importance Sampling

● Problem of variances:
○ Example: an episodes has 100 steps and 𝛾 = 0.

The return from time 0 will then be just G0 = R1
○ Its importance sampling ratio will be a product of 100 factors:

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (Importance Sampling)
Importance Sampling

● Problem of variances:
○ Example: an episodes has 100 steps and 𝛾 = 0.

The return from time 0 will then be just G0 = R1
○ Its importance sampling ratio will be a product of 100 factors:

○ But it is really only necessary to scale by the first factor. The other 99
factors are irrelevant, but they add enormously to its variance.

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (N-steps Returns)
N-step TD Prediction

● Monte Carlo Return:

● One Step Return:

● N steps Return:

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (N-steps Returns)
N-step TD Prediction

● Monte Carlo Return:

● One Step Return:

● N steps Return:

● The natural state-value learning algorithm for using n-step returns

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (λ-steps Returns)
The λ-return

An alternative way of moving smoothly between
Monte Carlo and one-step TD methods

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (λ-steps Returns)
The λ-return

An alternative way of moving smoothly between
Monte Carlo and one-step TD methods

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Preliminary (λ-steps Returns)
The λ-return

● The λ-return could be written as:

● If λ = 1, you get MC return:

● If λ = 0, you get TD(0):

Ref: http://www-anw.cs.umass.edu/~barto/courses/cs687/Chapter%207.pdf
Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Preliminary (λ-steps Returns)
The λ-return

● The λ-return could be written as:

● If λ = 1, you get MC return:

● If λ = 0, you get TD(0):

Questions:

● Can we apply to Q learning?
○ Policy evaluation:

estimate from samples collected by 𝜇
○ Control:

estimate Q* from samples collected by 𝜇
● Possible solution

○ Watkins’s Q(λ) [Watkins 1989] method
○ Cut off traces whenever a non-greedy action

is taken
○ Converges to Q* under a mild assumption

(first proved in Retrace paper)

Ref: http://www-anw.cs.umass.edu/~barto/courses/cs687/Chapter%207.pdf
Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Preliminary (λ-steps Returns)
Watkins’s Q(λ)

Classic multi-step algorithm for
off-policy control

This approach is an off-policy
eligibility trace which updates
more than one Q-value per step.

This can result in a significant
increase in the speed of learning
at a cost to stability

unproven of convergence until
Retrace (2016, ~30 years)

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Safe and Efficient Off-Policy Reinforcement Learning

Retrace

● Proposes a new off-policy multi-step RL method: Retrace(λ)

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Safe and Efficient Off-Policy Reinforcement Learning

Retrace

● Proposes a new off-policy multi-step RL method: Retrace(λ)
● Theoretical advantages

○ It converges for any 𝜋, 𝜇 (safe)
○ It makes the best use of samples if 𝜋 and 𝜇 are close to each other (efficient)
○ Its variance is lower than importance sampling

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Safe and Efficient Off-Policy Reinforcement Learning

Retrace

● Proposes a new off-policy multi-step RL method: Retrace(λ)
● Theoretical advantages

○ It converges for any 𝜋, 𝜇 (safe)
○ It makes the best use of samples if 𝜋 and 𝜇 are close to each other (efficient)
○ Its variance is lower than importance sampling

● Empirical evaluation
○ On Atari 2600, it beats one-step Q-learning (DQN) and the existing multi-step

methods (Q*(λ), Tree-Backup)

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Safe and Efficient Off-Policy Reinforcement Learning

Retrace

● Proposes a new off-policy multi-step RL method: Retrace(λ)
● Theoretical advantages

○ It converges for any 𝜋, 𝜇 (safe)
○ It makes the best use of samples if 𝜋 and 𝜇 are close to each other (efficient)
○ Its variance is lower than importance sampling

● Empirical evaluation
○ On Atari 2600, it beats one-step Q-learning (DQN) and the existing multi-step

methods (Q*(λ), Tree-Backup)
● Proves the convergence of Watkins's Q(λ) for the first time

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Safe and Efficient Off-Policy Reinforcement Learning

On-policy multi-step methods

● A popular multi-step algorithm for on-policy policy evaluation
● where λ ∈ [0,1] is chosen to balance bias and variance
● Multi-step methods have advantages:

○ Rewards are propagated rapidly
○ Bias introduced by bootstrapping is reduced

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Off-policy multi-step methods

●
● Can you use to estimate for all s ≤ t?

○ Three methods mentioned in the paper:

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Off-policy multi-step methods

●
● Can you use to estimate for all s ≤ t?

○ Three methods mentioned in the paper:

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Off-policy multi-step methods:

●

● Pros: Unbiased estimate of
● Cons: Large variance since is not bounded

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Off-policy multi-step methods:

●

● Pros: Unbiased estimate of
● Cons: Large variance since is not bounded (not efficient)

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Reweight the trace by the product of IS ratios

Off-policy multi-step methods:

●
● Pros: Convergent if 𝜋 and 𝜇 are sufficiently close to each other or λ is

sufficiently small:

● Cons: Not convergent otherwise

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Off-policy multi-step methods:

●
● Pros: Convergent if 𝜋 and 𝜇 are sufficiently close to each other or λ is

sufficiently small:

● Cons: Not convergent otherwise (not safe)

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Cut traces by a constant λ^t

Off-policy multi-step methods:

●

● Pros: Convergent for any 𝜋 and 𝜇. even if 𝜇 is unknown and/or non-Markov
● Cons: decays rapidly when near on-policy

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Off-policy multi-step methods:

●

● Pros: Convergent for any 𝜋 and 𝜇. even if 𝜇 is unknown and/or non-Markov
● Cons: decays rapidly when near on-policy (not efficient)

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Reweight the traces by the
product of target probabilities

Retrace
General off-policy return-based algorithm

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Retrace
General off-policy return-based algorithm

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Retrace
General off-policy return-based algorithm

● None of the existing methods is perfect (low variance, safe and efficient)
○ Safe: i.e. convergent for any 𝜋 and 𝜇 (Q(λ))
○ Efficient: i.e. using full returns when on-policy (Tree-Backup)

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Retrace
Proposed Solution: Retrace(λ)

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace
Proposed Solution: Retrace(λ)

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace
Proposed Solution: Retrace(λ)

Properties:

○ Low variance: since

○ Safe (off policy): cut the traces when needed

○ Efficient (on policy): keep the traces near on policy. Note that

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace
Proposed Solution: Retrace(λ)

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace
Off-policy policy evaluation
Theorem-1: Assume finite state space. Generate trajectories according to behavior
policy 𝜇. Update all states along trajectories according to

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace
Off-policy policy evaluation
Theorem-1: Assume finite state space. Generate trajectories according to behavior
policy 𝜇. Update all states along trajectories according to

Assume all states visited infinitely often.

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace
Off-policy policy evaluation
Theorem-1: Assume finite state space. Generate trajectories according to behavior
policy 𝜇. Update all states along trajectories according to

Assume all states visited infinitely often.

Sufficient conditions for a safe algorithm (works for any 𝜋 and 𝜇)

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace
Tradeoff for trace coefficients

● Contraction coefficient of the expected operator

○ 𝜂 = 𝛾 when = 0 (one-step Bellman update)
○ 𝜂 = 0 when = 1 (full Monte-Carlo rollouts)

● Variance of the estimate (can be infinite for case)
○ Large : uses multi-steps returns, but large variance
○ Small : low variance, but do not use multi-steps returns

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace
Retrace(λ) for optimal control
Let () and () sequences of behavior and target policies and:

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace
Retrace(λ) for optimal control
Let () and () sequences of behavior and target policies and:

Theorem 2

Under previous assumptions

Assume () are “increasingly greedy” wrt ()

Then, a.s.,

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace
Remarks

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace
Retrace for deep RL
Several actor-critic architectures at DeepMind:

● ACER (Actor-Critic for Experience Replay) [Wang et al., 2017]. Policy gradient.
Works for continuous actions.

● Reactor (Retrace-actor) [Gruesly et al., 2018]. Use beta-LOO to update policy.
Use LSTM.

● MPO (Maximum a posteriori Policy Optimization) [Abdolmaleki et al., 2018]
Soft (KL-regularized) policy improvement.

● IMPALA (IMPortance Weighted Actor-Learner Architecture) [Espeholt et al.,
2018]. Heavily distributed agent. Uses V-trace.

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf

Retrace
Evaluation on Atari 2600

● Performance comparison:
○ Inter-algorithm scores are normalized so that 0 and 1 respectively correspond to

the worst and best scores for a particular game (Roughly, a strictly higher curve
corresponds to a better algorithm)

○ Retrace(λ) performs best on 30 out of 60 games
Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Retrace
Evaluation on Atari 2600: Retrace vs DQN

Games: (Blue: DQN Red: Retrace)
Asteroids, Defender, Demon Attack, Hero, Krull, River Raid, Space Invaders, Star
Gunner, Wizard of Wor, Zaxxon

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Retrace
Evaluation on Atari 2600

● Sensitivity to the value of λ:
○ Retrace(λ) is robust and consistently outperforms Tree-Backup
○ Q* performs best for small values of λ
○ Note that the Q-learning scores are fixed across different λ

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Retrace
Conclusions

● General update rule for off-policy return-based RL
● Conditions under which an algo is safe and efficient
● We recommend to use Retrace:

○ Converges to Q* (finite state/action space, policy 𝜋 is increasingly greed)
○ Safe: cut the traces when needed
○ Efficient: but only when needed
○ Works for policy evaluation and for control
○ Particularly suited for deep RL

● Extensions:
○ Works in continuous action spaces
○ Can be used in off-policy policy-gradient [Wang et al., 2016]

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

 A fast and sample-efficient Actor-Critic agent for
Reinforcement Learning (Reactor)

 A fast and sample-efficient Actor-Critic agent for
Reinforcement Learning (Reactor)

[Contributions]

● Sample-efficiency:
Higher than Prioritized Dueling DQN (Wang et al., 2017) and Categorical
DQN (Bellemare et al., 2017)

● Time-efficiency:
Better run-time performance than A3C (Mnih et al., 2016).

 A fast and sample-efficient Actor-Critic agent for
Reinforcement Learning (Reactor)

[Contributions]

● Sample-efficiency:
Higher than Prioritized Dueling DQN (Wang et al., 2017) and Categorical
DQN (Bellemare et al., 2017)

● Time-efficiency:
Better run-time performance than A3C (Mnih et al., 2016).

[Reactor (Retrace-Actor)]
Combining the sample-efficiency of off-policy experience replay with the
time-efficiency of asynchronous algorithms

Reactor
The Reactor is a combination of four novel contributions on top of recent
improvements to both deep value-based RL and policy-gradient algorithms.

● β-leave-one-out:
Improves the trade-off between variance and bias by using action values as a baseline.

● Distributional Retrace:
Brings multi-step off-policy updates to the distributional reinforcement learning setting

● Prioritized sequences replay:
Present the lazy initialization for more efficient replay prioritization.

● Agent Architecture:
Propose an optimized network and parallel training architecture

Reactor
β-leave-one-out

● Need a policy gradient algorithm to train the actor policy 𝜋 based on current
estimate of :

Reactor
β-leave-one-out

● Need a policy gradient algorithm to train the actor policy 𝜋 based on current
estimate of :

● Simplify the notations (find a way to estimate gradient G):

Reactor
β-leave-one-out

● Need a policy gradient algorithm to train the actor policy 𝜋 based on current
estimate of :

● Simplify the notations (find a way to estimate gradient G):

● Unbiased estimate of G (sampled from behaviour policy 𝜇 with IS ratio):

Reactor
β-leave-one-out

● Need a policy gradient algorithm to train the actor policy 𝜋 based on current
estimate of :

● Simplify the notations (find a way to estimate gradient G):

● Unbiased estimate of G (sampled from behaviour policy 𝜇 with IS ratio):

Baseline depends on the state

Reactor
β-leave-one-out

● Need a policy gradient algorithm to train the actor policy 𝜋 based on current
estimate of :

● Simplify the notations (find a way to estimate gradient G):

● Unbiased estimate of G (sampled from behaviour policy 𝜇 with IS ratio):

Unbiased, but high variance, needs reducing!

Reactor
β-leave-one-out

● leave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen
action a and current estimate of

Reactor
β-leave-one-out

● leave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen
action a and current estimate of

Low variance

Reactor
β-leave-one-out

● leave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen
action a and current estimate of

but may be biased if the estimated values differ from

Reactor
β-leave-one-out

● leave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen
action a and current estimate of

● A better bias-variance tradeoff --> β-LOO policy-gradient estimate:

Reactor
β-leave-one-out

● leave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen
action a and current estimate of

● A better bias-variance tradeoff --> β-LOO policy-gradient estimate:

Reactor
β-leave-one-out

● leave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen
action a and current estimate of

● A better bias-variance tradeoff --> β-LOO policy-gradient estimate:

where β = β(µ, π, a) can be a function of both policies, π and µ, and the
selected action a

Reactor
β-leave-one-out

● Property of β-LOO for given β:

General case:

Reactor
β-leave-one-out

● Property of β-LOO for given β:

When β = 1:

Reactor
β-leave-one-out

● Property of β-LOO for given β:

When β = 1/µ:

Reactor
β-leave-one-out

● Property of β-LOO for given β:

When β = 1/µ:

● Choice of β:
○ Low bias: as β(a) is close to 1/µ(a) or close to .
○ Unbiased: as β(a) is equal to 1/µ(a)
○ Low Variance: as β(a) is small

● Bias-Variance tradeoff:
○ Choose for some constant c ≥ 1

Reactor
Distributional Retrace
Extend C51 to multi-step Bellman backup.

● The n-step distributional Bellman target:

● The expectation is:

Reactor
Distributional Retrace

● Original Retrace:

Reactor
Distributional Retrace

● Original Retrace:

● Distributional Retrace:

Reactor
Distributional Retrace

● A mixture of n-step distribution (Retrace target distribution):

Reactor
Distributional Retrace

● A mixture of n-step distribution (Retrace target distribution):

● Update the current probabilities by performing a gradient step on the KL-Loss:

Reactor
Distributional Retrace

● A mixture of n-step distribution (Retrace target distribution):

● Update the current probabilities by performing a gradient step on the KL-Loss:

● Distributional Retrace is a linear combination of n-step Bellman backups

Reactor
Distributional Retrace

Single Step (C51)

Reactor
Distributional Retrace

Multi Steps
Distributional Retrace

Reactor
Prioritized sequences replay

● Prioritized experience replay adds new transitions to the replay buffer with a
constant priority

● Propose a way to add experience to the buffer with no priority, inserting a
priority only after the transition has been sampled and used for training.

● Also, instead of sampling transitions, we assign priorities to all (overlapping)
sequences of length n.

● When sampling, sequences with an assigned priority are sampled
proportionally to that priority.

Architecture

Reactor

Network architectureAgent architecture
Decouple agent training:
Action-learning pair

Architecture

Reactor

Network architectureAgent architecture Thread for action or learning

Architecture

Reactor

Network architectureAgent architecture Worker for action-learning pair

Architecture

Reactor

Network architectureAgent architecture

Instead of stacking
frame, using RNN

Architecture

Reactor

Network architectureAgent architecture

Gradient block
For stability

Reactor
Experiments

TISLR -> add β-LOO -> add Prioritization -> add distributional

Reactor
Experiments

Reactor (10+1) means:
● 10 workers for action-learner pair
● 1 worker for shared parameter server (for network)

Reactor
Experiments

Reactor
Experiments

Rainbow in no-op case is more sample efficiency,
But may be overfitting

Thank you !

