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Let’s go and have lunch!

1. Exit ETZ building

➔ Open door
➔ Walk to the lift
➔ Press button
➔ Wait for lift
➔ …..

3. Eat at mensa

➔ Open door
➔ Wait in a queue
➔ Take food
➔ …..

2. Cross the street

➔ Find shortest route
➔ Walk safely
➔ Follow traffic rules
➔ …..
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Let’s go and have lunch!

1. Exit ETZ building

➔ Open door
➔ Walk to the lift
➔ Press button
➔ Wait for lift
➔ …..

3. Eat at mensa

➔ Open door
➔ Wait in a queue
➔ Take food
➔ …..

2. Cross the street

➔ Find shortest route
➔ Walk safely
➔ Follow traffic rules
➔ …..

How to represent these different goals? 
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What are humans good at?

Can a learning-based agent do 
the same?

Powerful/meaningful 
state abstraction 

Transfer/Reusability 
of Skills

Temporal 
abstraction



Promise of Hierarchical RL

Structured 
exploration

Transfer 
learning

Long-term credit 
assignment (and 

memory)
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FeUdal Networks for 
Hierarchical Reinforcement 
Learning (ICML 2017)

Meta-Learning Shared 
Hierarchies (ICLR 2018)

Data-Efficient Hierarchical 
Reinforcement Learning 
(NeurIPS 2018)



Hierarchical RL

FeUdal Networks for 
Hierarchical Reinforcement 
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Data-Efficient Hierarchical 
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(NeurIPS 2018)
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Dayan, Peter and Geoffrey E. Hinton. “Feudal Reinforcement Learning.” NIPS (1992).
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Detour: Dilated RNN

▪ Able to preserve memories over 
longer periods

Chang, Shiyu et al. “Dilated Recurrent Neural Networks.” NIPS (2017).
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FeUdal Networks (FUN)

Absolute Goal

(-3, 1)

(3, 9)

c : Manager’s Horizon 
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Directional Goal



FeUdal Networks (FUN)

Directional Goal

Idea: A single sub-goal (direction) can be reused 
 in many different locations in state space
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FeUdal Networks (FUN)

▪ Intrinsic reward
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FeUdal Networks (FUN)

▪ Action Sampling
Stochastic 

Policy!
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Why not do end-to-end learning?



FeUdal Networks (FUN)

M
an

ag
er

W
orker

Agent

Manager & Worker: Separate Actor-Critic 

No gradient

Transition 
Policy 

Gradient

Policy Gradient
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FeUdal Networks (FUN)

Ablative Analysis



FeUdal Networks (FUN)

Comparison



FeUdal Networks (FUN)

Action Repeat Transfer



FeUdal Networks (FUN)

On-Policy Learning



Experiences

FeUdal Networks (FUN)

On-Policy Learning

Learning

Wastage!



Can we do better?



Experiences

Can we do better?

Off-Policy Learning

Learning

Replay Buffer

Reusage!
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Can we do better?

Off-Policy Learning

To-Be-DisclosedUnstable Learning



Hierarchical RL

FeUdal Networks for 
Hierarchical Reinforcement 
Learning (ICML 2017)

Meta-Learning Shared 
Hierarchies (ICLR 2018)

Data-Efficient Hierarchical 
Reinforcement Learning 
(NeurIPS 2018)
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Data-Efficient HRL (HIRO)



Input Goal Action

Raw Observation Space

Data-Efficient HRL (HIRO)



Data-Efficient HRL (HIRO)

c : Manager’s Horizon 



Data-Efficient HRL (HIRO)



▪ Intrinsic reward

Data-Efficient HRL (HIRO)
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Data-Efficient HRL (HIRO)

Environment

Manager

Worker(s)

Agent

Replay Buffer

Replay Buffer



Can we do better?

Off-Policy Learning

Unstable Learning To-Be-Disclosed



Can we do better?

Off-Policy Learning

Unstable Learning Manager’s past 
experience might 
become useless



Can we do better?

Off-Policy Learning

t = 12 yrs

Goal: “wear a shirt”



Can we do better?

Off-Policy Learning

Same goal induces 
different behavior

t = 22 yrs

Goal: “wear a shirt”



Can we do better?

Off-Policy Learning

Goal relabelling 
required!

t = 22 yrs

Goal: “wear a dress”

Goal: “wear a shirt”
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where



Data-Efficient HRL (HIRO)
 
Off-Policy Correction for Manager

where

...



Data-Efficient HRL (HIRO)

Environment

Manager

Worker(s)

Agent

Replay Buffer

Replay Buffer



Data-Efficient HRL (HIRO)

Ant Push



Data-Efficient HRL (HIRO)

Qualitative Analysis

https://docs.google.com/file/d/1PsP1MFTz8LdHbdk9aDrnvuhCmi3boMFh/preview
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Ablative Analysis

Experience Samples (in millions)
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Can we do better?

What is missing?

Structured 
exploration

http://www.youtube.com/watch?v=bxLAWgMC6oQ


Hierarchical RL

FeUdal Networks for 
Hierarchical Reinforcement 
Learning (ICML 2017)

Meta-Learning Shared 
Hierarchies (ICLR 2018)

Data-Efficient Hierarchical 
Reinforcement Learning 
(NeurIPS 2018)
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Taken after every 
N steps

Meta-Learning Shared Hierarchies (MLSH)



Computer Vision practice:
▪ Train on ImageNet
▪ Fine tune on actual task

Slide Credits: Pieter Abbeel, Metal-Learning Symposium (NIPS 2017)

Meta-Learning Shared Hierarchies (MLSH)



Computer Vision practice:
▪ Train on ImageNet
▪ Fine tune on actual task

How to generalize this to behavior 
learning?

Slide Credits: Pieter Abbeel, Metal-Learning Symposium (NIPS 2017)

Meta-Learning Shared Hierarchies (MLSH)



Environment A

Environment B

...
Meta-RL 

Algorithm
“Fast” RL 

Agent

Image Credits: Pieter Abbeel, Metal-Learning Symposium (NIPS 2017)

Meta-Learning Shared Hierarchies (MLSH)



Environment A

Environment B

...
Meta-RL 

Algorithm
“Fast” RL 

Agent

Environment F

ar, o

Testing environments

Image Credits: Pieter Abbeel, Metal-Learning Symposium (NIPS 2017)
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Environment A

Environment B

...
Meta-RL 

Algorithm
“Fast” RL 

Agent

Environment G

ar, o

Testing environments

Image Credits: Pieter Abbeel, Metal-Learning Symposium (NIPS 2017)
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Environment A

Environment B

...
Meta-RL 

Algorithm
“Fast” RL 

Agent

Environment H

ar, o

Testing environments

Image Credits: Pieter Abbeel, Metal-Learning Symposium (NIPS 2017)

Meta-Learning Shared Hierarchies (MLSH)



GOAL: Find sub-policies that enable fast learning of 
   master policy 

Meta-Learning Shared Hierarchies (MLSH)



GOAL: Find sub-policies that enable fast learning of 
   master policy    

Meta-Learning Shared Hierarchies (MLSH)
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Meta-Learning Shared Hierarchies (MLSH)



Meta-Learning Shared Hierarchies (MLSH)



Ant Two-walks

Meta-Learning Shared Hierarchies (MLSH)



Ant Obstacle Course

Meta-Learning Shared Hierarchies (MLSH)

http://www.youtube.com/watch?v=0ps0HfXoU0Y


Movement Bandits

Meta-Learning Shared Hierarchies (MLSH)



Comparison

Meta-Learning Shared Hierarchies (MLSH)

http://www.youtube.com/watch?v=KhQInepVyPI


Ablative Analysis

Meta-Learning Shared Hierarchies (MLSH)



Ablative Analysis

Meta-Learning Shared Hierarchies (MLSH)



Four Rooms

Meta-Learning Shared Hierarchies (MLSH)



Comparison

Meta-Learning Shared Hierarchies (MLSH)



Summary
FUN
● Directional goals
● Dilated RNN
● Transition Policy Gradient

MLSH
● Generalized RL algorithm
● Inspired from “Options” framework

HIRO
● Absolute goals in observation space
● Data-efficient 
● Off-policy label correction



Future Work

▪ How to decide temporal resolution 
(i.e. c, N)?

▪ Do we need discrete sub-policies?

▪ Future prospects of HRL? More 
hierarchies?



Thank you for your attention!



Any Questions?
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Hierarchical RL

Image Credits: Levy A. et. al (2019)  Learning Multi-Level Hierarchies With Hindsight, ICLR



Detour: A2C 

Image Credits: Sergey Levine (2018), CS 294-112 (Lecture 6)



Advantage Function:

Update Rule:

FeUdal Networks (FUN)
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FeUdal Networks (FUN)

Transition Policy Gradient

Assumption: 

● Worker will eventually learn to follow the goal directions
● Direction in state-space follows von Mises-Fisher distribution



FeUdal Networks (FUN)

Learnt sub-goals by Manager



FeUdal Networks (FUN)

Memory Task: Non-Match



FeUdal Networks (FUN)

Memory Task: T-Maze



FeUdal Networks (FUN)

Memory Task: Water-Maze



FeUdal Networks (FUN)

Comparison



Network Structure: TD3

Data-Efficient HRL (HIRO)

Dimension 
of raw 

observation 
space

Dimension 
of Action 
Space

Manager

Actor-Critic with
2-layer MLP each

Worker

Actor-Critic with
2-layer MLP each

For more details: Fujimoto, S., et. al (2018). Addressing Function Approximation Error in Actor-Critic Methods. ICML.
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Data-Efficient HRL (HIRO)
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Data-Efficient HRL (HIRO)
 
Off-Policy Correction for Manager

Approximately solved by generating candidate goals      :

● Original goal given:

● Absolute goal based on transition observed:

● Randomly sampled candidates:



Training

Data-Efficient HRL (HIRO)



Data-Efficient HRL (HIRO)

Environments

Ant Push Ant Fall

Ant Maze Ant Gather

https://docs.google.com/file/d/1PsP1MFTz8LdHbdk9aDrnvuhCmi3boMFh/preview
https://docs.google.com/file/d/1Ej7UWey7rwel253tGP9nhdPgxM9-G5DF/preview
https://docs.google.com/file/d/1HNIjGEe1RQ9ZODOtPXWu2yMfNHUF77Qw/preview
https://docs.google.com/file/d/1n5NYheyC83L7ZqRvXqeirOE3z2U56xPs/preview


Network Structure: PPO

Meta-Learning Shared Hierarchies (MLSH)

Number of 
sub-policies

Dimension 
of Action 
Space

Manager

2-layer MLP with 
64 hidden units

Each sub-policy

2-layer MLP with 
64 hidden units



Training

Meta-Learning Shared Hierarchies (MLSH)

http://www.youtube.com/watch?v=9nvjy9aJi50


Comparison

Meta-Learning Shared Hierarchies (MLSH)



Comparison

Meta-Learning Shared Hierarchies (MLSH)



Comparison

Meta-Learning Shared Hierarchies (MLSH)


