Hierarchical Reinforcement Learning (Part II)

Mayank Mittal

What are humans good at?

- **1. Exit ETZ building 2. Cross the street**
- 3. Eat at mensa

1. Exit ETZ building

- → Open door
- \rightarrow Walk to the lift
- → Press button
- → Wait for lift

.

 \rightarrow

- 2. Cross the street
 - → Find shortest route
 - → Walk safely

.....

 \rightarrow

→ Follow traffic rules

3. Eat at mensa

- → Open door
- → Wait in a queue
- → Take food
- →

What are humans good at?

Temporal abstraction

- **1. Exit ETZ building**
- \rightarrow Open door
- \rightarrow Walk to the lift \rightarrow Walk safely
- \rightarrow Press button
- \rightarrow Wait for lift

.

 \rightarrow

APPEREN

- 2. Cross the street
 - \rightarrow Find shortest route

.

 \rightarrow

→ Follow traffic rules

3. Eat at mensa

- → Open door
- \rightarrow Wait in a queue
- → Take food
- \rightarrow

What are humans good at?

Temporal abstraction

Transfer/Reusability of Skills

1. Exit ETZ building

- → Open door

- \rightarrow Wait for lift

.

 \rightarrow

2. Cross the street

- \rightarrow Find shortest route \rightarrow Open door

→

 \rightarrow Press button \rightarrow Follow traffic rules

- 3. Eat at mensa
- \rightarrow Walk to the lift \rightarrow Walk safely \rightarrow Wait in a queue
 - \rightarrow Take food

 \rightarrow

How to represent these different goals?

What are humans good at?

Temporal abstraction

Transfer/Reusability of Skills

Powerful/meaningful state abstraction

What are humans good at?

Temporal abstraction

Transfer/Reusability of Skills

Powerful/meaningful state abstraction

Can a learning-based agent do the same?

Promise of Hierarchical RL

Structured exploration

Transfer learning

Hierarchical RL

Hierarchical RL

FeUdal Networks for Hierarchical Reinforcement Learning (ICML 2017)

Data-Efficient Hierarchical Reinforcement Learning (NeurIPS 2018)

Meta-Learning Shared Hierarchies (ICLR 2018)

Hierarchical RL

FeUdal Networks for Hierarchical Reinforcement Learning (ICML 2017)

Data-Efficient Hierarchical Reinforcement Learning (NeurIPS 2018)

Meta-Learning Shared Hierarchies (ICLR 2018)

Detour: Dilated RNN

 Able to preserve memories over longer periods

Chang, Shiyu et al. "Dilated Recurrent Neural Networks." NIPS (2017).

Idea: A single sub-goal (direction) can be reused in many different locations in state space

Intrinsic reward

$$d_{cos}(s_{t+1} - s_t, g_t) = \frac{(s_{t+1} - s_t)^T g_t}{|s_{t+1} - s_t||g_t|}$$

$$r_{t+c}^{I} = \frac{1}{c} \sum_{i=t}^{t+c} d_{cos}(s_{t+c} - s_i, g_i)$$

Why not do end-to-end learning?

Manager & Worker: Separate Actor-Critic

Qualitative Analysis

sub-policy 1

Ablative Analysis

Ablative Analysis

- FuN, 0.95FuN, 0.99
- LSTM, 0.95
- LSTM, 0.99
- LSTM, 0.99,
 BPTT=100

Comparison

Action Repeat Transfer

On-Policy Learning

On-Policy Learning 😕

Wastage!

Can we do better?

Can we do better?

Off-Policy Learning 🙂

Reusage!

Unstable Learning

Unstable Learning

To-Be-Disclosed

Hierarchical RL

FeUdal Networks for Hierarchical Reinforcement Learning (ICML 2017)

Data-Efficient Hierarchical Reinforcement Learning (NeurIPS 2018)

Meta-Learning Shared Hierarchies (ICLR 2018)

Raw Observation Space

 $r_I(s_t, g_t, a_t, s_{t+1}) = -||s_t + g_t - s_{t+1}||_2$

Unstable Learning

To-Be-Disclosed

Unstable Learning

Manager's past experience might become useless

t = 12 yrs

Same goal induces different behavior

ear a shirt Goa Goal: "wear a dress"

Goal relabelling required!

Off-Policy Correction for Manager

$$\begin{pmatrix} s_{t'}, g_{t}, \\ \tilde{g}_{t}, \\ \tilde{g}_{t'} = \operatorname{argmax} \mu^{lo}(a_{t':t'+c-1}|s_{t':t'+c-1}, \tilde{g}_{t':t'+c-1}) \\ \text{where } \tilde{g}_{t'+1} = h(s_{t'}, \tilde{g}_{t'}, s_{t'+1})$$

Off-Policy Correction for Manager

$$\tilde{g}_{t'} = \underset{\tilde{g}_{t'}}{\operatorname{argmax}} \mu^{lo}(a_{t':t'+c-1}|s_{t':t'+c-1}, \tilde{g}_{t':t'+c-1})$$

where $\tilde{g}_{t'+1} = h(s_{t'}, \tilde{g}_{t'}, s_{t'+1})$

Ant Push

Qualitative Analysis

Ablative Analysis

Comparison

	Ant Gather	Ant Maze	Ant Push	Ant Fall
HIRO	3.02±1.49	0.99±0.01	0.92±0.04	0.66±0.07
FuN representation	0.03 ± 0.01	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
FuN transition PG	0.41 ± 0.06	0.0 ± 0.0	0.56 ± 0.39	0.01 ± 0.02
FuN cos similarity	0.85 ± 1.17	0.16 ± 0.33	0.06 ± 0.17	0.07 ± 0.22
FuN	0.01 ± 0.01	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
SNN4HRL	1.92 ± 0.52	0.0 ± 0.0	0.02 ± 0.01	0.0 ± 0.0
VIME	1.42 ± 0.90	0.0 ± 0.0	0.02 ± 0.02	0.0 ± 0.0
Data-Efficient HRL (HIRO)

Comparison

Can we do better?

Can we do better?

What is missing?

Can we do better?

What is missing?

Structured exploration

Hierarchical RL

FeUdal Networks for Hierarchical Reinforcement Learning (ICML 2017)

Data-Efficient Hierarchical Reinforcement Learning (NeurIPS 2018)

Meta-Learning Shared Hierarchies (ICLR 2018)

Computer Vision practice:

- Train on ImageNet
- Fine tune on actual task

Computer Vision practice:

- Train on ImageNet
- Fine tune on actual task

How to generalize this to behavior learning?

Slide Credits: Pieter Abbeel, Metal-Learning Symposium (NIPS 2017)

Image Credits: Pieter Abbeel, Metal-Learning Symposium (NIPS 2017)

Image Credits: Pieter Abbeel, Metal-Learning Symposium (NIPS 2017)

GOAL: Find sub-policies that enable fast learning of master policy $\boldsymbol{\theta}$

GOAL: Find sub-policies that enable fast learning of master policy $\boldsymbol{\theta}$

maximize
$$\phi E_{M \sim P_M, t=0...T-1}[R]$$

Initialize ϕ repeat Initialize θ Sample task $M \sim P_M$

for w = 0, 1, ...W (warmup period) do

Collect D timesteps of experience using $\pi_{\phi,\theta}$

Update θ to maximize expected return from 1/N timescale viewpoint end for

for u = 0, 1, ..., UCollect *D* timest Update θ to max Update ϕ to max end for Intil convergence

timescale viewpoint mescale viewpoint

Initialize ϕ repeat Initialize θ Sample task $M \sim$ for w = 0, 1, ...WCollect D time Update θ to ma

end for

for u = 0, 1, ..., U (joint update period) do

Collect D timesteps of experience using $\pi_{\phi,\theta}$

Update θ to maximize expected return from 1/N timescale viewpoint Update ϕ to maximize expected return from full timescale viewpoint end for

until convergence

Initialize ϕ repeat Initialize θ Sample task $M \sim P_M$ for w = 0, 1, ...W (warmup period) do Collect D timesteps of experience using $\pi_{\phi,\theta}$ Update θ to maximize expected return from 1/N timescale viewpoint end for for $u = 0, 1, \dots, U$ (joint update period) do Collect D timesteps of experience using $\pi_{\phi,\theta}$ Update θ to maximize expected return from 1/N timescale viewpoint Update ϕ to maximize expected return from full timescale viewpoint end for until convergence

Ant Two-walks

Ant Obstacle Course

Movement Bandits

Comparison

Ablative Analysis

Ablative Analysis

Four Rooms

Comparison

Summary

FUN

- Directional goals
- Dilated RNN
- Transition Policy Gradient

HIRO

- Absolute goals in observation space
- Data-efficient
- Off-policy label correction

MLSH

- Generalized RL algorithm
- Inspired from "Options" framework

Future Work

- How to decide temporal resolution (i.e. c, N)?
- Do we need discrete sub-policies?

 Future prospects of HRL? More hierarchies?

Thank you for your attention!

Any Questions?

References

- Vezhnevets, A.S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., & Kavukcuoglu, K. (2017). FeUdal Networks for Hierarchical Reinforcement Learning. *ICML*.
- Nachum, O., Gu, S., Lee, H., & Levine, S. (2018).
 Data-Efficient Hierarchical Reinforcement Learning. *NeurIPS*.
- Frans, K., Ho, J., Chen, X., Abbeel, P., & Schulman, J. (2018). Meta Learning Shared Hierarchies. CoRR, abs/1710.09767.

Appendix

Hierarchical RL

Hierarchical RL

Image Credits: Levy A. et. al (2019) Learning Multi-Level Hierarchies With Hindsight, ICLR

Image Credits: Sergey Levine (2018), CS 294-112 (Lecture 6)

FeUdal Networks (FUN)

Transition Policy Gradient

$$\nabla_{\theta} g_{t} = \mathbb{E}_{\pi_{t,\theta}} [(R_{t} - V(s_{t})) \nabla_{\theta} log(\pi_{t,\theta}^{TP}(s_{t+c}|s_{t}))]$$
$$= \mathbb{E} [(R_{t} - V(s_{t})) \nabla_{\theta} log(p(s_{t+c}|s_{t},\theta))]$$

Assumption:

- Worker will eventually learn to follow the goal directions
- Direction in state-space follows von Mises-Fisher distribution

$$p(s_{t+c}|s_t,\theta) \alpha \exp(d_{cos}(s_{t+c}-s_t,g_t(\theta)))$$

Learnt sub-goals by Manager

Memory Task: Non-Match

non-match

Memory Task: T-Maze

Memory Task: Water-Maze

Comparison

Network Structure: TD3

For more details: Fujimoto, S., et. al (2018). Addressing Function Approximation Error in Actor-Critic Methods. ICML.

Off-Policy Correction for Manager

$$\tilde{g}_{t'} = \underset{\tilde{g}_{t'}}{\operatorname{argmax}} \mu^{lo}(a_{t':t'+c-1}|s_{t':t'+c-1}, \tilde{g}_{t':t'+c-1})$$

where $\tilde{g}_{t'+1} = h(s_{t'}, \tilde{g}_{t'}, s_{t'+1})$

Off-Policy Correction for Manager

$$\tilde{g}_{t'} = \operatorname*{argmax}_{\tilde{g}_{t'}} \mu^{lo}(a_{t':t'+c-1}|s_{t':t'+c-1}, \tilde{g}_{t':t'+c-1})$$

$$= \operatorname*{argmax}_{\tilde{g}_{t'}} \log(\mu^{lo}(a_{t':t'+c-1}|s_{t':t'+c-1}, \tilde{g}_{t':t'+c-1}))$$

$$\alpha - \frac{1}{2}\sum_{i=t'}^{t'+c-1} ||a_i - \mu^{lo}(s_i, \tilde{g}_i)||_2^2 + \operatorname{constant}$$

Approximately solved by generating candidate goals $\tilde{g}_{t'}$

Off-Policy Correction for Manager

$$\tilde{g}_{t'} = \underset{\tilde{g}_{t'}}{\operatorname{argmax}} \mu^{lo}(a_{t':t'+c-1}|s_{t':t'+c-1}, \tilde{g}_{t':t'+c-1})$$

Approximately solved by generating candidate goals $\tilde{g}_{t^\prime}\,$:

- Original goal given: $g_{t'}$
- Absolute goal based on transition observed: $s_{t'+c} s_{t'}$
- Randomly sampled candidates:

Training

- 1. Collect experience $s_t, g_t, a_t, R_t, \ldots$
- 2. Train μ^{lo} with experience transitions $(s_t, g_t, a_t, r_t, s_{t+1}, g_{t+1})$ using g_t as additional state observation and reward given by goal-conditioned function $r_t = r(s_t, g_t, a_t, s_{t+1}) = -||s_t + g_t s_{t+1}||_2$.
- 3. Train μ^{hi} on temporally-extended experience $(s_t, \tilde{g}_t, \sum R_{t:t+c-1}, s_{t+c})$, where \tilde{g}_t is relabelled high-level action to maximize probability of past low-level actions $a_{t:t+c-1}$.
- 4. Repeat.

Environments

Ant Push

Ant Fall

Network Structure: PPO

Manager

2-layer MLP with 64 hidden units

Each sub-policy

2-layer MLP with 64 hidden units

Training

Comparison

Comparison

Reward on Walk/Crawl combination task	
MLSH Transfer	14333
Shared Policy Transfer	6055
Single Policy	-643

Comparison

Reward on Ant Obstacle taskMLSH Transfer193Single Policy0