
Exploration-Exploitation Trade-off in Deep
Reinforcement Learning

Part 1

Georges Pantalos (pgeorges@ethz.ch)

April 2, 2019

1

mailto:pgeorges@ethz.ch

Exploration-Exploitation trade-off

Figure: [UC Berkeley - CS188 Intro to AI]

2

Exploration-Exploitation trade-off

Figure: [researchgate.net]

3

Paper 1

Curiosity-driven Exploration by Self-supervised Prediction

D. Pathak, A. Efros, T. Darrell – UC Berkeley
ICML, May 2017

4

Main Idea

Main idea of the paper
The agent receives rewards for finding something unexpected

I Objective: maximize cumulative reward
∑

t rt where

rt = r et︸︷︷︸
extrinsic

+ r it︸︷︷︸
intrinsic

I Definition:
curiosity := r it

5

Main Idea

Main idea of the paper
The agent receives rewards for finding something unexpected

I Objective: maximize cumulative reward
∑

t rt where

rt = r et︸︷︷︸
extrinsic

+ r it︸︷︷︸
intrinsic

I Definition:
curiosity := r it

5

Main Idea

Main idea of the paper
The agent receives rewards for finding something unexpected

I Objective: maximize cumulative reward
∑

t rt where

rt = r et︸︷︷︸
extrinsic

+ r it︸︷︷︸
intrinsic

I Definition:
curiosity := r it

5

Games Tested

1. Super Mario Bros: 2D navigation

2. Viz Doom: 3D navigation

6

Games Tested

1. Super Mario Bros: 2D navigation

2. Viz Doom: 3D navigation

6

What are intrinsic rewards?

I Extrinsic rewards are provided by the environment.

I Intrinsic rewards encourage the agent to explore novel states.

7

What are intrinsic rewards?

I Extrinsic rewards are provided by the environment.

I Intrinsic rewards encourage the agent to explore novel states.

7

Settings investigated

1. Sparse extrinsic rewards:

2. Non existent extrinsic rewards:
3. Learn generalised skills that might be helpful in the future:

8

Settings investigated

1. Sparse extrinsic rewards:
2. Non existent extrinsic rewards:

3. Learn generalised skills that might be helpful in the future:

8

Settings investigated

1. Sparse extrinsic rewards:
2. Non existent extrinsic rewards:
3. Learn generalised skills that might be helpful in the future:

8

Architecture

At time t

r et extrinsic reward
r it intrinsic reward

Remember
Intrinsic reward = curiosity!
And rt = r et + r it

ICM = Intrinsic Curiosity Module
9

Let’s look closer

φ(·) actual feature representation
φ̂(·) estimated feature representation

10

Intrinsic Curiosity Module (ICM)

We have two networks

11

Intrinsic Curiosity Module (ICM)

The Inverse Model

11

Intrinsic Curiosity Module (ICM)

The Forward Model

11

Learning φ(·), i.e. training the inverse model

Train two sub-modules:
1. The first one encodes st into a feature vector φ(st)

2. The second one predicts ât from φ(st) and φ(st+1)

12

Learning φ(·), i.e. training the inverse model

Train two sub-modules:
1. The first one encodes st into a feature vector φ(st)

2. The second one predicts ât from φ(st) and φ(st+1)

12

The Inverse Model

Learn function g (i.e. the inverse dynamics model) defined as:

ât = g(st , st+1; θI)

where the parameters θI are trained to optimize

min
θI

LI (ât , at)

Implementation (2 submodules)

1. 4 convolution layers, each with 32 filters, stride of 2 and
padding of 1. ELU is used after each convolution layer.

2. 2 fully connected layers (288 and 4 units resp.)

LI is an arbitrary loss function
13

The Inverse Model

Learn function g (i.e. the inverse dynamics model) defined as:

ât = g(st , st+1; θI)

where the parameters θI are trained to optimize

min
θI

LI (ât , at)

Implementation (2 submodules)

1. 4 convolution layers, each with 32 filters, stride of 2 and
padding of 1. ELU is used after each convolution layer.

2. 2 fully connected layers (288 and 4 units resp.)

LI is an arbitrary loss function
13

Implementation of the Inverse Model

14

15

The Forward Model

Learn function f (i.e. the forward dynamics model) defined as:

φ̂ (st+1) = f (φ (st) , at ; θF)

where the parameters θF are trained to optimize

min
θF

LF

(
φ (st+1) , φ̂ (st+1)

)

Implementation
2 fully connected layers.

Here, LF = 1
2

∥∥∥φ̂ (st+1)− φ (st+1)
∥∥∥2

2
, i.e. least squares

15

Choosing the right φ(·)

A C

A events that affect the agent
C events that can be controlled by the agent

what we want to model

16

Choosing the right φ(·)

A C

A events that affect the agent
C events that can be controlled by the agent

what we want to model

16

Choosing the right φ(·)

A C

A events that affect the agent
C events that can be controlled by the agent

what we want to model

16

Choosing the right φ(·)

A C

A events that affect the agent
C events that can be controlled by the agent

what we want to model

16

Choosing the right φ(·)

A C

A events that affect the agent
C events that can be controlled by the agent

what we want to model

16

Expression for Curiosity

Curiosity: « error in the agent’s ability to predict the consequences
of its own actions ».

r it =
η

2

∥∥∥φ̂ (st+1)− φ (st+1)
∥∥∥2

2
= ηLF

where η > 0 is a scaling factor.

17

Expression for Curiosity

Curiosity: « error in the agent’s ability to predict the consequences
of its own actions ».

r it =
η

2

∥∥∥φ̂ (st+1)− φ (st+1)
∥∥∥2

2
= ηLF

where η > 0 is a scaling factor.

17

Overall Optimisation Problem

Overall Optimisation Problem

min
θP ,θI ,θF

− λ E
π(st ;θP)

[∑
t

rt

]
︸ ︷︷ ︸

policy gradient

+ (1− β) LI︸︷︷︸
inverse

+ β LF︸︷︷︸
forward


subject to

0 ≤ β ≤ 1
0 < λ

18

Overall Optimisation Problem

Maximise Expected Cumulative Reward

Overall Optimisation Problem

min
θP ,θI ,θF

− λ E
π(st ;θP)

[∑
t

rt

]
︸ ︷︷ ︸

policy gradient

+ (1− β) LI︸︷︷︸
inverse

+ β LF︸︷︷︸
forward


subject to

0 ≤ β ≤ 1
0 < λ

18

Overall Optimisation Problem

Learn the Feature Representation

Overall Optimisation Problem

min
θP ,θI ,θF

− λ E
π(st ;θP)

[∑
t

rt

]
︸ ︷︷ ︸

policy gradient

+ (1− β) LI︸︷︷︸
inverse

+ β LF︸︷︷︸
forward


subject to

0 ≤ β ≤ 1
0 < λ

18

Overall Optimisation Problem

Minimise Curiosity

Overall Optimisation Problem

min
θP ,θI ,θF

− λ E
π(st ;θP)

[∑
t

rt

]
︸ ︷︷ ︸

policy gradient

+ (1− β) LI︸︷︷︸
inverse

+ β LF︸︷︷︸
forward


subject to

0 ≤ β ≤ 1
0 < λ

18

Overall Optimisation Problem

Overall Optimisation Problem

min
θP ,θI ,θF

− λ E
π(st ;θP)

[∑
t

rt

]
︸ ︷︷ ︸

policy gradient

+ (1− β) LI︸︷︷︸
inverse

+ β LF︸︷︷︸
forward


subject to

0 ≤ β ≤ 1
0 < λ

Remember
I Curiosity = r it = ηLF
I Total reward at time t is rt = r et + r it

18

Experimentation

19

Sparse Reward Setting

We compare 3 setups:
1. ICM + A3C: full algorithm which combines ICM with A3C
2. A3C: vanilla A3C with ε-greedy exploration
3. ICM-pixels + A3C: variant of ICM without the inverse model

20

Sparse Reward Setting

We compare 3 setups:
1. ICM + A3C: full algorithm which combines ICM with A3C
2. A3C: vanilla A3C with ε-greedy exploration
3. ICM-pixels + A3C: variant of ICM without the inverse model

20

Sparse Reward Setting

We compare 3 setups:
1. ICM + A3C: full algorithm which combines ICM with A3C
2. A3C: vanilla A3C with ε-greedy exploration
3. ICM-pixels + A3C: variant of ICM without the inverse model

20

Performance

I Curious A3C agents are superior in all cases
I ICM-pixels < ICM because the rooms have different textures

21

Performance

I Curious A3C agents are superior in all cases
I ICM-pixels < ICM because the rooms have different textures

21

Robustness to Noise Inputs

Replace 40% of the input by white noise.

22

Robustness to Noise Inputs

Figure: Results to noise input in the « sparse reward » setting

23

No Reward Setting

Figure: Random exploration

Figure: Curiosity driven exploration
24

No Reward Setting

I The agent now only survives so that he can explore more!
I First time in literature that learning from pixels occurs
without rewards!

25

No Reward Setting

I The agent now only survives so that he can explore more!
I First time in literature that learning from pixels occurs
without rewards!

25

Generalisation to Unseen Scenarios

3 settings are investigated:
1. Evaluate the learned policy as is

Use the policy learned in level 1 directly in level 2

2. Adapt the policy by fine-tuning with curiosity reward
3. Adapt the policy by fine-tuning with extrinsic reward

26

Generalisation to Unseen Scenarios

3 settings are investigated:
1. Evaluate the learned policy as is
2. Adapt the policy by fine-tuning with curiosity reward

Fine-tune the policy learned in level 1 using intrinsic rewards also in
level 2

3. Adapt the policy by fine-tuning with extrinsic reward

26

Generalisation to Unseen Scenarios

3 settings are investigated:
1. Evaluate the learned policy as is
2. Adapt the policy by fine-tuning with curiosity reward
3. Adapt the policy by fine-tuning with extrinsic reward

Fine-tune the policy learned in level 1 by adding extrinsic rewards in
level 2

26

Results showing generalisation

Figure: Test set of VizDoom in the « very sparse » reward case and
fine-tuned on extrinsic rewards

27

Demo

https://www.youtube.com/watch?v=J3FHOyhUn3A

28

https://www.youtube.com/watch?v=J3FHOyhUn3A

Paper 2

Noisy Networks for Exploration,

M. Fortunato, M. Azar, B. Piot et al. – Deepmind
ICLR, Feb 2018

29

Heuristic Approaches for Exploration

1. Entropy regularisation: entropy bonus to the loss function.
2. ε-greedy:

Problem
Local perturbation methods

30

Heuristic Approaches for Exploration

1. Entropy regularisation: entropy bonus to the loss function.
2. ε-greedy:

Problem
Local perturbation methods

30

Heuristic Approaches for Exploration

1. Entropy regularisation: entropy bonus to the loss function.
2. ε-greedy:

Problem
Local perturbation methods

30

More Heuristics for Exploration

3. Optimism in the face of uncertainty: theoretical
guarantees on performance

Problem
Small state-action spaces and linear function approximations

4. Intrinsic Motivation term : e.g. curiosity

Problems
Separate generalisation from exploration. Many interactions needed.

31

More Heuristics for Exploration

3. Optimism in the face of uncertainty: theoretical
guarantees on performance

Problem
Small state-action spaces and linear function approximations

4. Intrinsic Motivation term : e.g. curiosity

Problems
Separate generalisation from exploration. Many interactions needed.

31

More Heuristics for Exploration

3. Optimism in the face of uncertainty: theoretical
guarantees on performance

Problem
Small state-action spaces and linear function approximations

4. Intrinsic Motivation term : e.g. curiosity

Problems
Separate generalisation from exploration. Many interactions needed.

31

More Heuristics for Exploration

3. Optimism in the face of uncertainty: theoretical
guarantees on performance

Problem
Small state-action spaces and linear function approximations

4. Intrinsic Motivation term : e.g. curiosity

Problems
Separate generalisation from exploration. Many interactions needed.

31

Implementation on a Linear Layer

I Linear layer:
y = wx + b

I Corresponding noisy linear layer:

y := (µw + σw � εw)︸ ︷︷ ︸
w

x + µb + σb � εb︸ ︷︷ ︸
b

I µw , µb , σw and σb are learnable
I εw and εb are noise RVs.

� denotes element-wise multiplication
32

Implementation on a Linear Layer

I Linear layer:
y = wx + b

I Corresponding noisy linear layer:

y := (µw + σw � εw)︸ ︷︷ ︸
w

x + µb + σb � εb︸ ︷︷ ︸
b

I µw , µb , σw and σb are learnable
I εw and εb are noise RVs.

� denotes element-wise multiplication
32

Implementation on a Linear Layer

I Linear layer:
y = wx + b

I Corresponding noisy linear layer:

y := (µw + σw � εw)︸ ︷︷ ︸
w

x + µb + σb � εb︸ ︷︷ ︸
b

I µw , µb , σw and σb are learnable
I εw and εb are noise RVs.

� denotes element-wise multiplication
32

Implementation on a Linear Layer

I Linear layer:
y = wx + b

I Corresponding noisy linear layer:

y := (µw + σw � εw)︸ ︷︷ ︸
w

x + µb + σb � εb︸ ︷︷ ︸
b

I µw , µb , σw and σb are learnable
I εw and εb are noise RVs.

� denotes element-wise multiplication
32

Graphical Representation of the noisy linear layer

Dimensions
For p inputs and q
outputs:

x ∈ Rp

y , µb, σb, εb ∈ Rq

µw , σw , εw ∈ Rq×p

33

How do we choose ε?

1. Independent Gaussian Noise: Sample each variable
ε ∼ N (0, 1) for every weight in a layer independently.

εw =

ε
w
11 · · · εw1p
...

. . .
...

εwq1 · · · εwqp

 and εb =

ε
b
1
...
εbq



For p inputs and q outputs, pq + q variables to samples.

Noise is completely uncorrelated

34

How do we choose ε?

1. Independent Gaussian Noise: Sample each variable
ε ∼ N (0, 1) for every weight in a layer independently.

εw =

ε
w
11 · · · εw1p
...

. . .
...

εwq1 · · · εwqp

 and εb =

ε
b
1
...
εbq



For p inputs and q outputs, pq + q variables to samples.

Noise is completely uncorrelated

34

How do we choose ε?

1. Independent Gaussian Noise: Sample each variable
ε ∼ N (0, 1) for every weight in a layer independently.

εw =

ε
w
11 · · · εw1p
...

. . .
...

εwq1 · · · εwqp

 and εb =

ε
b
1
...
εbq



For p inputs and q outputs, pq + q variables to samples.

Noise is completely uncorrelated

34

How do we choose ε?

2. Factorised Gaussian Noise: Sample p variables εi ∼ N (0, 1)
and q variables εj ∼ N (0, 1) independently.{

εwij = f (εi) f (εj)

εbj = f (εj)

where f (x) = sgn(x)
√
|x |

For p inputs and q outputs, p + q variables to sample.

Noise is correlated

35

How do we choose ε?

2. Factorised Gaussian Noise: Sample p variables εi ∼ N (0, 1)
and q variables εj ∼ N (0, 1) independently.{

εwij = f (εi) f (εj)

εbj = f (εj)

where f (x) = sgn(x)
√
|x |

For p inputs and q outputs, p + q variables to sample.

Noise is correlated

35

How do we choose ε?

2. Factorised Gaussian Noise: Sample p variables εi ∼ N (0, 1)
and q variables εj ∼ N (0, 1) independently.{

εwij = f (εi) f (εj)

εbj = f (εj)

where f (x) = sgn(x)
√
|x |

For p inputs and q outputs, p + q variables to sample.

Noise is correlated

35

Loss Function of a Noisy Network

Loss Function

L(ζ) = E
ε

[L(θ)]

where ζ := (µ,Σ) and θ := µ+ Σ� ε.

Gradient of the Loss Function

∇L(ζ) = ∇E
ε

[L(θ)] = E
ε

[∇L(µ+ Σ� ε)]
MC
≈ ∇L(µ+ Σ� ξ)

where ξ is sampled at each step of the optimisation.

� denotes element-wise multiplication
36

Loss Function of a Noisy Network

Loss Function

L(ζ) = E
ε

[L(θ)]

where ζ := (µ,Σ) and θ := µ+ Σ� ε.

Gradient of the Loss Function

∇L(ζ) = ∇E
ε

[L(θ)] = E
ε

[∇L(µ+ Σ� ε)]
MC
≈ ∇L(µ+ Σ� ξ)

where ξ is sampled at each step of the optimisation.

� denotes element-wise multiplication
36

Loss Function of a Noisy Network

Loss Function

L(ζ) = E
ε

[L(θ)]

where ζ := (µ,Σ) and θ := µ+ Σ� ε.

Gradient of the Loss Function

∇L(ζ) = ∇E
ε

[L(θ)] = E
ε

[∇L(µ+ Σ� ε)]
MC
≈ ∇L(µ+ Σ� ξ)

where ξ is sampled at each step of the optimisation.

� denotes element-wise multiplication
36

NoisyNet Versions of DQN and Dueling

The changes made are:
1. ε-greedy no longer used. The policy always optimises the

action-value function Q.
2. Fully connected layers of value network → noisy network with

factorised gaussian noise.

37

NoisyNet Versions of DQN and Dueling

The changes made are:
1. ε-greedy no longer used. The policy always optimises the

action-value function Q.
2. Fully connected layers of value network → noisy network with

factorised gaussian noise.

37

Loss Function of the NoisyNet DQN

I Original DQN:

L(θ) = E
(x ,a,r ,y)∼D

[(
r + γmax

b∈A
Q
(
y , b; θ−

)
− Q(x , a; θ)

)2
]

I NoisyNet DQN:

L(ζ) = E
ε,ε′

[
E

(x ,a,r ,y)∼D

[
r + γmax

b∈A
Q
(
y , b, ε′; ζ−

)
− Q(x , a, ε; ζ)

]2
]

38

Loss Function of the NoisyNet DQN

I Original DQN:

L(θ) = E
(x ,a,r ,y)∼D

[(
r + γmax

b∈A
Q
(
y , b; θ−

)
− Q(x , a; θ)

)2
]

I NoisyNet DQN:

L(ζ) = E
ε,ε′

[
E

(x ,a,r ,y)∼D

[
r + γmax

b∈A
Q
(
y , b, ε′; ζ−

)
− Q(x , a, ε; ζ)

]2
]

38

NoisyNet Version of Dueling DQN

I Original Dueling DQN:

L(θ) = E
(x ,a,r ,y)∼D

[(
r + γQ

(
y , b∗(y); θ−

)
− Q(x , a; θ)

)2]
s.t. b∗(y) = argmax

b∈A
Q(y , b; θ)

I NoisyNet Dueling DQN:

L(ζ) = E
ε,ε′

[
E

(x ,a,r ,y)∼D

[
r + γQ

(
y , b∗(y), ε′; ζ−

)
− Q(x , a, ε; ζ)

]2]
s.t. b∗(y) = argmax

b∈A
Q
(
y , b(y), ε′′; ζ

)

39

NoisyNet Version of Dueling DQN

I Original Dueling DQN:

L(θ) = E
(x ,a,r ,y)∼D

[(
r + γQ

(
y , b∗(y); θ−

)
− Q(x , a; θ)

)2]
s.t. b∗(y) = argmax

b∈A
Q(y , b; θ)

I NoisyNet Dueling DQN:

L(ζ) = E
ε,ε′

[
E

(x ,a,r ,y)∼D

[
r + γQ

(
y , b∗(y), ε′; ζ−

)
− Q(x , a, ε; ζ)

]2]
s.t. b∗(y) = argmax

b∈A
Q
(
y , b(y), ε′′; ζ

)

39

NoisyNet Version of A3C

The changes made are:
I the entropy bonus of the policy loss is removed:

∇θLπ(θ) =− Eπ
[

k∑
i=0

∇θ log (π (at+i |xt+i ; θ))A (xt+i , at+i ; θ)

+
�����������

β

k∑
i=0

∇θH(π(·|xt+i ; θ))

]

I Fully connected layers of policy network → noisy layers.

40

NoisyNet Version of A3C

The changes made are:
I the entropy bonus of the policy loss is removed:

∇θLπ(θ) =− Eπ
[

k∑
i=0

∇θ log (π (at+i |xt+i ; θ))A (xt+i , at+i ; θ)

+
�����������

β

k∑
i=0

∇θH(π(·|xt+i ; θ))

]

I Fully connected layers of policy network → noisy layers.

40

Metric

I Human Normalised Score (HNS):

100×
Score Agent − Score Random

Score Human − Score Random

I HNS = 0→ as good as random
I HNS = 100→ human performance
I HNS > 100→ superhuman performance

41

Metric

I Human Normalised Score (HNS):

100×
Score Agent − Score Random

Score Human − Score Random

I HNS = 0→ as good as random
I HNS = 100→ human performance
I HNS > 100→ superhuman performance

41

Metric

I Human Normalised Score (HNS):

100×
Score Agent − Score Random

Score Human − Score Random

I HNS = 0→ as good as random
I HNS = 100→ human performance
I HNS > 100→ superhuman performance

41

Metric

I Human Normalised Score (HNS):

100×
Score Agent − Score Random

Score Human − Score Random

I HNS = 0→ as good as random
I HNS = 100→ human performance
I HNS > 100→ superhuman performance

41

Results

NoisyNets always produce superior performance in learning process.

42

Analysis of Learning in Noisy Layers

I L̄(ζ) is a positive and continuous function of ζ.
I Always exist a deterministic optimiser for it.

Hypothesis

Learn to discard noise entries by pushing σw and σb to 0.

Figure: Learning of average noise parameters Σ̄ in a NoisyNet-DQN

43

Analysis of Learning in Noisy Layers

I L̄(ζ) is a positive and continuous function of ζ.
I Always exist a deterministic optimiser for it.

Hypothesis

Learn to discard noise entries by pushing σw and σb to 0.

Figure: Learning of average noise parameters Σ̄ in a NoisyNet-DQN

43

Analysis of Learning in Noisy Layers

I L̄(ζ) is a positive and continuous function of ζ.
I Always exist a deterministic optimiser for it.

Hypothesis

Learn to discard noise entries by pushing σw and σb to 0.

Figure: Learning of average noise parameters Σ̄ in a NoisyNet-DQN

43

References

Noisy Networks for Exploration
M. Fortunato et al.

Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak et al.

https://pathak22.github.io/noreward-rl/

Reinforcement Learning: An Introduction
Richard S. Sutton, Andrew G. Barto

www.cis.upenn.edu/~cis519/fall2015/lectures/14_
ReinforcementLearning.pdf

An Introduction to Deep Reinforcement Learning
Bellemare et al.

44

https://arxiv.org/pdf/1706.10295.pdf
https://arxiv.org/pdf/1705.05363.pdf
https://pathak22.github.io/noreward-rl/
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
www.cis.upenn.edu/~cis519/fall2015/lectures/14_ReinforcementLearning.pdf
www.cis.upenn.edu/~cis519/fall2015/lectures/14_ReinforcementLearning.pdf
https://arxiv.org/pdf/1811.12560.pdf

Average Noise Parameters

Let σwi denote the i th weight of a noisy layer. Then,

Σ̄ :=
1

N weights

∑
i

|σwi |

provides a measure of the stochasticity of the Noisy layer.

45

Factorised vs. Independent Noise in A3C

46

