
Exploration-Exploitation Trade-off in Deep
Reinforcement Learning

Part 1

Georges Pantalos (pgeorges@ethz.ch)

April 2, 2019

1

mailto:pgeorges@ethz.ch


Exploration-Exploitation trade-off

Figure: [UC Berkeley - CS188 Intro to AI]
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Exploration-Exploitation trade-off

Figure: [researchgate.net]
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Paper 1

Curiosity-driven Exploration by Self-supervised Prediction

D. Pathak, A. Efros, T. Darrell – UC Berkeley
ICML, May 2017
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Main Idea

Main idea of the paper
The agent receives rewards for finding something unexpected

I Objective: maximize cumulative reward
∑

t rt where

rt = r et︸︷︷︸
extrinsic

+ r it︸︷︷︸
intrinsic

I Definition:
curiosity := r it
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Games Tested

1. Super Mario Bros: 2D navigation

2. Viz Doom: 3D navigation
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What are intrinsic rewards?

I Extrinsic rewards are provided by the environment.

I Intrinsic rewards encourage the agent to explore novel states.
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Settings investigated

1. Sparse extrinsic rewards:

2. Non existent extrinsic rewards:
3. Learn generalised skills that might be helpful in the future:
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Architecture

At time t

r et extrinsic reward
r it intrinsic reward

Remember
Intrinsic reward = curiosity!
And rt = r et + r it

ICM = Intrinsic Curiosity Module
9



Let’s look closer

φ(·) actual feature representation
φ̂(·) estimated feature representation
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Intrinsic Curiosity Module (ICM)

We have two networks
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Intrinsic Curiosity Module (ICM)

The Inverse Model
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Intrinsic Curiosity Module (ICM)

The Forward Model
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Learning φ(·), i.e. training the inverse model

Train two sub-modules:
1. The first one encodes st into a feature vector φ(st)

2. The second one predicts ât from φ(st) and φ(st+1)
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The Inverse Model

Learn function g (i.e. the inverse dynamics model) defined as:

ât = g(st , st+1; θI )

where the parameters θI are trained to optimize

min
θI

LI (ât , at)

Implementation (2 submodules)

1. 4 convolution layers, each with 32 filters, stride of 2 and
padding of 1. ELU is used after each convolution layer.

2. 2 fully connected layers (288 and 4 units resp.)

LI is an arbitrary loss function
13
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Implementation of the Inverse Model

14
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The Forward Model

Learn function f (i.e. the forward dynamics model) defined as:

φ̂ (st+1) = f (φ (st) , at ; θF )

where the parameters θF are trained to optimize

min
θF

LF

(
φ (st+1) , φ̂ (st+1)

)

Implementation
2 fully connected layers.

Here, LF = 1
2

∥∥∥φ̂ (st+1)− φ (st+1)
∥∥∥2

2
, i.e. least squares

15



Choosing the right φ(·)

A C

A events that affect the agent
C events that can be controlled by the agent

what we want to model
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Expression for Curiosity

Curiosity: « error in the agent’s ability to predict the consequences
of its own actions ».

r it =
η

2

∥∥∥φ̂ (st+1)− φ (st+1)
∥∥∥2

2
= ηLF

where η > 0 is a scaling factor.
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Overall Optimisation Problem

Overall Optimisation Problem

min
θP ,θI ,θF

− λ E
π(st ;θP)

[∑
t

rt

]
︸ ︷︷ ︸

policy gradient

+ (1− β) LI︸︷︷︸
inverse

+ β LF︸︷︷︸
forward


subject to

0 ≤ β ≤ 1
0 < λ
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Overall Optimisation Problem

Maximise Expected Cumulative Reward

Overall Optimisation Problem

min
θP ,θI ,θF
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Overall Optimisation Problem

Learn the Feature Representation

Overall Optimisation Problem

min
θP ,θI ,θF

− λ E
π(st ;θP)

[∑
t

rt

]
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Overall Optimisation Problem

Minimise Curiosity

Overall Optimisation Problem

min
θP ,θI ,θF

− λ E
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Overall Optimisation Problem

Overall Optimisation Problem

min
θP ,θI ,θF

− λ E
π(st ;θP)

[∑
t

rt

]
︸ ︷︷ ︸

policy gradient

+ (1− β) LI︸︷︷︸
inverse

+ β LF︸︷︷︸
forward


subject to

0 ≤ β ≤ 1
0 < λ

Remember
I Curiosity = r it = ηLF
I Total reward at time t is rt = r et + r it
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Experimentation
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Sparse Reward Setting

We compare 3 setups:
1. ICM + A3C: full algorithm which combines ICM with A3C
2. A3C: vanilla A3C with ε-greedy exploration
3. ICM-pixels + A3C: variant of ICM without the inverse model
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Performance

I Curious A3C agents are superior in all cases
I ICM-pixels < ICM because the rooms have different textures
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Robustness to Noise Inputs

Replace 40% of the input by white noise.
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Robustness to Noise Inputs

Figure: Results to noise input in the « sparse reward » setting

23



No Reward Setting

Figure: Random exploration

Figure: Curiosity driven exploration
24



No Reward Setting

I The agent now only survives so that he can explore more!
I First time in literature that learning from pixels occurs
without rewards!
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I The agent now only survives so that he can explore more!
I First time in literature that learning from pixels occurs
without rewards!
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Generalisation to Unseen Scenarios

3 settings are investigated:
1. Evaluate the learned policy as is

Use the policy learned in level 1 directly in level 2

2. Adapt the policy by fine-tuning with curiosity reward
3. Adapt the policy by fine-tuning with extrinsic reward
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Generalisation to Unseen Scenarios

3 settings are investigated:
1. Evaluate the learned policy as is
2. Adapt the policy by fine-tuning with curiosity reward
3. Adapt the policy by fine-tuning with extrinsic reward

Fine-tune the policy learned in level 1 by adding extrinsic rewards in
level 2
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Results showing generalisation

Figure: Test set of VizDoom in the « very sparse » reward case and
fine-tuned on extrinsic rewards
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Demo

https://www.youtube.com/watch?v=J3FHOyhUn3A
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Paper 2

Noisy Networks for Exploration,

M. Fortunato, M. Azar, B. Piot et al. – Deepmind
ICLR, Feb 2018
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Heuristic Approaches for Exploration

1. Entropy regularisation: entropy bonus to the loss function.
2. ε-greedy:

Problem
Local perturbation methods
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More Heuristics for Exploration

3. Optimism in the face of uncertainty: theoretical
guarantees on performance

Problem
Small state-action spaces and linear function approximations

4. Intrinsic Motivation term : e.g. curiosity

Problems
Separate generalisation from exploration. Many interactions needed.
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Implementation on a Linear Layer

I Linear layer:
y = wx + b

I Corresponding noisy linear layer:

y := (µw + σw � εw )︸ ︷︷ ︸
w

x + µb + σb � εb︸ ︷︷ ︸
b

I µw , µb , σw and σb are learnable
I εw and εb are noise RVs.

� denotes element-wise multiplication
32
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Graphical Representation of the noisy linear layer

Dimensions
For p inputs and q
outputs:

x ∈ Rp

y , µb, σb, εb ∈ Rq

µw , σw , εw ∈ Rq×p
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How do we choose ε?

1. Independent Gaussian Noise: Sample each variable
ε ∼ N (0, 1) for every weight in a layer independently.

εw =

ε
w
11 · · · εw1p
...

. . .
...

εwq1 · · · εwqp

 and εb =

ε
b
1
...
εbq



For p inputs and q outputs, pq + q variables to samples.

Noise is completely uncorrelated
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How do we choose ε?

2. Factorised Gaussian Noise: Sample p variables εi ∼ N (0, 1)
and q variables εj ∼ N (0, 1) independently.{

εwij = f (εi ) f (εj)

εbj = f (εj)

where f (x) = sgn(x)
√
|x |

For p inputs and q outputs, p + q variables to sample.

Noise is correlated
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Loss Function of a Noisy Network

Loss Function

L(ζ) = E
ε

[L(θ)]

where ζ := (µ,Σ) and θ := µ+ Σ� ε.

Gradient of the Loss Function

∇L(ζ) = ∇E
ε

[L(θ)] = E
ε

[∇L(µ+ Σ� ε)]
MC
≈ ∇L(µ+ Σ� ξ)

where ξ is sampled at each step of the optimisation.

� denotes element-wise multiplication
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NoisyNet Versions of DQN and Dueling

The changes made are:
1. ε-greedy no longer used. The policy always optimises the

action-value function Q.
2. Fully connected layers of value network → noisy network with

factorised gaussian noise.
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Loss Function of the NoisyNet DQN

I Original DQN:

L(θ) = E
(x ,a,r ,y)∼D

[(
r + γmax

b∈A
Q
(
y , b; θ−

)
− Q(x , a; θ)

)2
]

I NoisyNet DQN:

L(ζ) = E
ε,ε′

[
E

(x ,a,r ,y)∼D

[
r + γmax

b∈A
Q
(
y , b, ε′; ζ−

)
− Q(x , a, ε; ζ)

]2
]
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NoisyNet Version of Dueling DQN

I Original Dueling DQN:

L(θ) = E
(x ,a,r ,y)∼D

[(
r + γQ

(
y , b∗(y); θ−

)
− Q(x , a; θ)

)2]
s.t. b∗(y) = argmax

b∈A
Q(y , b; θ)

I NoisyNet Dueling DQN:

L(ζ) = E
ε,ε′

[
E

(x ,a,r ,y)∼D

[
r + γQ

(
y , b∗(y), ε′; ζ−

)
− Q(x , a, ε; ζ)

]2]
s.t. b∗(y) = argmax

b∈A
Q
(
y , b(y), ε′′; ζ

)
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NoisyNet Version of A3C

The changes made are:
I the entropy bonus of the policy loss is removed:

∇θLπ(θ) =− Eπ
[

k∑
i=0

∇θ log (π (at+i |xt+i ; θ))A (xt+i , at+i ; θ)

+
�����������

β

k∑
i=0

∇θH(π(·|xt+i ; θ))

]

I Fully connected layers of policy network → noisy layers.
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Metric

I Human Normalised Score (HNS):

100×
Score Agent − Score Random

Score Human − Score Random

I HNS = 0→ as good as random
I HNS = 100→ human performance
I HNS > 100→ superhuman performance
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Results

NoisyNets always produce superior performance in learning process.
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Analysis of Learning in Noisy Layers

I L̄(ζ) is a positive and continuous function of ζ.
I Always exist a deterministic optimiser for it.

Hypothesis

Learn to discard noise entries by pushing σw and σb to 0.

Figure: Learning of average noise parameters Σ̄ in a NoisyNet-DQN
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Average Noise Parameters

Let σwi denote the i th weight of a noisy layer. Then,

Σ̄ :=
1

N weights

∑
i

|σwi |

provides a measure of the stochasticity of the Noisy layer.
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Factorised vs. Independent Noise in A3C
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