Exploration-Exploitation Trade-off in Deep Reinforcement Learning Part 1

Georges Pantalos (pgeorges@ethz.ch)

April 2, 2019

Exploration-Exploitation trade-off

Figure: [UC Berkeley - CS188 Intro to AI]

Exploration-Exploitation trade-off

Figure: [researchgate.net]

Curiosity-driven Exploration by Self-supervised Prediction

D. Pathak, A. Efros, T. Darrell – UC Berkeley ICML, May 2017

Main idea of the paper

The agent receives rewards for finding something unexpected

• Objective: maximize cumulative reward $\sum_t r_t$ where

Definition:

curiosity $:= r_t^i$

Main idea of the paper

The agent receives rewards for finding something unexpected

• Objective: maximize cumulative reward $\sum_t r_t$ where

$$r_t = \underbrace{r_t^e}_{t} + \underbrace{r_t^i}_{t}$$

extrinsic intrinsic

Definition:

curiosity $:= r_t^i$

Main idea of the paper

The agent receives rewards for finding something unexpected

• Objective: maximize cumulative reward $\sum_t r_t$ where

$$r_t = \underbrace{r_t^e}_{t} + \underbrace{r_t^i}_{t}$$

extrinsic intrinsic

Definition:

curiosity := r_t^i

1. Super Mario Bros: 2D navigation

2. Viz Doom: 3D navigation

Games Tested

1. Super Mario Bros: 2D navigation

2. Viz Doom: 3D navigation

What are intrinsic rewards?

Extrinsic rewards are provided by the environment.

Intrinsic rewards encourage the agent to explore novel states.

What are intrinsic rewards?

Extrinsic rewards are provided by the environment.

Intrinsic rewards encourage the agent to explore novel states.

Settings investigated

1. Sparse extrinsic rewards:

2. Non existent extrinsic rewards:

3. Learn generalised skills that might be helpful in the future:

Settings investigated

1. Sparse extrinsic rewards:

2. Non existent extrinsic rewards:

3. Learn generalised skills that might be helpful in the future:

Settings investigated

- 1. Sparse extrinsic rewards:
- 2. Non existent extrinsic rewards:
- 3. Learn generalised skills that might be helpful in the future:

Architecture

At time t

 r_t^e extrinsic reward r_t^i intrinsic reward

Remember

Intrinsic reward = curiosity! And $r_t = r_t^e + r_t^i$

ICM = Intrinsic Curiosity Module

Let's look closer

 $\begin{array}{ll} \phi(\cdot) & \text{actual feature representation} \\ \hat{\phi}(\cdot) & \text{estimated feature representation} \end{array}$

Intrinsic Curiosity Module (ICM)

We have two networks

Intrinsic Curiosity Module (ICM)

Intrinsic Curiosity Module (ICM)

Learning $\phi(\cdot)$, *i.e.* training the inverse model

Train two sub-modules:

- 1. The first one encodes s_t into a feature vector $\phi(s_t)$
- 2. The **second** one predicts \hat{a}_t from $\phi(s_t)$ and $\phi(s_{t+1})$

Learning $\phi(\cdot)$, *i.e.* training the inverse model

Train two sub-modules:

- 1. The first one encodes s_t into a feature vector $\phi(s_t)$
- 2. The second one predicts \hat{a}_t from $\phi(s_t)$ and $\phi(s_{t+1})$

The Inverse Model

Learn function g (i.e. the inverse dynamics model) defined as:

$$\hat{a}_t = \mathbf{g}(s_t, s_{t+1}; \theta_I)$$

where the parameters θ_I are trained to optimize

 $\min_{\theta_I} L_I(\hat{a}_t, a_t)$

Implementation (2 submodules)

- 1. 4 convolution layers, each with 32 filters, stride of 2 and padding of 1. ELU is used after each convolution layer.
- 2. 2 fully connected layers (288 and 4 units resp.)

L_I is an arbitrary loss function

The Inverse Model

Learn function g (i.e. the inverse dynamics model) defined as:

$$\hat{a}_t = \mathbf{g}(s_t, s_{t+1}; \theta_I)$$

where the parameters θ_I are trained to optimize

 $\min_{\theta_I} L_I(\hat{a}_t, a_t)$

Implementation (2 submodules)

- 1. 4 convolution layers, each with 32 filters, stride of 2 and padding of 1. ELU is used after each convolution layer.
- 2. 2 fully connected layers (288 and 4 units resp.)

 L_I is an arbitrary loss function

Implementation of the Inverse Model

Learn function f (i.e. the forward dynamics model) defined as:

$$\hat{\phi}(s_{t+1}) = f(\phi(s_t), a_t; \theta_F)$$

where the parameters θ_F are trained to optimize

$$\min_{\theta_{F}} L_{F}\left(\phi\left(s_{t+1}\right), \hat{\phi}\left(s_{t+1}\right)\right)$$

Implementation

2 fully connected layers.

Here,
$$L_F = \frac{1}{2} \left\| \hat{\phi}\left(s_{t+1}\right) - \phi\left(s_{t+1}\right) \right\|_2^2$$
, *i.e.* least squares

A events that affect the agent
C events that can be controlled by the agent
what we want to model

- A events that **affect** the agent
 - events that can be **controlled** by the agent what we want to model

- A events that affect the agent
- C events that can be **controlled** by the agent

what we want to mode

A events that affect the agent
C events that can be controlled by the agent
what we want to model

- A events that affect the agent
- C events that can be **controlled** by the agent
 - what we want to model

Curiosity: « error in the agent's ability to predict the consequences of its own actions ».

$$r_{t}^{i} = \frac{\eta}{2} \left\| \hat{\phi}(s_{t+1}) - \phi(s_{t+1}) \right\|_{2}^{2} = \eta L_{F}$$

where $\eta > 0$ is a scaling factor.

Curiosity: « error in the agent's ability to predict the consequences of its own actions ».

$$\mathbf{r}_{t}^{i} = \frac{\eta}{2} \left\| \hat{\phi}\left(\mathbf{s}_{t+1} \right) - \phi\left(\mathbf{s}_{t+1} \right) \right\|_{2}^{2} = \eta \mathbf{L}_{F}$$

where $\eta > 0$ is a scaling factor.

Overall Optimisation Problem

Overall Optimisation Problem

Overall Optimisation Problem

Maximise Expected Cumulative Reward

Overall Optimisation Problem

Learn the Feature Representation

Overall Optimisation Problem

Minimise Curiosity

Overall Optimisation Problem

Remember

- Curiosity $= r_t^i = \eta L_F$
- Total reward at time t is $r_t = r_t^e + r_t^i$

Experimentation

Sparse Reward Setting

We compare 3 setups:

1. ICM + A3C: full algorithm which combines ICM with A3C

- 2. A3C: vanilla A3C with ε -greedy exploration
- 3. ICM-pixels + A3C: variant of ICM without the inverse model

We compare 3 setups:

- 1. ICM + A3C: full algorithm which combines ICM with A3C
- 2. A3C: vanilla A3C with ε -greedy exploration
- 3. ICM-pixels + A3C: variant of ICM without the inverse model

Sparse Reward Setting

We compare 3 setups:

1. ICM + A3C: full algorithm which combines ICM with A3C

- 2. A3C: vanilla A3C with ε -greedy exploration
- 3. ICM-pixels + A3C: variant of ICM without the inverse model

Performance

Curious A3C agents are superior in all cases

ICM-pixels < ICM because the rooms have different textures</p>

Performance

- Curious A3C agents are superior in all cases
- ICM-pixels < ICM because the rooms have different textures</p>

Robustness to Noise Inputs

Replace 40% of the input by white noise.

(a) Input snapshot in VizDoom

(b) Input w/ noise

Robustness to Noise Inputs

Figure: Results to noise input in the « sparse reward » setting

No Reward Setting

Figure: Random exploration

Figure: Curiosity driven exploration

> The agent now only survives so that he can explore more!

First time in literature that learning from pixels occurs without rewards!

- The agent now only survives so that he can explore more!
- First time in literature that learning from pixels occurs without rewards!

3 settings are investigated:

 $1. \ \mbox{Evaluate the learned policy as is}$

Use the policy learned in level 1 directly in level 2

Adapt the policy by fine-tuning with curiosity reward
 Adapt the policy by fine-tuning with extrinsic reward

3 settings are investigated:

- 1. Evaluate the learned policy as is
- 2. Adapt the policy by fine-tuning with curiosity reward

Fine-tune the policy learned in level 1 using intrinsic rewards also in level 2 $% \left({\left[{{{\rm{D}}_{\rm{T}}} \right]_{\rm{T}}} \right)_{\rm{T}}} \right)$

3. Adapt the policy by fine-tuning with extrinsic reward

3 settings are investigated:

- 1. Evaluate the learned policy as is
- 2. Adapt the policy by fine-tuning with curiosity reward

3. Adapt the policy by fine-tuning with extrinsic reward

Results showing generalisation

Figure: Test set of VizDoom in the « very sparse » reward case and fine-tuned on extrinsic rewards

https://www.youtube.com/watch?v=J3FHOyhUn3A

Noisy Networks for Exploration,

M. Fortunato, M. Azar, B. Piot et al. – Deepmind ICLR, Feb 2018

Entropy regularisation: entropy bonus to the loss function. ε-greedy:

Problem

Local perturbation methods

Heuristic Approaches for Exploration

Entropy regularisation: entropy bonus to the loss function.
 ε-greedy:

Problem

Local perturbation methods

Heuristic Approaches for Exploration

Entropy regularisation: entropy bonus to the loss function.
 ε-greedy:

Problem

Local perturbation methods

Problem

Small state-action spaces and linear function approximations

4. Intrinsic Motivation term : e.g. curiosity

Problems

Problem

Small state-action spaces and linear function approximations

4. Intrinsic Motivation term : e.g. curiosity

Problems

Problem

Small state-action spaces and linear function approximations

4. Intrinsic Motivation term : e.g. curiosity

Problems

Problem

Small state-action spaces and linear function approximations

4. Intrinsic Motivation term : e.g. curiosity

Problems

Linear layer:

y = wx + b

Corresponding noisy linear layer:

$$y := \underbrace{(\mu^w + \sigma^w \odot \varepsilon^w)}_w \times + \underbrace{\mu^b + \sigma^b \odot \varepsilon^b}_b$$

μ^w, μ^b, σ^w and σ^b are learnable
 ε^w and ε^b are noise RVs.

 $[\]odot$ denotes element-wise multiplication

Linear layer:

$$y = wx + b$$

Corresponding noisy linear layer:

$$y := \underbrace{(\mu^w + \sigma^w \odot \varepsilon^w)}_w x + \underbrace{\mu^b + \sigma^b \odot \varepsilon^b}_b$$

• μ^w , μ^b , σ^w and σ^b are learnable • ε^w and ε^b are noise RVs.

 $[\]odot$ denotes element-wise multiplication

Linear layer:

$$y = wx + b$$

Corresponding noisy linear layer:

$$\mathbf{y} := \underbrace{(\mu^{w} + \sigma^{w} \odot \varepsilon^{w})}_{w} \mathbf{x} + \underbrace{\mu^{b} + \sigma^{b} \odot \varepsilon^{b}}_{b}$$

 $[\]odot$ denotes element-wise multiplication

Linear layer:

$$y = wx + b$$

Corresponding noisy linear layer:

$$y := \underbrace{(\mu^w + \sigma^w \odot \varepsilon^w)}_w x + \underbrace{\mu^b + \sigma^b \odot \varepsilon^b}_b$$

•
$$\mu^w$$
, μ^b , σ^w and σ^b are learnable
• ε^w and ε^b are noise RVs.

 $[\]odot$ denotes element-wise multiplication

Graphical Representation of the noisy linear layer

$$y = wx + b$$

$$\downarrow$$

$$w = \mu^{w} + \sigma^{w} \odot \varepsilon^{w}$$

$$\downarrow$$

$$b = \mu^{b} + \sigma^{b} \odot \varepsilon^{b}$$

$$\downarrow$$

$$\chi$$

Dimensions

For *p* inputs and *q* outputs: $x \in \mathbb{R}^{p}$ $y, \mu^{b}, \sigma^{b}, \varepsilon^{b} \in \mathbb{R}^{q}$ $\mu^{w}, \sigma^{w}, \varepsilon^{w} \in \mathbb{R}^{q \times p}$ 1. Independent Gaussian Noise: Sample each variable $\varepsilon \sim \mathcal{N}(0, 1)$ for every weight in a layer independently.

$$\varepsilon^{w} = \begin{bmatrix} \varepsilon_{11}^{w} & \cdots & \varepsilon_{1p}^{w} \\ \vdots & \ddots & \vdots \\ \varepsilon_{q1}^{w} & \cdots & \varepsilon_{qp}^{w} \end{bmatrix} \text{ and } \varepsilon^{b} = \begin{bmatrix} \varepsilon_{1}^{b} \\ \vdots \\ \varepsilon_{p}^{b} \end{bmatrix}$$

For *p* inputs and *q* outputs, pq + q variables to samples.

Noise is completely uncorrelated

1. Independent Gaussian Noise: Sample each variable $\varepsilon \sim \mathcal{N}(0, 1)$ for every weight in a layer independently.

$$\varepsilon^{w} = \begin{bmatrix} \varepsilon_{11}^{w} & \cdots & \varepsilon_{1p}^{w} \\ \vdots & \ddots & \vdots \\ \varepsilon_{q1}^{w} & \cdots & \varepsilon_{qp}^{w} \end{bmatrix} \text{ and } \varepsilon^{b} = \begin{bmatrix} \varepsilon_{1}^{b} \\ \vdots \\ \varepsilon_{p}^{b} \end{bmatrix}$$

For p inputs and q outputs, pq + q variables to samples.

Noise is completely uncorrelated

1. Independent Gaussian Noise: Sample each variable $\varepsilon \sim \mathcal{N}(0, 1)$ for every weight in a layer independently.

$$\varepsilon^{w} = \begin{bmatrix} \varepsilon_{11}^{w} & \cdots & \varepsilon_{1p}^{w} \\ \vdots & \ddots & \vdots \\ \varepsilon_{q1}^{w} & \cdots & \varepsilon_{qp}^{w} \end{bmatrix} \text{ and } \varepsilon^{b} = \begin{bmatrix} \varepsilon_{1}^{b} \\ \vdots \\ \varepsilon_{p}^{b} \end{bmatrix}$$

For p inputs and q outputs, pq + q variables to samples.

Noise is completely uncorrelated

2. Factorised Gaussian Noise: Sample *p* variables $\varepsilon_i \sim \mathcal{N}(0, 1)$ and *q* variables $\varepsilon_j \sim \mathcal{N}(0, 1)$ independently.

$$\begin{cases} \varepsilon_{ij}^{w} = f(\varepsilon_{i}) f(\varepsilon_{j}) \\ \varepsilon_{j}^{b} = f(\varepsilon_{j}) \end{cases}$$

where $f(x) = \operatorname{sgn}(x)\sqrt{|x|}$

For p inputs and q outputs, p + q variables to sample.

Noise is correlated

2. Factorised Gaussian Noise: Sample *p* variables $\varepsilon_i \sim \mathcal{N}(0, 1)$ and *q* variables $\varepsilon_j \sim \mathcal{N}(0, 1)$ independently.

$$\begin{cases} \varepsilon_{ij}^{w} = f(\varepsilon_{i}) f(\varepsilon_{j}) \\ \varepsilon_{j}^{b} = f(\varepsilon_{j}) \end{cases}$$

where
$$f(x) = \operatorname{sgn}(x)\sqrt{|x|}$$

For p inputs and q outputs, p + q variables to sample.

Noise is correlated
2. Factorised Gaussian Noise: Sample *p* variables $\varepsilon_i \sim \mathcal{N}(0, 1)$ and *q* variables $\varepsilon_j \sim \mathcal{N}(0, 1)$ independently.

$$\begin{cases} \varepsilon_{ij}^{w} = f(\varepsilon_{i}) f(\varepsilon_{j}) \\ \varepsilon_{j}^{b} = f(\varepsilon_{j}) \end{cases}$$

where
$$f(x) = \operatorname{sgn}(x)\sqrt{|x|}$$

For p inputs and q outputs, p + q variables to sample.

Noise is correlated

Loss Function of a Noisy Network

Loss Function

$$\overline{L}(\zeta) = \mathop{\mathbb{E}}_{\varepsilon} \left[L(\theta) \right]$$

where
$$\zeta := (\mu, \Sigma)$$
 and $\theta := \mu + \Sigma \odot \varepsilon$.

Gradient of the Loss Function

$$\nabla \overline{L}(\zeta) = \nabla \mathop{\mathbb{E}}_{\varepsilon}[L(\theta)] = \mathop{\mathbb{E}}_{\varepsilon} \left[\nabla L(\mu + \Sigma \odot \varepsilon)\right] \stackrel{\mathsf{MC}}{\approx} \nabla L(\mu + \Sigma \odot \xi)$$

where ξ is sampled at each step of the optimisation.

 $[\]odot$ denotes element-wise multiplication

Loss Function of a Noisy Network

Loss Function

$$\overline{L}(\zeta) = \mathop{\mathbb{E}}_{\varepsilon} \left[L(\theta) \right]$$

where $\zeta := (\mu, \Sigma)$ and $\theta := \mu + \Sigma \odot \varepsilon$.

Gradient of the Loss Function

$$\nabla \overline{L}(\zeta) = \nabla \mathop{\mathbb{E}}_{\varepsilon}[L(\theta)] = \mathop{\mathbb{E}}_{\varepsilon} \left[\nabla L(\mu + \Sigma \odot \varepsilon)\right] \stackrel{\mathsf{MC}}{\approx} \nabla L(\mu + \Sigma \odot \xi)$$

where ξ is sampled at each step of the optimisation.

 $[\]odot$ denotes element-wise multiplication

Loss Function of a Noisy Network

Loss Function

$$\overline{L}(\zeta) = \mathop{\mathbb{E}}_{\varepsilon} \left[L(\theta) \right]$$

where $\zeta := (\mu, \Sigma)$ and $\theta := \mu + \Sigma \odot \varepsilon$.

Gradient of the Loss Function

$$\nabla \overline{L}(\zeta) = \nabla \mathop{\mathbb{E}}_{\varepsilon}[L(\theta)] = \mathop{\mathbb{E}}_{\varepsilon} \left[\nabla L(\mu + \Sigma \odot \varepsilon) \right] \stackrel{\mathsf{MC}}{\approx} \nabla L(\mu + \Sigma \odot \xi)$$

where ξ is sampled at each step of the optimisation.

 $[\]odot$ denotes element-wise multiplication

The changes made are:

- 1. ε -greedy no longer used. The policy **always** optimises the action-value function Q.
- 2. Fully connected layers of value network \rightarrow noisy network with **factorised** gaussian noise.

The changes made are:

- 1. ε -greedy no longer used. The policy **always** optimises the action-value function Q.
- 2. Fully connected layers of value network \rightarrow noisy network with **factorised** gaussian noise.

Loss Function of the NoisyNet DQN

Original DQN:

$$L(\theta) = \mathop{\mathbb{E}}_{(x,a,r,y)\sim D} \left[\left(r + \gamma \max_{b \in A} Q\left(y, b; \theta^{-}\right) - Q(x, a; \theta) \right)^{2} \right]$$

► *NoisyNet* DQN:

$$\overline{L}(\zeta) = \mathbb{E}_{\varepsilon,\varepsilon'} \left[\mathbb{E}_{(x,a,r,y)\sim D} \left[r + \gamma \max_{b \in A} Q\left(y, b, \varepsilon'; \zeta^{-}\right) - Q(x, a, \varepsilon; \zeta) \right]^2 \right]$$

Loss Function of the NoisyNet DQN

Original DQN:

$$L(\theta) = \mathbb{E}_{(x,a,r,y)\sim D}\left[\left(r + \gamma \max_{b \in A} Q\left(y, b; \theta^{-}\right) - Q(x, a; \theta)\right)^{2}\right]$$

NoisyNet DQN:

$$\overline{L}(\zeta) = \mathbb{E}_{\varepsilon,\varepsilon'} \left[\mathbb{E}_{(x,a,r,y)\sim D} \left[r + \gamma \max_{b \in A} Q\left(y, b, \varepsilon'; \zeta^{-}\right) - Q(x, a, \varepsilon; \zeta) \right]^2 \right]$$

NoisyNet Version of Dueling DQN

Original Dueling DQN:

$$L(\theta) = \mathbb{E}_{(x,a,r,y)\sim D} \left[\left(r + \gamma Q \left(y, b^*(y); \theta^- \right) - Q(x,a;\theta) \right)^2 \right]$$

s.t. $b^*(y) = \arg \max_{b \in \mathcal{A}} Q(y,b;\theta)$

NoisyNet Dueling DQN:

$$\overline{L}(\zeta) = \mathop{\mathbb{E}}_{\varepsilon,\varepsilon'} \left[\mathop{\mathbb{E}}_{(x,a,r,y)\sim D} \left[r + \gamma Q\left(y, b^*(y), \varepsilon'; \zeta^-\right) - Q(x, a, \varepsilon; \zeta) \right]^2 \right]$$

s.t. $b^*(y) = \arg \max_{b \in \mathcal{A}} Q\left(y, b(y), \varepsilon''; \zeta\right)$

NoisyNet Version of Dueling DQN

Original Dueling DQN:

$$L(\theta) = \mathbb{E}_{(x,a,r,y)\sim D} \left[\left(r + \gamma Q \left(y, b^*(y); \theta^- \right) - Q(x,a;\theta) \right)^2 \right]$$

s.t. $b^*(y) = \arg \max_{b \in \mathcal{A}} Q(y,b;\theta)$

NoisyNet Dueling DQN:

$$\overline{L}(\zeta) = \mathop{\mathbb{E}}_{\varepsilon,\varepsilon'} \left[\mathop{\mathbb{E}}_{(x,a,r,y)\sim D} \left[r + \gamma Q\left(y, b^*(y), \varepsilon'; \zeta^-\right) - Q(x, a, \varepsilon; \zeta) \right]^2 \right]$$

s.t. $b^*(y) = \arg \max_{b \in \mathcal{A}} Q\left(y, b(y), \varepsilon''; \zeta\right)$

The changes made are:

• the **entropy bonus** of the policy loss is removed:

$$\nabla_{\theta} L^{\pi}(\theta) = -\mathbb{E}^{\pi} \left[\sum_{i=0}^{k} \nabla_{\theta} \log \left(\pi \left(a_{t+i} | x_{t+i}; \theta \right) \right) A \left(x_{t+i}, a_{t+i}; \theta \right) \right. \\ \left. + \beta \sum_{i=0}^{k} \nabla_{\theta} H \left(\pi \left(\overline{\cdot | x_{t+i}; \theta} \right) \right) \right]$$

Fully connected layers of policy network \rightarrow noisy layers.

The changes made are:

• the entropy bonus of the policy loss is removed:

$$\nabla_{\theta} L^{\pi}(\theta) = -\mathbb{E}^{\pi} \left[\sum_{i=0}^{k} \nabla_{\theta} \log \left(\pi \left(a_{t+i} | x_{t+i}; \theta \right) \right) A \left(x_{t+i}, a_{t+i}; \theta \right) \right. \\ \left. + \beta \sum_{i=0}^{k} \nabla_{\theta} H \left(\pi \left(\overline{\cdot | x_{t+i}; \theta} \right) \right) \right]$$

Fully connected layers of policy network \rightarrow noisy layers.

• Human Normalised Score (HNS):

$$100 \times \frac{\text{Score}_{Agent} - \text{Score}_{Random}}{\text{Score}_{Human} - \text{Score}_{Random}}$$

- $HNS = 0 \rightarrow as \text{ good as random}$
- HNS = $100 \rightarrow$ human performance
- HNS $> 100 \rightarrow$ superhuman performance

Human Normalised Score (HNS):

$$100 \times \frac{\text{Score}_{\text{Agent}} - \text{Score}_{\text{Random}}}{\text{Score}_{\text{Human}} - \text{Score}_{\text{Random}}}$$

•
$$HNS = 0 \rightarrow as good as random$$

- HNS = $100 \rightarrow$ human performance
- HNS $> 100 \rightarrow$ superhuman performance

• Human Normalised Score (HNS):

$$100 \times \frac{\text{Score}_{Agent} - \text{Score}_{Random}}{\text{Score}_{Human} - \text{Score}_{Random}}$$

•
$$HNS = 0 \rightarrow as good as random$$

- HNS = $100 \rightarrow human$ performance
- HNS $> 100 \rightarrow$ superhuman performance

Human Normalised Score (HNS):

$$100 \times \frac{\text{Score}_{Agent} - \text{Score}_{Random}}{\text{Score}_{Human} - \text{Score}_{Random}}$$

- $HNS = 0 \rightarrow as \text{ good as random}$
- HNS = $100 \rightarrow human$ performance
- HNS $> 100 \rightarrow$ superhuman performance

Results

NoisyNets always produce superior performance in learning process.

Analysis of Learning in Noisy Layers

• $\overline{L}(\zeta)$ is a positive and continuous function of ζ .

Always exist a **deterministic** optimiser for it.

Hypothesis

Learn to **discard noise** entries by pushing σ^w and σ^b to 0.

Figure: Learning of average noise parameters $\bar{\Sigma}$ in a NoisyNet-DQN

Analysis of Learning in Noisy Layers

- $\overline{L}(\zeta)$ is a positive and continuous function of ζ .
- Always exist a deterministic optimiser for it.

Hypothesis

Learn to **discard noise** entries by pushing σ^w and σ^b to 0.

Figure: Learning of average noise parameters $\bar{\Sigma}$ in a NoisyNet-DQN

Analysis of Learning in Noisy Layers

- $\overline{L}(\zeta)$ is a positive and continuous function of ζ .
- Always exist a deterministic optimiser for it.

Hypothesis

Learn to **discard noise** entries by pushing σ^w and σ^b to 0.

Figure: Learning of average noise parameters $\bar{\Sigma}$ in a NoisyNet-DQN

References

Noisy Networks for Exploration M. Fortunato et al.

- Curiosity-driven Exploration by Self-supervised Prediction Deepak Pathak et al.
- https://pathak22.github.io/noreward-rl/
- Reinforcement Learning: An Introduction Richard S. Sutton, Andrew G. Barto
- - www.cis.upenn.edu/~cis519/fall2015/lectures/14_ ReinforcementLearning.pdf

An Introduction to Deep Reinforcement Learning Bellemare et al.

Let σ_i^w denote the *i*th weight of a noisy layer. Then,

$$ar{\Sigma} := rac{1}{oldsymbol{\mathcal{N}}_{ ext{weights}}} \sum_i |\sigma^w_i|$$

provides a measure of the stochasticity of the Noisy layer.

Factorised vs. Independent Noise in A3C

