Distributed Deep Reinforcement Learning

Lucia Liu

Distributed Prioritized Experience Replay

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, David Silver

Distributed Distributional Deterministic Policy Gradients

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva TB, Alistair Muldal, Nicolas Heess, Timothy Lillicrap

Approaches to Distributed Architecture

 Distribution through parallelizing computation of gradients

• Distribution of **generation and selection** of experience data

 Deep Deterministic Policy Gradient (DDPG)

Prioritized Experience Replay

- Proportional
- Rank-based

Schaul et al. in ICLR 2016: Prioritized Experience Replay

Distributed Prioritized Experience Replay (Ape-X)

Actor

Algorithm 1 Actor							
1: procedure $ACTOR(B, T)$		▷ Run agent in environment instance, storing experiences.					
2:	$\theta_0 \leftarrow \text{Learner.Parameters}()$	Remote call to obtain latest network parameters.					
3:	$s_0 \leftarrow \text{environment.Initialize}()$	▷ Get initial state from environment.					
4:	for $t = 1$ to T do						
5:	$a_{t-1} \leftarrow \pi_{\theta_{t-1}}(s_{t-1})$	Select an action using the current policy.					
6:	$(r_t, \gamma_t, s_t) \leftarrow \text{environment.Step}(a_t$	(-1) \triangleright Apply the action in the environment.					
7:	LOCALBUFFER.ADD($(s_{t-1}, a_{t-1}, r_t, \gamma)$	(r_t) > Add data to local buffer.					
8:	if LOCALBUFFER.SIZE() $\geq B$ then	\triangleright In a background thread, periodically send data to replay.					
9:	$\tau \leftarrow \text{localBuffer.Get}(B)$	▷ Get buffered data (e.g. batch of multi-step transitions).					
10:	$p \leftarrow \text{Compute} \text{Priorities}(\tau) \triangleright \phi$	Calculate priorities for experience (e.g. absolute TD error).					
11:	$\texttt{REPLAY}.\texttt{ADD}(\tau,p)$	Remote call to add experience to replay memory.					
12:	end if						
13:	Periodically($\theta_t \leftarrow \text{learner.Para}$	METERS()) ▷ Obtain latest network parameters.					
14:	end for						
15: end procedure							

Learner

Algorithm 2 Learner								
1: procedure LEARNER(T)	Update network using batches sampled from memory							
2: $\theta_0 \leftarrow \text{INITIALIZENETWORK}()$								
3: for $t = 1$ to T do	\triangleright Update the parameters T times.							
4: $id, \tau \leftarrow \text{REPLAY.SAMPLE}() \triangleright \text{Sample}()$	le a prioritized batch of transitions (in a background thread).							
5: $l_t \leftarrow \text{COMPUTELOSS}(\tau; \theta_t)$	▷ Apply learning rule; e.g. double Q-learning or DDPG							
6: $\theta_{t+1} \leftarrow \text{UPDATEPARAMETERS}(l_t; \theta_t)$								
7: $p \leftarrow \text{COMPUTEPRIORITIES}() \triangleright$	Calculate priorities for experience, (e.g. absolute TD error).							
8: REPLAY. SETPRIORITY (id, p)	Remote call to update priorities.							
9: PERIODICALLY (REPLAY. REMOVE TO	FIT()) ▷ Remove old experience from replay memory.							
10: end for								
11: end procedure								

Advantages

Shared, centralized replay memory

High priority data discovered by any actor benefits whole system

Ape-X DQN

• Loss: $l_t(\theta) = \frac{1}{2}(G_t - q(S_t, A_t, \theta))^2$

• Behavior policy: Different policy for each actor, ε-greedy

Ape-X DPG

- Actor policy network + Q-network
- Q-network:
 - Action-value estimate $q(s,a,\psi)$

• Loss:
$$l_t(\psi) = rac{1}{2}(G_t - q(S_t, A_t, \psi))^2$$

- Policy network:
 - Action $A_t = \pi(S_t, \phi)$
 - Gradient $\nabla_{\phi}q(S_t, \pi(S_t, \phi), \psi)$

$$G_t = \underbrace{R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n q(S_{t+n}, \pi(S_{t+n}, \phi^-), \psi^-)}_{\text{multi-step return}}.$$

Blue: Ape-X DQN Orange: A3C Purple: Rainbow Green: DQN

Algorithm	Training	Environment	Resources	Median	Median
	Time	Frames	(per game)	(no-op starts)	(human starts)
Ape-X DQN	5 days	22800M	376 cores, 1 GPU ^a	434%	358%
Rainbow	10 days	200M	1 GPU	223%	153%
Distributional (C51)	10 days	200M	1 GPU	178%	125%
A3C	4 days		16 cores		117%
Prioritized Dueling	9.5 days	200M	1 GPU	172%	115%
DQN	9.5 days	200M	1 GPU	79%	68%
Gorila DQN ^c	\sim 4 days		unknown ^b	96%	78%
UNREAL ^d		250M	16 cores	331% ^d	250% ^d

1

Results: Continuous Control

Distributed Distributional Deterministic Policy Gradients

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva TB, Alistair Muldal, Nicolas Heess, Timothy Lillicrap

Distributed Distributional DDPG (D4PG)

• Based on DDPG algorithm with 4 extensions

Distributional critic

- Distributional update with random variable $Z_{\pi} \rightarrow Q_{\pi}(x, a) = E[Z_{\pi}(x, a)]$
- Distributional Bellman operator

$$(\mathcal{T}_{\pi} Z)(\mathbf{x}, \mathbf{a}) = r(\mathbf{x}, \mathbf{a}) + \gamma \mathbb{E} [Z(\mathbf{x}', \pi(\mathbf{x}')) | \mathbf{x}, \mathbf{a}]$$

• Loss

$$L(w) = \mathbb{E}_{\rho} \left[d(\mathcal{T}_{\pi_{\theta'}} Z_{w'}(\mathbf{x}, \mathbf{a}), Z_w(\mathbf{x}, \mathbf{a})) \right]$$

• Gradient for actor update $\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\rho} \Big[\nabla_{\theta} \pi_{\theta}(\mathbf{x}) \nabla_{\mathbf{a}} Q_{w}(\mathbf{x}, \mathbf{a}) \big|_{\mathbf{a} = \pi_{\theta}(\mathbf{x})} \Big],$ $= \mathbb{E}_{\rho} \Big[\nabla_{\theta} \pi_{\theta}(\mathbf{x}) \mathbb{E} [\nabla_{\mathbf{a}} Z_{w}(\mathbf{x}, \mathbf{a})] \big|_{\mathbf{a} = \pi_{\theta}(\mathbf{x})} \Big].$

Bellemare et al. ICML 2017. A distributional perspective on reinforcement learning.

N-step returns

• Replacing Bellman operator with

$$(\mathcal{T}_{\pi}^{N}Q)(\mathbf{x}_{0},\mathbf{a}_{0}) = r(\mathbf{x}_{0},\mathbf{a}_{0}) + \mathbb{E}\Big[\sum_{n=1}^{N-1} \gamma^{n}r(\mathbf{x}_{n},\mathbf{a}_{n}) + \gamma^{N}Q(\mathbf{x}_{N},\pi(\mathbf{x}_{N})) \,\big|\,\mathbf{x}_{0},\mathbf{a}_{0}\Big]$$

Architecture variants

critic

torso

a

Results: Standard Control

Results: Parkour

Video

Thank you!

References

- *Horgan et al.2018.* Distributed prioritized experience replay.
- Barth-Maron et al. 2018. Distributed distributional deterministic policy gradients.
- Dean et al. 2012. Large scale distributed deep networks.
- Schaul et al. 2016. *Prioritized experience replay.*
- Van Hasselt et al. 2016. Deep reinforcement learning with double Q-learning.
- Mnih et al. 2016. Asynchronous methods for deep reinforcement learning.
- Wang et al. 2016. Dueling network architectures for deep reinforcement learning.
- Mnih et al. 2015. *Human-level control through deep reinforcement learning.*
- Bellemare et al. 2017. A distributional perspective on reinforcement learning.