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The basic idea is to start small, learn easier aspects of the task or easier 

sub-tasks, and then gradually increase the difficulty level. 

Bengio et al., 2009

2

Curriculum Learning

Crawling Walking
Skating



||

When Alternatives and Related Concepts
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Curriculum Learning in Reinforcement Learning
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MazeBase Environment
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Idea: Asymmetric Self-Play

A lice B ob
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Idea: Asymmetric Self-Play

A lice B ob

A

STOP 

1. Propose Task 2. Solve Task

B
State s’

Assumption:

Resettable or Reversible Environment
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Key Idea Curricula: Internal Reward

Encourage Alice to push Bob past 

his comfort zone but not give him 

impossible tasks

Automatic Curriculum

scaling constant: 

hyperparameter
# steps Bob

limit: 

hyperparameter
# steps Alice
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→ optimal behaviour: solve task as fast as possible

→ optimal behaviour: find simplest task Bob cannot complete
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Key Idea Curricula: Internal Reward

Encourage Alice to push Bob past 

his comfort zone but not give him 

impossible tasks

Automatic Curricula
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Idea: Asymmetric Self-Play

A lice B ob

A

STOP 

1. Propose Task 2. Solve Task

B
State s’

What about the 

original Target Task? 
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Idea: Application to Target Task

B ob

B
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Framework: Putting Everything Together
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Framework: Putting Everything Together
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1. Propose Task

2. Solve Task
A lice B ob
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Framework: Putting Everything Together
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1. Propose Task

2. Solve Task
A lice B ob

Internal Reward
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Framework: Putting Everything Together
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1. Propose Task

2. Solve Task
A lice B ob

Internal Reward

(e.g. Policy Gradient with Baseline, TRPO, …)
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Framework: Putting Everything Together
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A lice B ob

Internal Reward

(e.g. Policy Gradient with Baseline, TRPO, …)

B ob
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Discrete State Space

▪ Long Hallway

▪ MazeBase → Focus

Continuous State Space

▪ Mountain Car

▪ Swimmer Gather → Focus

▪ Build Marine Units Mini Game in StarCraft
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Experiments
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Experiments: MazeBase

Interaction with 2 Objects

Interaction with 1 Object

Interaction with 3 Objects

Objects:

Self-Play (Repeat):
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Experiments: Swimmer Gather
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Phase: Initialization
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Experiments: Swimmer Gather

Target Task RewardAlice: Difficulty Task Self-Play RewardAlice: Position
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Phase: Alice better than Bob
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Experiments: Swimmer Gather

Target Task RewardDifficulty Task Alice Self-Play RewardAlice: Position
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Phase: Bob overpowers Alice → Alice gives up
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Experiments: Swimmer Gather

Target Task RewardDifficulty Task Alice Self-Play RewardAlice: Position



||

Phase: Alice can’t recover
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Experiments: Swimmer Gather

Target Task RewardDifficulty Task Alice Self-Play RewardAlice: Position
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▪ Meta Exploration for Alice: Single Hardest Task vs All Hard Tasks

▪ Performance in Continuous Action Spaces   (Florensa et al. 2017)

▪ Effect of Meta Exploration enhanced when using a unimodal Gaussian Distribution to 

parametrize Action Space → Alice converges to moving into single direction

▪ Reward Function of Alice often Sparse (Florensa et al. 2017)

▪ If Bob outperforms Alice:  → Alice receives 0 reward 

→ Alice gives up
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Potential Problems
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Asymmetric Self-Play: Follow Up Work

▪ Learning Goal Embeddings via Self-Play for Hierarchical RL

(Sukhbaatar et al. 2018)

▪ Reverse Curriculum Generation for Reinforcement Learning 

(Florensa et al. 2017)
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Reverse Curriculum Generation for Reinforcement Learning

Carlos Florensa, David Held, Markus Wulfmeier and Pieter Abbeel
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Starting State Distribution pi at each Iteration i

Good Starting State 𝒔 ∈ ℝ𝒅 ?
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… in goal-oriented environments, a strong learning signal is obtained when 

training on start states s ∼ ρi from where the agent reaches the goal sometimes, 

but not always.

Florensa et al. 2017

How to find such states at 

each iteration automatically?
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▪ Idea 1.1 Select Starting States Uniform at Random

▪ Idea 1.2 Select Starting States Uniform at Random

+ Estimate P(success)

▪ Idea 2.1 Sample feasible States Nearby pi-1

▪ Idea 2.2 Sample feasible States Nearby pi-1

+ Keep only Good States after Policy Training

Starting State Distribution pi at each Iteration i

Good Starting State 𝒔 ∈ ℝ𝒅 ?
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Reverse Curriculum Generation
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Starting State Distribution pi – Original pstart

START

Original Starting State Distribution 𝑝𝑠𝑡𝑎𝑟𝑡 = 𝑠𝑡𝑎𝑟𝑡
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Starting State Distribution pi – Original pstart

START

Original Starting State Distribution 𝑝𝑠𝑡𝑎𝑟𝑡 = 𝑠𝑡𝑎𝑟𝑡
𝑝1 = { }
𝑝2 =
𝑝3 = { }
𝑝4 = { }
𝑝5 = { }
𝑝6 = { }
𝑝7 = 𝑠𝑡𝑎𝑟𝑡 ∈ 𝑝7

Optimal Policy under start distribution pi is also optimal under 

any start distribution pstart as long as their support coincide.
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▪ Reset Agent into any Starting State

▪ Must know at least one Goal State (Goal Oriented Task)

▪ Environment without Irreversibilities
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Assumptions

state?

START
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Policy Training



|| 34

Policy Training

init
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Policy Training

start states 

distribution

init
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Policy Training

start states 

distribution

(e.g. TRPO)

init
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too easy

adequate level

too hard
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Policy Training

start states 

distribution

(e.g. TRPO)

init
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Point – Mass Maze Ant Maze Ring on Peg Key Insertion

→ Focus → Focus
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Experiments
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Experiments: Ant Maze

Start States: Reverse Curriculum

Start States: Uniform Sampling (Baseline)

Start States: Reverse Curriculum Ablation 

(without selecting good starts)

Asymmetric Self-Play
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Experiments: Key Insertion

Start States: Reverse Curriculum

Start States: Reverse Curriculum Ablation 

(without selecting good starts)

Start States: Uniform Sampling (Baseline)
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▪ Starting State Distribution evolves uniformly around Goal State

original starting states of task

→ cannot incorporate prior information 
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Potential Problems

Ideal “Wasted” Exploration

prior
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Potential Problems

▪ Uniform Exploration around Goal State
→Backplay (Resnick et al. 2018)

Assumptions

▪ Reset Agent into any Starting State
→ Leave no Trace: Learning to Reset for Safe and Autonomous RL 

(Eysenbach et al. 2017)

▪ Must know at least one Goal State 
→Unsupervised Learning of Goal Spaces for intrinsically motivated goal exploration 

(Péré et al. 2018)

▪ Environment without Irreversibilities
→Backplay (Resnick et al. 2018) 42

Reverse Curriculum: Follow Up Work

state?

START
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Intrinsic Motivation and Automatic Curricula 

via Asymmetric Self-Play
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Conclusion

+ Conceptually Simple and Elegant

+ Automatic Curriculum (only few hyperparameter)

+ General Framework (exploration bonus)

- Results not super impressive

- Bob can overpower Alice

- Continuous Action Space

- Reversibility Assumption

- Uniform Exploration around Goal State

Reverse Curriculum Generation for 

Reinforcement Learning
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Reverse Curriculum Generation for 

Reinforcement Learning (Florensa et al. 2017)

Idea

Algorithm

Experiments

Problems

Curriculum Learning (Bengio et al. 2009)

Intrinsic Motivation and Automatic Curricula via 

Asymmetric Self-Play (Sukhbaatar et al. 2017)

Idea

Algorithm

Experiments

Problems

- Backplay (Resnick et al. 2018)

- Leave no Trace (Eysenbach et al. 2017)

- Learning of Goal Spaces (Péré et al. 2018)

- Learning Goal Embeddings via Self-Play for Hierarchical RL

(Sukhbaatar et al. 2018)
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Backup Slides
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Training Scheme

▪ Use Self-Play to learn Goal Embedding E

(Transform State to Goal) 

▪ Introduce 3rd Actor: Charlie

▪ Charlie responsible for high level policy in HRL

▪ Charlie uses learned embeddings to 

communicate task to Bob

▪ Bob responsible for low level policy

Adjustments Self-Play Phase

▪ number of steps taken by Alice and Bob are 

fixed to TA and TB respectively

▪ break episodes into multiple shorter 

segments (if Bob succeeds, Alice continues 

from last position instead of start)

➔ more exploration, while keeping Bob’s policy 

manageable for Charlie

▪ 0/1 reward for Bob (instead of time)

▪ entropy regularization in loss
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Learning Goal Embeddings via Self-Play for Hierarchical RL

(Sukhbaatar et al. 2018)
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One Good Enough Demonstration Curriculum of Starting States
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Backplay

(Resnick et al. 2018)
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Learn both Forward and Reset Policy Similarity to Reverse Curriculum Learning
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Leave no Trace: Learning to Reset for Safe and Autonomous RL 

(Eysenbach et al. 2017)

Start

𝜋𝑓𝑜𝑟𝑤𝑎𝑟𝑑

State s

𝜋𝑟𝑒𝑠𝑒𝑡

𝑠𝑎𝑚𝑝𝑙𝑒𝑁𝑒𝑎𝑟𝑏𝑦

State s

𝜋𝑔𝑜𝑎𝑙
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2-stage approach

▪ Perceptual Learning Stage:

Deep learning algorithms use passive raw sensor observations of world changes to learn 

corresponding latent space

▪ Goal Exploration Stage:

Sampling goals in this latent space

Unsupervised Learning of Goal Spaces for intrinsically motivated 

goal exploration  (Péré et al. 2018)
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▪ Part of the reason that Asymmetric Self-Play gets stuck in a local optimum is that 

“Alice” is represented with a unimodal Gaussian distribution, which is a 

common representation for policies in continuous action spaces. Thus Alice’s 

policy tends to converge to moving in a single direction. In the original paper, 

this problem is somewhat mitigated by using a discrete action space, in which 

a multi-modal distribution for Alice can be maintained. However, even in 

such a case, the authors of the original paper also observed that Alice tends to 

converge to a local optimum.

Asymmetric Self-Play in a Continuous Action Space

(Florensa et al. 2017)
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