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Curriculum Learning
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&6 The basic idea is to start small, learn easier aspects of the task or easier
sub-tasks, and then gradually increase the difficulty level.

Bengio et al., 2009
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ldea: Asymmetric Self-Play
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Key Idea Curricula: Internal Reward
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Key Idea Curricula: Internal Reward
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ldea: Asymmetric Self-Play

1. Propose Task 2. Solve Task
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Idea: Application to Target Task
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Framework: Putting Everything Together

Function SelfPlayEpisode (T Ajice, TBobs S0):

Function TargetTaskEpisode(mpp, So)
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Framework: Putting Everything Together

Function SelfPlayEpisode (7T Ajice; TBobs S0):
s’ t atice < proposeTask(m atice, So)
tBob < solveTask(mwpgop, S0, ")
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Framework: Putting Everything Together

n " 1. Propose Task

" AlE ﬁ]ob 2. Solve Task

Internal Reward
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Framework: Putting Everything Together

n " 1. Propose Task

" AlE ﬁ]ob 2. Solve Task

Internal Reward

b 4

T Alice < updatePOliCy(ﬁAlicea RAlice)

End Function

TBob — updatePolicy(m oy, RBob) (e.g. Policy Gradient with Baseline, TRPO, ...
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Framework: Putting Everything Together
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Experiments

Discrete State Space Continuous State Space
= Long Hallway = Mountain Car -
- \@a/—
[
= MazeBase - Focus =  Swimmer Gather - Focus

mQ)

P = Build Marine Units Mini Game in StarCraft




Experiments: MazeBase
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Experiments:

Swimmer Gather
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Experiments: Swimmer Gather

Phase: Initialization

Alice: Position Alice: Difficulty Task Self-Play Reward Target Task Reward

2 . 100 1
L ] - Y .
1.5 : : : : : : :
anf-- WS ™
i ceiiet . @ T : o 06
; 5 o : 3
0.5F- i et E [ | T PP PR % r_'|"'\ EU.'I
= = 1| W
0 -.Ii : o P | o | E B
_oslo Dot weangs oL B | O e R LT CTT T PETPITPPIIS: SPRPP N  SIIIE E s e RSCCt LLECIEERTPRL CPPPIPPPPR FPPCIEEPPE 5
: < | | £ Doz
e |/ - Alice iy
: : : : : Bob
= - 0 . . - 15 - : ol
- -1 ] 1 1] 200 400 B0 1000 ) 20 a0 B a00 100K} ] ] 200 I B0 1000
lteration [teration lteration

lteration 1-25



Experiments: Swimmer Gather

Phase: Alice better than Bob
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Experiments: Swimmer Gather

Phase: Bob overpowers Alice = Alice gives up
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Experiments: Swimmer Gather

Phase: Alice can’t recover
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Potential Problems

= Meta Exploration for Alice: Single Hardest Task vs All Hard Tasks
oA
= Performance in Continuous Action Spaces (rlorensaet al. 2017)
= Effect of Meta Exploration enhanced when using a unimodal Gaussian Distribution to
parametrize Action Space - Alice converges to moving into single direction
= Reward Function of Alice often Sparse iorensactal 2017) ] __2.,'_ N Jwﬂ i
I [ 0 S I W Y DTN
Raice = ¥ Max(0, tpop — Laice ) f l s i
= If Bob outperforms Alice: - Alice receives 0 reward :w . I I & . R o [T
9 Allce glves up ’ = ‘?toeratlcfnm - N 0 Nerion ™
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Asymmetric Self-Play: Follow Up Work

Florensa et al. (2017)

cited by 52

Asymmetric Self-Play
Sukhbaatar et al. (2017)
cited by 62

= Learning Goal Embeddings via Self-Play for Hierarchical RL
(Sukhbaatar et al. 2018)
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Self-play pre-training Fine-tuning on target task

Sukhbaatar et al. (2018)
cited by 0

= Reverse Curriculum Generation for Reinforcement Learning
(Florensa et al. 2017)



Reverse Curriculum Generation for Reinforcement Learning

Carlos Florensa, David Held, Markus Wulfmeier and Pieter Abbeel




Starting State Distribution p; at each Iteration |
Good Starting State s € R% ?

E& ...in goal-oriented environments, a strong learning signal is obtained when
training on start states s ~ p, from where the agent reaches the goal sometimes,
but not always.

Florensa et al. 2017

How to find such states at

each Iteration automatically?

28



Starting State Distribution p; at each Iteration |
Good Starting State s € R% ?

= |deal.l Select Starting States Uniform at Random

= |dea 1.2 Select Starting States Uniform at Random
+ Estimate P(success)
= |dea 2.1 Sample feasible States Nearby p; ;

Q@ @
o <l

Reverse Curriculum Generation

= |dea 2.2 Sample feasible States Nearby p;., ~@/ Z
+ Keep only Good States after Policy Training




Starting State Distribution p;— Original pg .

START |
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Original Starting State Distribution p, ... = {start}
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Starting State Distribution p;— Original pg .

Original Starting State Distribution p, ... = {start}

pr=1{"}

p, ={" 1}

p; ={" &}
p,={" & HH}
ps ={" HHE N}

p.={NmEEEn
p,={" EENEEN} start €p,

Optimal Policy under start distribution p; is also optimal under
any start distribution p.,: as long as their support coincide.
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Assumptions

= Reset Agent into any Starting State |44 -

= Must know at least one Goal State (Goal Oriented Task) ! state?

= Environment without Irreversibilities st} ¢=

4




Policy Training

startsolg < [87]

starts, rews < [s9], [1]

for: < 1to [ter do

starts < SampleNearby(starts, Nyew)
starts.append[sample(startsolq, Nowg)]

pi < Unif(starts)

i, Tews < train_pol(p;, mi_1)

starts < select(starts, rews, Rmin, Rmax)
startsqyq.append|starts]

end




Policy Training

startsolg < [87] @ | init
starts, rews < [s9], [1]
for: < 1to [ter do




Policy Training

starts < SampleNearby(starts, Nyew)
starts.append[sample(startsqq, Noia)]
pi < Unif(starts)

He

(1P
)

init

start states

,_9 distribution
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Policy Training

init

He

start states

,_) distribution

(1P
D

rews < train_pol(p;, mi—_1) (e.g. TRPO)




Policy Training

init

start states

__) distribution

(1P
D

(e.g. TRPO)
too easy X

starts < select(starts, rews, Ryin, Rmax)
starts.q.append|starts] adequate level </
too hard X




Experiments

Key Insertion

Ring on Peg

Point — Mass Maze

- Focus

Ant Maze
- Focus
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Experiments: Ant Maze
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Experiments: Key Insertion
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Potential Problems

= Starting State Distribution evolves uniformly around Goal State
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Reverse Curriculum: Follow Up Work

Reverse Curriculum

Florensa et al. (2017)
cited by 52

cited by 9

nggéb?ltﬁl. (2018)

Potential Problems

= Uniform Exploration around Goal State  x{{{ @}
- Backplay (Resnick et al. 2018) NI

Resnick et al. (2018)
cited by 8

.......

Assumptions o
» Reset Agent into any Starting State 44 am

— Leave no Trace: Learning to Reset for Safe and Autonomous RL
(Eysenbach et al. 2017)

= Must know at least one Goal State ! state?
- Unsupervised Learning of Goal Spaces for intrinsically motivated goal exploration

(Péré et al. 2018)
- L] M agm . - -
= Environment without Irreversibilities s f =

- Backplay (Resnick et al. 2018) @

Eysenbach et al. (2017)



Conclusion
Intrinsic Motivation and Automatic Curricula Reverse Curriculum Generation for
via Asymmetric Self-Play Reinforcement Learning

) % I
@\ icc Propose Task o Solve Task | |
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— 5 State " —
|" s o= g Q Q . e -
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1 > ’

+ Conceptually Simple and Elegant

+ Automatic Curriculum (only few hyperparameter)
+ General Framework (exploration bonus)

Q)

 im

- Results not super impressive - Reversibility Assumption

- Bob can overpower Alice - Uniform Exploration around Goal State
- Continuous Action Space




Curriculum Learning (Bengio et al. 2009)

o A X

Reverse Curriculum Generation for
Reinforcement Learning (Florensa et al. 2017)
ldea

Intrinsic Motivation and Automatic Curricula via
Asymmetric Self-Play (Sukhbaatar et al. 2017)
Idea 8 s

Nice Propose Task " oHs Solve Task

100

& State _:" |
Q |
4

a- | 8

|

Algorithm Algorithm

Experiments Experiments

Problems A Problems

- Backplay (Resnick et al. 2018)
- Leave no Trace (Eysenbach et al. 2017)

‘ - Learning Goal Embeddings via Self-Play for Hierarchical RL
- Learning of Goal Spaces (Péré et al. 2018)

(Sukhbaatar et al. 2018)
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Learning Goal Embeddings via Self-Play for Hierarchical RL
(Sukhbaatar et al. 2018)

Training Scheme

/ Internal reward: 0/1 \ / . External reward -—
at it ap i ’ at i At L Qi
i .{ Bob .| Bb | .| Bob | .| Bob |
g i g
H E —I Charlie
X
kSO S}‘A StB S / Qt St41 St+T,.—1 /
Self-play pre-training Fine-tuning on target task

Use Self-Play to learn Goal Embedding E
(Transform State to Goal)

Introduce 3 Actor: Charlie
= Charlie responsible for high level policy in HRL

= Charlie uses learned embeddings to
communicate task to Bob

= Bob responsible for low level policy

Adjustments Self-Play Phase

= number of steps taken by Alice and Bob are
fixed to T, and T respectively

= break episodes into multiple shorter
segments (if Bob succeeds, Alice continues
from last position instead of start)

=» more exploration, while keeping Bob’s policy
manageable for Charlie

= (/1 reward for Bob (instead of time)
= entropy regularization in loss
La=Eup p,[~Ra— BH(ma(s"))]
Lp =Eqp.r,[—BB] + aE,a Nm[—log(ﬂg(af\sf))].

[ | 46



Backplay
(Resnick et al. 2018)

One Good Enough Demonstration Curriculum of Starting States

a— |
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Leave no Trace: Learning to Reset for Safe and Autonomous RL
(Eysenbach et al. 2017)

Learn both Forward and Reset Policy Similarity to Reverse Curriculum Learning
State s State s
TMyeset T[goal
Tforward sampleNearby

Start !




Unsupervised Learning of Goal Spaces for intrinsically motivated
goal exploration (Peére et al. 2018)

2-stage approach

= Perceptual Learning Stage:

Deep learning algorithms use passive raw sensor observations of world changes to learn
corresponding latent space

= Goal Exploration Stage:
Sampling goals in this latent space
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Asymmetric Self-Play in a Continuous Action Space
(Florensa et al. 2017)

= Part of the reason that Asymmetric Self-Play gets stuck in a local optimum is that
“Alice” is represented with a unimodal Gaussian distribution, which is a
common representation for policies in continuous action spaces. Thus Alice’s
policy tends to converge to moving in a single direction. In the original paper,
this problem is somewhat mitigated by using a discrete action space, in which
a multi-modal distribution for Alice can be maintained. However, even in
such a case, the authors of the original paper also observed that Alice tends to

converge to a local optimum.
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