

Curriculum Learning Nicolas Küchler

Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play Sainbayar Sukhbaatar, Ilya Kostrikov, Arthur Szlam and Rob Fergus (2017)

Reverse Curriculum Generation for Reinforcement Learning Carlos Florensa, David Held, Markus Wulfmeier and Pieter Abbeel (2017)

Curriculum Learning

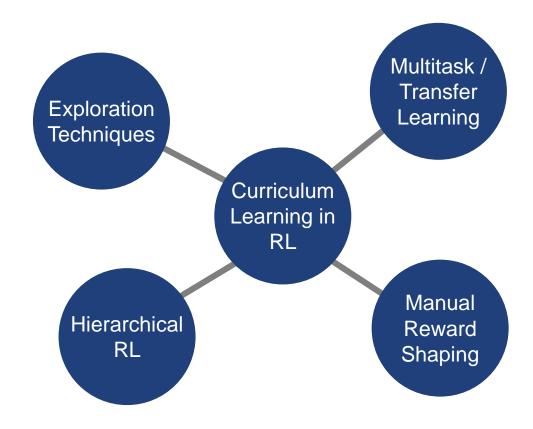
C The basic idea is to start small, learn easier aspects of the task or easier sub-tasks, and then gradually increase the difficulty level. Bengio et al., 2009

Curriculum Learning in Reinforcement Learning

When

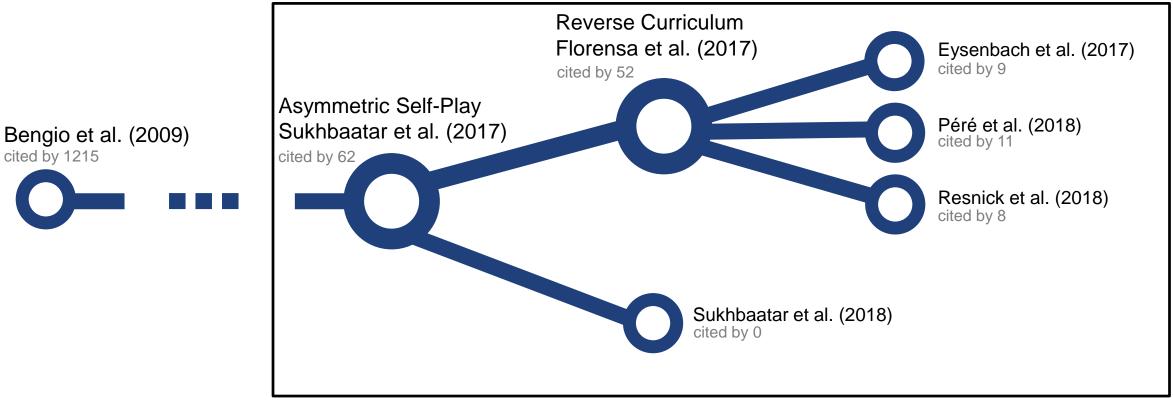
Hard Tasks with Sparse Rewards

Alternatives and Related Concepts



Research – Curriculum Learning

Deep Reinforcement Learning

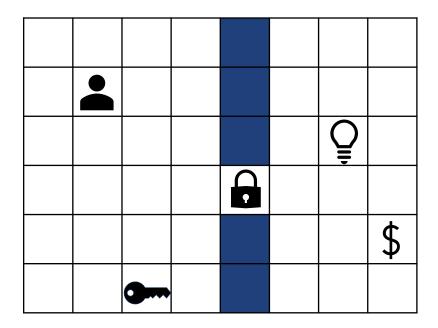


Source Citations: Google Scholar 24.04.2019

Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play

Sainbayar Sukhbaatar, Ilya Kostrikov, Arthur Szlam and Rob Fergus

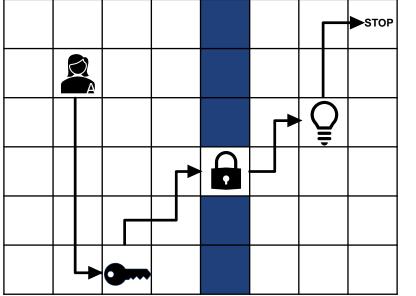
MazeBase Environment

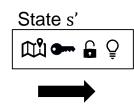


Idea: Asymmetric Self-Play

1. Propose Task

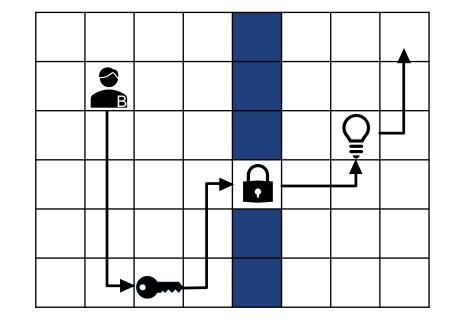
$$a_A = \pi_A(s_t, s_0)$$





2. Solve Task

$$a_B = \pi_B(s_t, s')$$



| 7

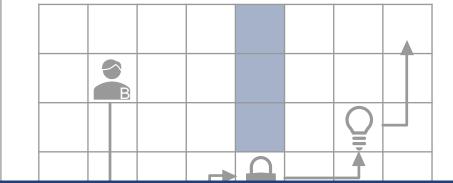
Idea: Asymmetric Self-Play

1. Propose Task

Alice
$$a_A = \pi_A(s_t, s_0)$$

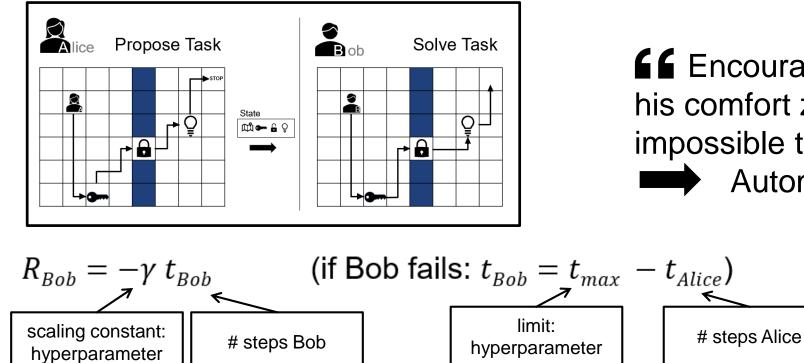
2. Solve Task

$$a_B = \pi_B(s_t, s')$$



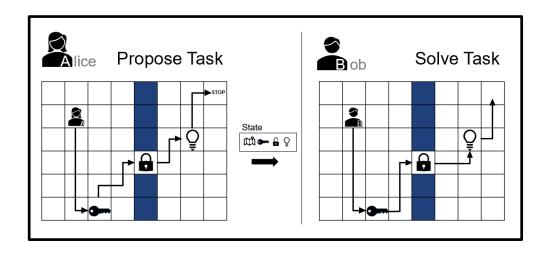
Assumption: Resettable or Reversible Environment

Key Idea Curricula: Internal Reward



Encourage Alice to push Bob past
 his comfort zone but not give him
 impossible tasks
 Automatic Curriculum

Key Idea Curricula: Internal Reward



Encourage Alice to push Bob past
 his comfort zone but not give him
 impossible tasks
 Automatic Curricula

 $R_{Bob} = -\gamma t_{Bob}$ (if Bob fails: $t_{Bob} = t_{max} - t_{Alice}$) \rightarrow optimal behaviour: solve task as fast as possible

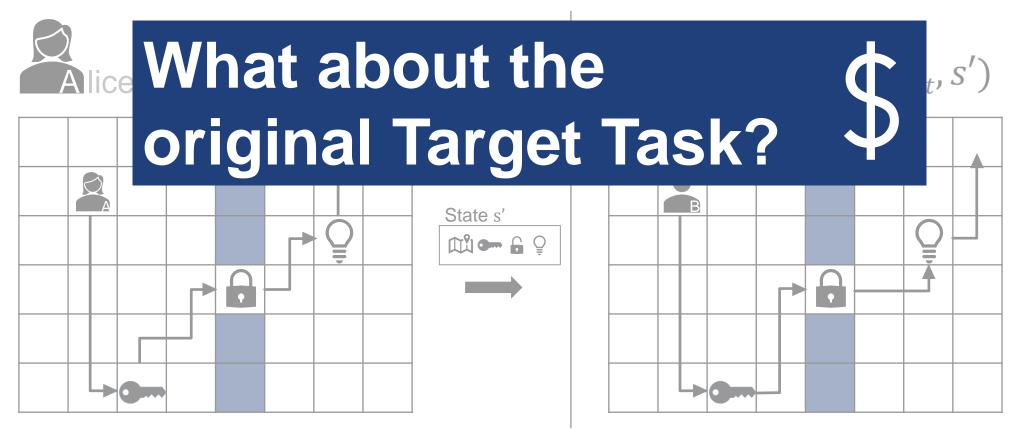
$$R_{Alice} = \gamma \max(0, t_{Bob} - t_{Alice})$$

 \rightarrow optimal behaviour: find simplest task Bob cannot complete

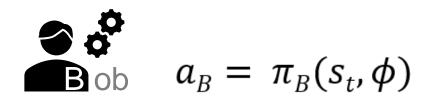
Idea: Asymmetric Self-Play

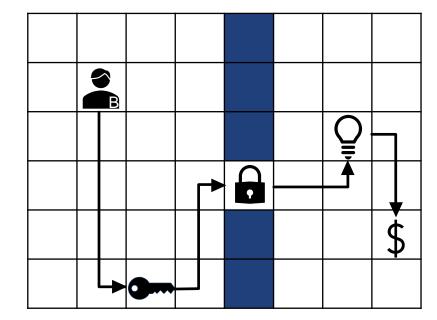
1. Propose Task

2. Solve Task



Idea: Application to Target Task





Function SelfPlayEpisode($\pi_{Alice}, \pi_{Bob}, s_0$):

 $s', t_{Alice} \leftarrow proposeTask(\pi_{Alice}, s_0)$ $t_{Bob} \leftarrow solveTask(\pi_{Bob}, s_0, s')$

 $R_{Alice} \leftarrow \gamma \max(0, t_{Bob} - t_{Alice})$ $R_{Bob} \leftarrow -\gamma t_{Bob}$

 $\begin{vmatrix} \pi_{Alice} \leftarrow updatePolicy(\pi_{Alice}, R_{Alice}) \\ \pi_{Bob} \leftarrow updatePolicy(\pi_{Bob}, R_{Bob}) \\ \end{bmatrix}$ End Function

Function TargetTaskEpisode(π_{Bob}, s_0)

Function SelfPlayEpisode($\pi_{Alice}, \pi_{Bob}, s_0$): $\begin{vmatrix} s', t_{Alice} \leftarrow proposeTask(\pi_{Alice}, s_0) \\ t_{Bob} \leftarrow solveTask(\pi_{Bob}, s_0, s') \end{vmatrix}$

```
R_{Alice} \leftarrow \gamma \max(0, t_{Bob} - t_{Alice})R_{Bob} \leftarrow -\gamma t_{Bob}
```

 $\begin{vmatrix} \pi_{Alice} \leftarrow updatePolicy(\pi_{Alice}, R_{Alice}) \\ \pi_{Bob} \leftarrow updatePolicy(\pi_{Bob}, R_{Bob}) \\ \end{bmatrix}$ End Function

```
Function TargetTaskEpisode(\pi_{Bob}, s_0)
```

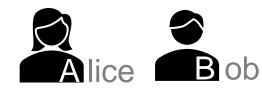

Propose Task
 Solve Task

Function SelfPlayEpisode($\pi_{Alice}, \pi_{Bob}, s_0$): $s', t_{Alice} \leftarrow proposeTask(\pi_{Alice}, s_0)$ $t_{Bob} \leftarrow solveTask(\pi_{Bob}, s_0, s')$

 $R_{Alice} \leftarrow \gamma \max(0, t_{Bob} - t_{Alice})$ $R_{Bob} \leftarrow -\gamma t_{Bob}$

 $\begin{vmatrix} \pi_{Alice} \leftarrow updatePolicy(\pi_{Alice}, R_{Alice}) \\ \pi_{Bob} \leftarrow updatePolicy(\pi_{Bob}, R_{Bob}) \\ \end{bmatrix}$ End Function

Function TargetTaskEpisode(π_{Bob}, s_0)



Propose Task
 Solve Task

Internal Reward

Function SelfPlayEpisode($\pi_{Alice}, \pi_{Bob}, s_0$): $s', t_{Alice} \leftarrow proposeTask(\pi_{Alice}, s_0)$ $t_{Bob} \leftarrow solveTask(\pi_{Bob}, s_0, s')$

$$R_{Alice} \leftarrow \gamma \max(0, t_{Bob} - t_{Alice})$$
$$R_{Bob} \leftarrow -\gamma t_{Bob}$$

 $\begin{array}{c|c} \pi_{Alice} \leftarrow updatePolicy(\pi_{Alice}, R_{Alice}) \\ \pi_{Bob} \leftarrow updatePolicy(\pi_{Bob}, R_{Bob}) \\ \end{array} \\ \textbf{End Function} \end{array}$

Function TargetTaskEpisode(π_{Bob}, s_0)

Propose Task
 Solve Task

Internal Reward

(e.g. Policy Gradient with Baseline, TRPO, ...)

Function SelfPlayEpisode($\pi_{Alice}, \pi_{Bob}, s_0$): $s', t_{Alice} \leftarrow proposeTask(\pi_{Alice}, s_0)$ $t_{Bob} \leftarrow solveTask(\pi_{Bob}, s_0, s')$

```
R_{Alice} \leftarrow \gamma \max(0, t_{Bob} - t_{Alice})R_{Bob} \leftarrow -\gamma t_{Bob}
```

 $\begin{vmatrix} \pi_{Alice} \leftarrow updatePolicy(\pi_{Alice}, R_{Alice}) \\ \pi_{Bob} \leftarrow updatePolicy(\pi_{Bob}, R_{Bob}) \\ \end{bmatrix}$ End Function

Function TargetTaskEpisode(π_{Bob}, s_0)

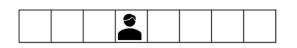
Internal Reward

(e.g. Policy Gradient with Baseline, TRPO, ...)

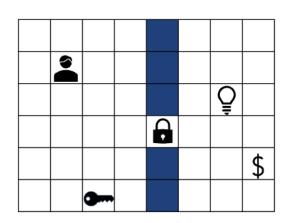
Experiments

Discrete State Space

Long Hallway



MazeBase → Focus

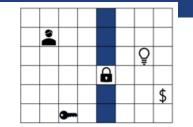


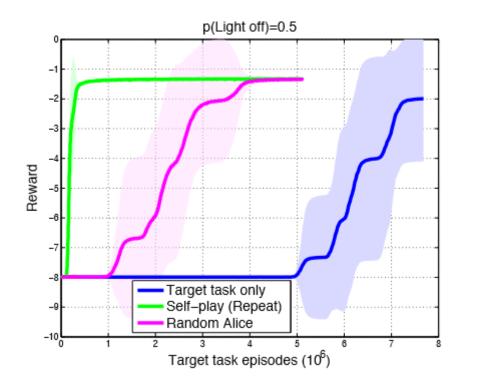
Continuous State Space

- Mountain Car
 Total
- Swimmer Gather → Focus

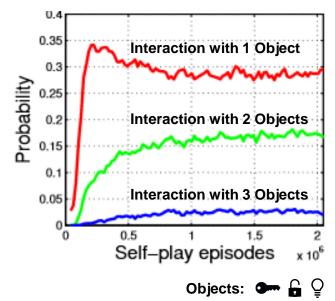
Build Marine Units Mini Game in StarCraft

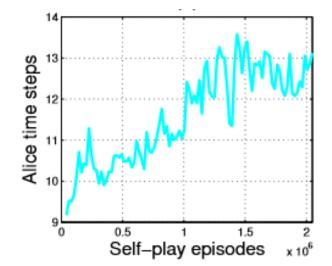
Experiments: MazeBase

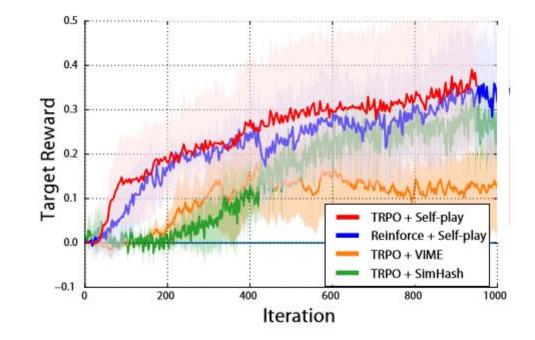




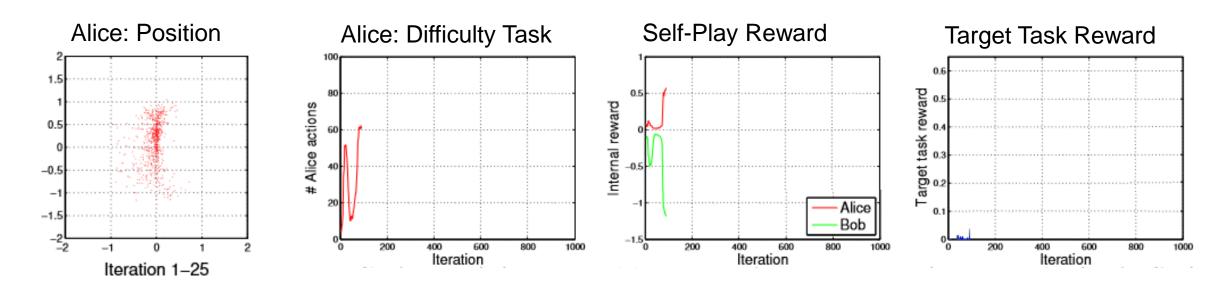
Self-Play (Repeat):



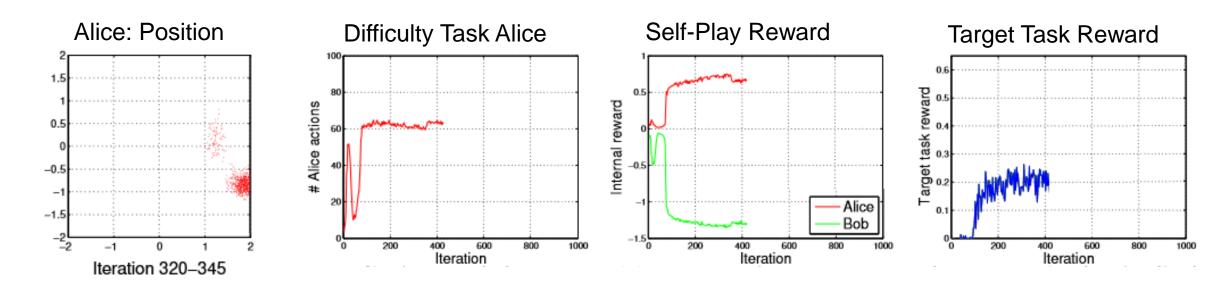




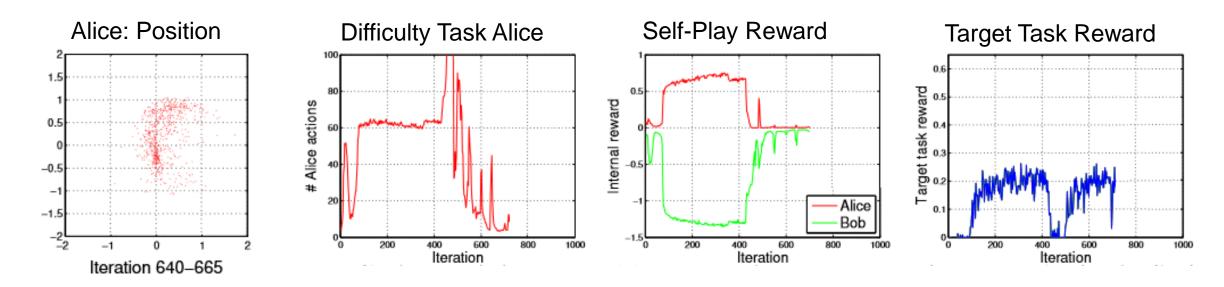
Phase: Initialization



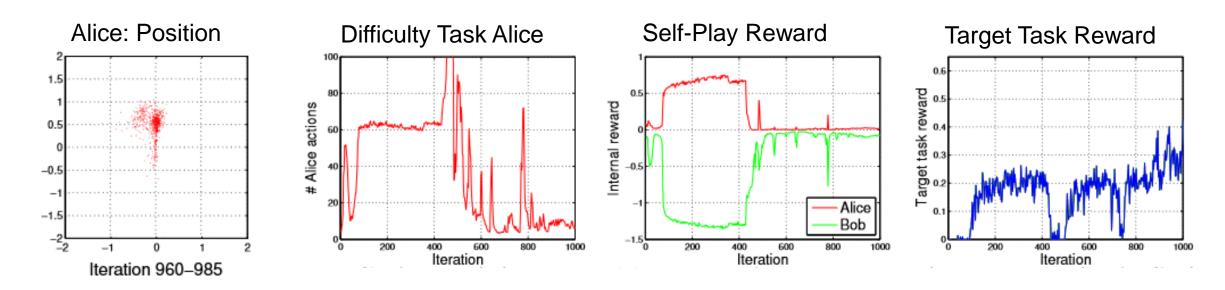
Phase: Alice better than Bob



Phase: Bob overpowers Alice \rightarrow Alice gives up



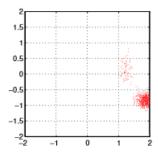
Phase: Alice can't recover

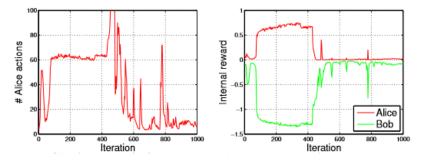


Potential Problems

Meta Exploration for Alice: Single Hardest Task vs All Hard Tasks

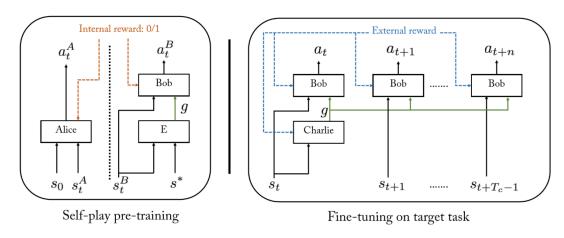
- Performance in Continuous Action Spaces (Florensa et al. 2017)
 - Effect of Meta Exploration enhanced when using a unimodal Gaussian Distribution to parametrize Action Space → Alice converges to moving into single direction
- Reward Function of Alice often Sparse (Florensa et al. 2017) $R_{Alice} = \gamma \max(0, t_{Bob} - t_{Alice})$
 - If Bob outperforms Alice: → Alice receives 0 reward
 → Alice gives up





Asymmetric Self-Play: Follow Up Work

 Learning Goal Embeddings via Self-Play for Hierarchical RL (Sukhbaatar et al. 2018)



 Reverse Curriculum Generation for Reinforcement Learning (Florensa et al. 2017) Sukhbaatar et al. (2018)

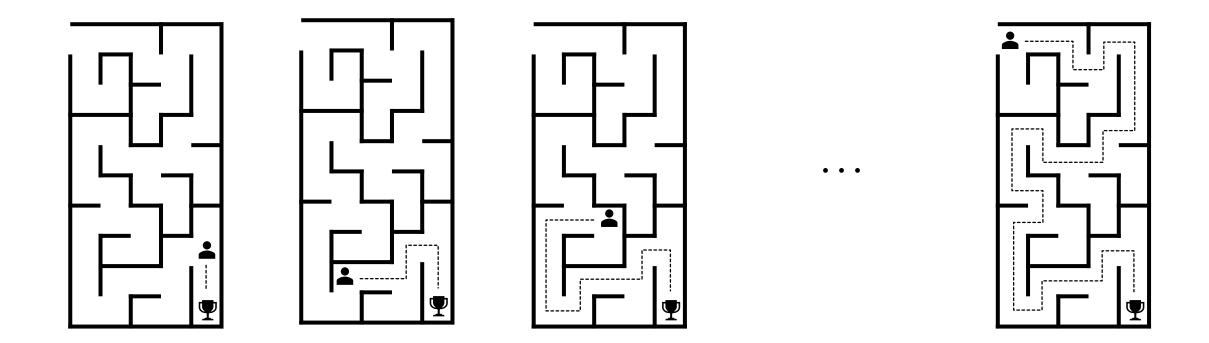
ed by 0

Reverse Curriculum Florensa et al. (2017)

cited by 52

Asymmetric Self-Play Sukhbaatar et al. (2017)

cited by 62



Reverse Curriculum Generation for Reinforcement Learning

Carlos Florensa, David Held, Markus Wulfmeier and Pieter Abbeel

Starting State Distribution p_i at each Iteration i Good Starting State $s \in \mathbb{R}^d$?

L ... in goal-oriented environments, a strong learning signal is obtained when training on start states $s \sim \rho_i$ from where the agent reaches the goal sometimes, but not always.

Florensa et al. 2017

How to find such states at each iteration automatically?

Starting State Distribution p_i at each Iteration i Good Starting State $s \in \mathbb{R}^d$?

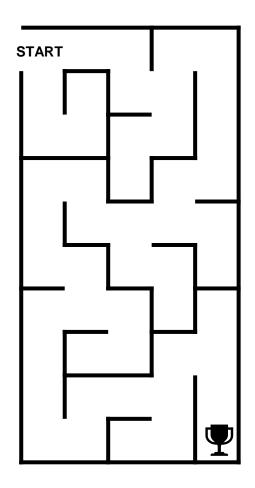
- Idea 1.1 Select Starting States Uniform at Random
- Idea 1.2 Select Starting States Uniform at Random + Estimate P(success)
- Idea 2.1 Sample feasible States Nearby p_{i-1}

 $s' = s + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \Sigma)$ $s' = s \rightarrow a_1 \rightarrow a_2 \rightarrow \dots \rightarrow a_T$, $a_t \sim \mathcal{N}(0, \Sigma)$

Idea 2.2 Sample feasible States Nearby p_{i-1} ~ (+ Keep only Good States after Policy Training

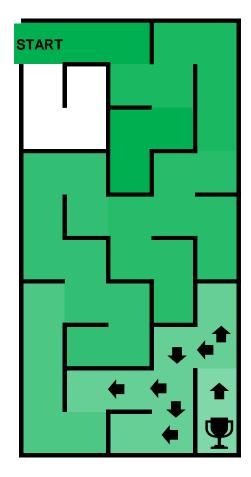
Reverse Curriculum Generation

Starting State Distribution p_i – **Original** p_{start}



Original Starting State Distribution $p_{start} = \{start\}$

Starting State Distribution p_i – **Original** p_{start}

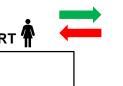


Original Starting State Distribution $p_{start} = \{start\}$ $p_1 = \{ \ \}$ $p_2 = \{ \ \ \}$ $p_3 = \{ \ \ \ \}$ $p_4 = \{ \ \ \ \ \}$ $p_5 = \{ \ \ \ \ \}$ $p_6 = \{ \ \ \ \ \}$ $p_7 = \{ \ \ \ \ \}$ $start \in p_7$

Optimal Policy under start distribution p_i is also optimal under any start distribution p_{start} as long as their support coincide.

Assumptions

- Reset Agent into any Starting State
- Must know at least one Goal State (Goal Oriented Task) state?
- Environment without Irreversibilities START *



Policy Training

 $\begin{array}{l} starts_{\text{old}} \leftarrow [s^g] \\ starts, \ rews \leftarrow [s^g], \ [1] \\ \textbf{for } i \leftarrow 1 \ \textbf{to } Iter \ \textbf{do} \\ & | \ starts \leftarrow \texttt{SampleNearby}(starts, \ N_{\text{new}}) \\ starts.append[\texttt{sample}(starts_{\text{old}}, N_{\text{old}})] \\ & \rho_i \leftarrow \texttt{Unif}(starts) \\ & \pi_i, \ rews \leftarrow \texttt{train_pol}(\rho_i, \ \pi_{i-1}) \\ starts \leftarrow \texttt{select}(starts, \ rews, R_{\min}, R_{\max}) \\ & starts_{\text{old}}.append[starts] \\ \textbf{end} \end{array}$

end

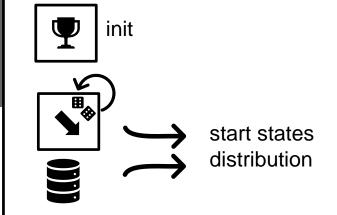
Policy Training

 $\begin{array}{l} starts_{\text{old}} \leftarrow [s^g] \\ starts, \ rews \leftarrow [s^g], \ [1] \\ \textbf{for } i \leftarrow 1 \ \textbf{to } Iter \ \textbf{do} \\ \\ starts \leftarrow \text{SampleNearby}(starts, \ N_{\text{new}}) \\ starts.append[sample(starts_{\text{old}}, N_{\text{old}})] \\ \rho_i \leftarrow \text{Unif}(starts) \\ \pi_i, \ rews \leftarrow \texttt{train_pol}(\rho_i, \ \pi_{i-1}) \\ starts \leftarrow \texttt{select}(starts, \ rews, R_{\min}, R_{\max}) \\ starts_{\text{old}}.append[starts] \end{array}$

end

Policy Training

 $\begin{array}{l} starts_{\text{old}} \leftarrow [s^g] \\ starts, rews \leftarrow [s^g], \ [1] \\ \textbf{for } i \leftarrow 1 \ \textbf{to } Iter \ \textbf{do} \\ \\ starts \leftarrow \text{SampleNearby}(starts, \ N_{\text{new}}) \\ starts.append[sample(starts_{\text{old}}, N_{\text{old}})] \\ \rho_i \leftarrow \text{Unif}(starts) \\ \\ \\ \pi_i, rews \leftarrow \texttt{train_pol}(\rho_i, \ \pi_{i-1}) \\ starts \leftarrow \texttt{select}(starts, \ rews, R_{\min}, R_{\max}) \\ starts_{\text{old}}.append[starts] \end{array}$



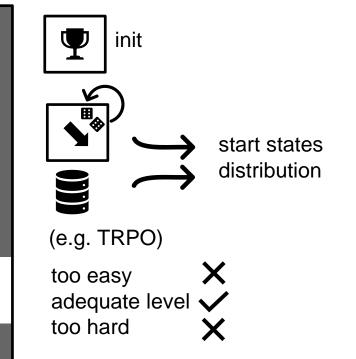
Policy Training

 $starts_{old} \leftarrow [s^g]$ init starts, $rews \leftarrow [s^g], [1]$ for $i \leftarrow 1$ to Iter do $starts \leftarrow SampleNearby(starts, N_{new})$ $starts.append[sample(starts_{old}, N_{old})]$ $\rho_i \leftarrow \text{Unif}(starts)$ $\pi_i, rews \leftarrow \texttt{train_pol}(\rho_i, \pi_{i-1})$ (e.g. TRPO) $starts \leftarrow select(starts, rews, R_{\min}, R_{\max})$ starts_{old}.append[starts] end

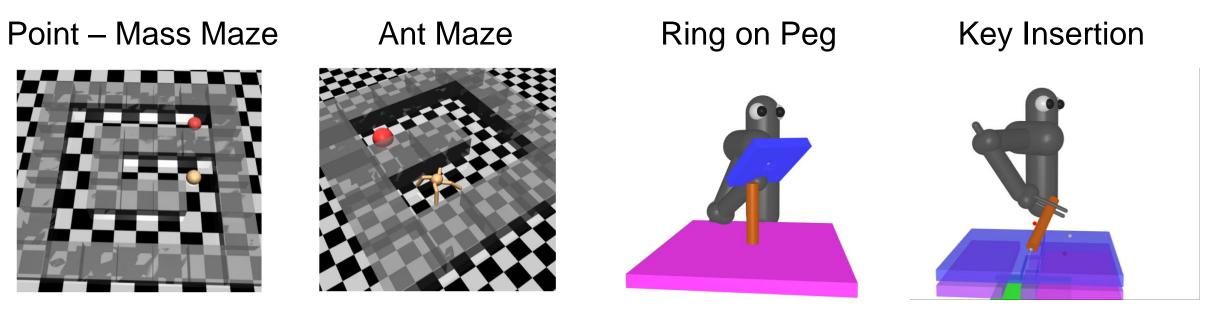
start states distribution

Policy Training

 $\begin{array}{l} starts_{\text{old}} \leftarrow [s^g] \\ starts, rews \leftarrow [s^g], \ [1] \\ \textbf{for } i \leftarrow 1 \ \textbf{to } Iter \ \textbf{do} \\ \\ starts \leftarrow \text{SampleNearby}(starts, N_{\text{new}}) \\ starts.append[sample(starts_{\text{old}}, N_{\text{old}})] \\ \\ \rho_i \leftarrow \text{Unif}(starts) \\ \\ \pi_i, rews \leftarrow \texttt{train_pol}(\rho_i, \pi_{i-1}) \\ starts \leftarrow \texttt{select}(starts, rews, R_{\min}, R_{\max}) \\ \\ starts_{\text{old}}.append[starts] \\ \end{array}$



Experiments

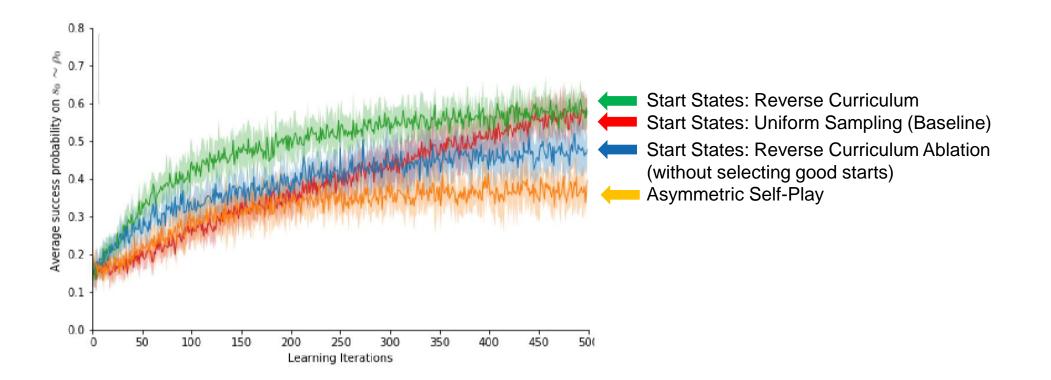


 \rightarrow Focus

→ Focus

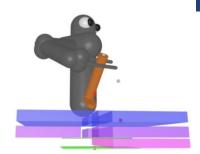
Experiments: Ant Maze

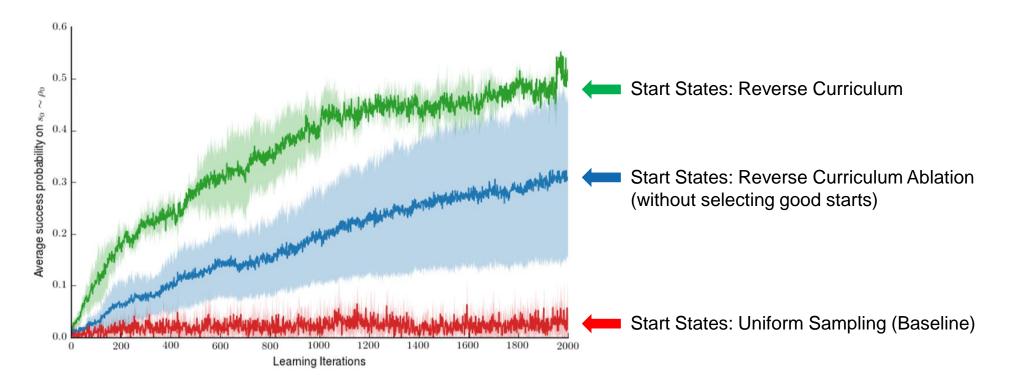




| 39

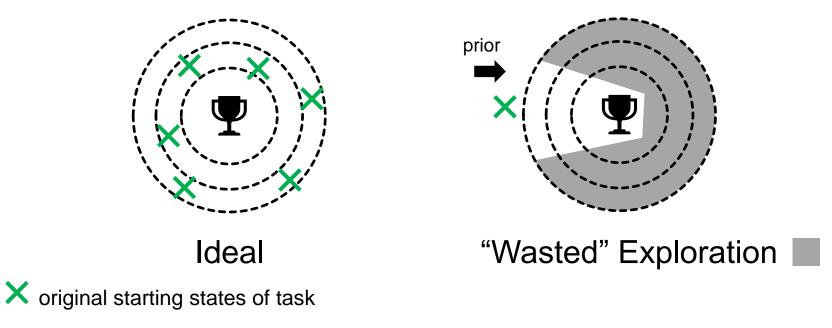
Experiments: Key Insertion





Potential Problems

Starting State Distribution evolves uniformly around Goal State



 \rightarrow cannot incorporate prior information

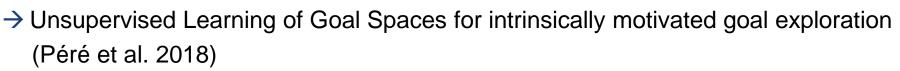
Reverse Curriculum: Follow Up Work

Potential Problems

Uniform Exploration around Goal State
 → Backplay (Resnick et al. 2018)

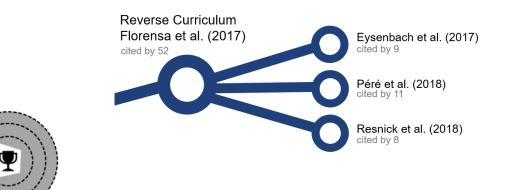
Assumptions

- Reset Agent into any Starting State
 - → Leave no Trace: Learning to Reset for Safe and Autonomous RL (Eysenbach et al. 2017)
- Must know at least one Goal State



state?

Environment without Irreversibilities START ↑
 → Backplay (Resnick et al. 2018)

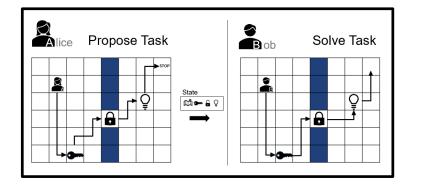


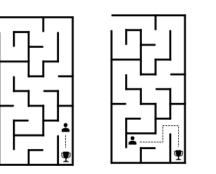
42

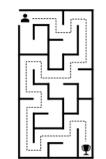
Conclusion

Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play

Reverse Curriculum Generation for Reinforcement Learning



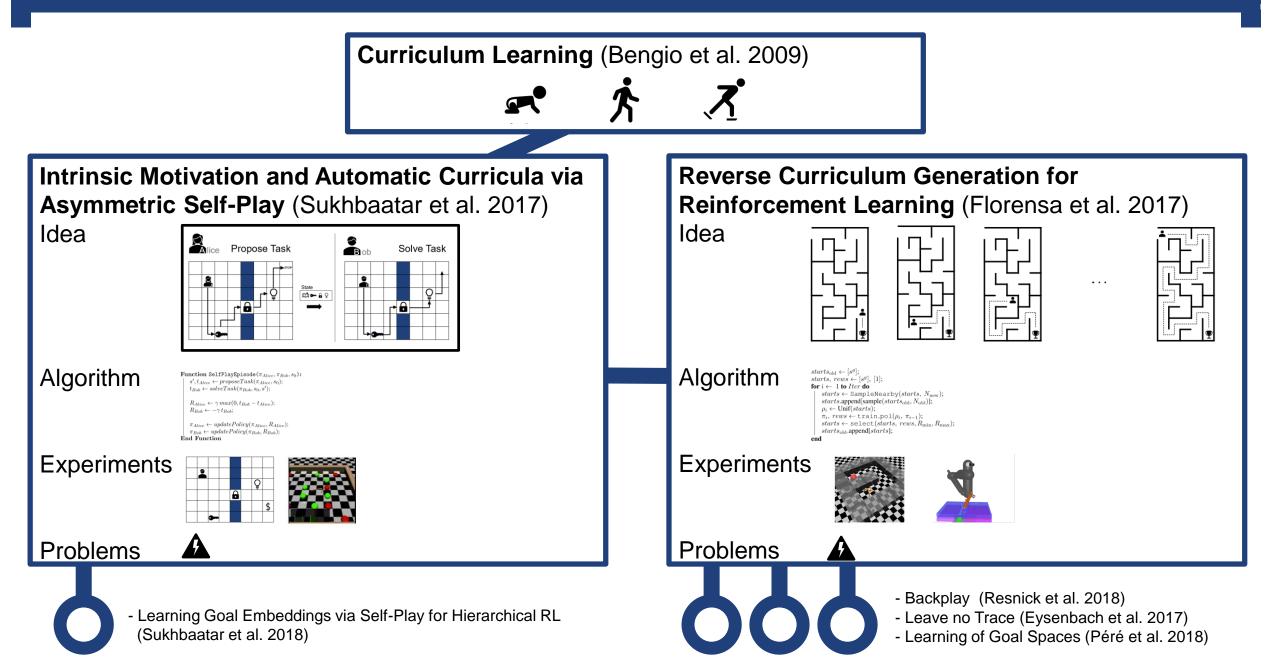




• • •

- + Conceptually Simple and Elegant
- + Automatic Curriculum (only few hyperparameter)
- + General Framework (exploration bonus)
- Results not super impressive
- Bob can overpower Alice
- Continuous Action Space

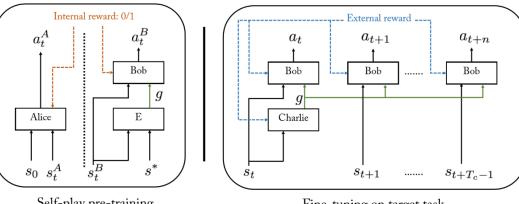
- Reversibility Assumption
- Uniform Exploration around Goal State



Backup Slides

Learning Goal Embeddings via Self-Play for Hierarchical RL (Sukhbaatar et al. 2018)

Training Scheme



Self-play pre-training

- Fine-tuning on target task
- Use Self-Play to learn Goal Embedding E (Transform State to Goal)
- Introduce 3rd Actor: Charlie
 - Charlie responsible for high level policy in HRL
 - Charlie uses learned embeddings to communicate task to Bob
 - Bob responsible for low level policy

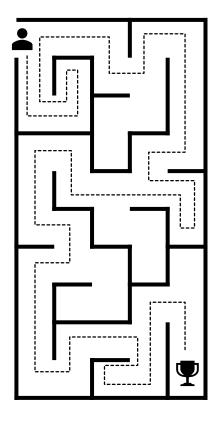
Adjustments Self-Play Phase

- number of steps taken by Alice and Bob are fixed to T_A and T_B respectively
- break episodes into multiple shorter segments (if Bob succeeds, Alice continues from last position instead of start)
 - ➔ more exploration, while keeping Bob's policy manageable for Charlie
- 0/1 reward for Bob (instead of time)
- entropy regularization in loss $L_{A} = \mathbb{E}_{a_{t}^{A} \sim \pi_{A}} [-R_{A} - \beta H(\pi_{A}(s_{t}^{A}))]$ $L_{B} = \mathbb{E}_{a_{t}^{B} \sim \pi_{B}} [-R_{B}] + \alpha \mathbb{E}_{a_{t}^{A} \sim \pi_{A}} [-\log(\pi_{B}(a_{t}^{A}|s_{t}^{A}))]$

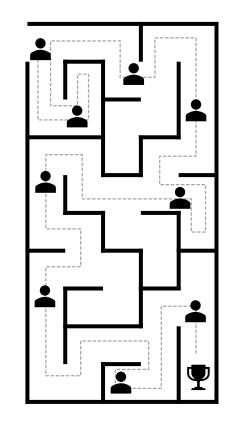
ETH zürich

Backplay (Resnick et al. 2018)

One Good Enough Demonstration



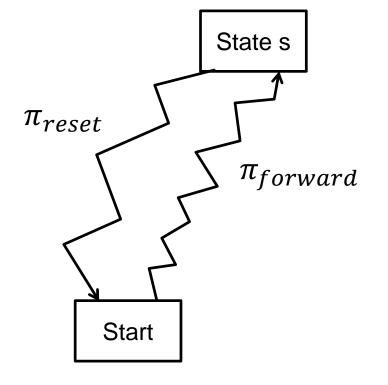
Curriculum of Starting States



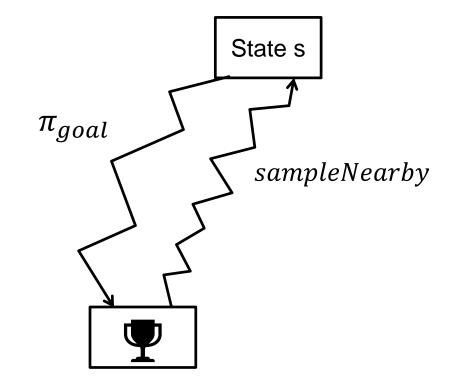
EHzürich

Leave no Trace: Learning to Reset for Safe and Autonomous RL (Eysenbach et al. 2017)

Learn both Forward and Reset Policy



Similarity to Reverse Curriculum Learning



Unsupervised Learning of Goal Spaces for intrinsically motivated goal exploration (Péré et al. 2018)

2-stage approach

Perceptual Learning Stage:

Deep learning algorithms use passive raw sensor observations of world changes to learn corresponding latent space

 Goal Exploration Stage: Sampling goals in this latent space

Asymmetric Self-Play in a Continuous Action Space (Florensa et al. 2017)

Part of the reason that Asymmetric Self-Play gets stuck in a local optimum is that "Alice" is represented with a unimodal Gaussian distribution, which is a common representation for policies in continuous action spaces. Thus Alice's policy tends to converge to moving in a single direction. In the original paper, this problem is somewhat mitigated by using a discrete action space, in which a multi-modal distribution for Alice can be maintained. However, even in such a case, the authors of the original paper also observed that Alice tends to converge to a local optimum.