
Chapter 13

Labeling Schemes

Imagine you want to repeatedly query a huge graph, e.g., a social or a road
network. For example, you might need to find out whether two nodes are
connected, or what the distance between two nodes is. Since the graph is so
large, you distribute it among multiple servers in your data center.

13.1 Adjacency

Theorem 13.1. It is possible to assign labels of size 2 log n bits to nodes in a
tree so that for every pair u, v of nodes, it is easy to tell whether u is adjacent
to v by just looking at u and v’s labels.

Proof. Choose a root in the tree arbitrarily so that every non-root node has a
parent. The label of each node u consists of two parts: The ID of u (from 1 to
n), and the ID of u’s parent (or nothing if u is the root).

Remarks:

• What we have constructed above is called a labeling scheme, more
precisely a labeling scheme for adjacency in trees. Formally, a labeling
scheme is defined as follows.

Definition 13.2. A labeling scheme consists of an encoder e and a decoder
d. The encoder e assigns to each node v a label e(v). The decoder d receives
the labels of the nodes in question and returns an answer to some query. The
largest size (in bits) of a label assigned to a node is called the label size of the
labeling scheme.

Remarks:

• In Theorem 13.1, the decoder receives two node labels e(u) and e(v),
and its answer is Yes or No, depending on whether u and v are
adjacent or not. The label size is 2 log n.

• The label size is the complexity measure we are going to focus on in
this chapter. The run-time of the encoder and the decoder are two
other complexity measures that are studied in the literature.

62

13.1. ADJACENCY 63

• There is an interesting connection between labeling schemes for ad-
jacency and so-called induced-universal graphs: Let F be a family
of graphs. The graph U(n) is called n-induced-universal for F if all
G ∈ F with at most n nodes appear as a node-induced subgraph in
U(n). (A node-induced subgraph of U(n) = (V,E) is any graph that
can be obtained by taking a subset V ′ of V and all edges from E which
have both endpoints in V ′.)

• In the movie Good Will Hunting, the big open question was to find all
graphs of the family of homeomorphically irreducible (non-isomorphic,
no node with degree 2) trees with 10 nodes, T10. What is the smallest
induced-universal graph for T10?

• For a graph family F , if there is a labeling scheme for adjacency with
distinct node labels and label size f(n), then there is an n-induced-
universal graph for F of size at most 2f(n). Since the size of U(n) is
exponential in f it is interesting to study the label size carefully: If f
is log n, the size of U(n) is n, whereas if f is 2 log n the size of U(n)
becomes n2!

• What about adjacency in general graphs?

Theorem 13.3. There is a labeling scheme for adjacency in general graphs with
the label size of bn2 c+ dlog ne ≈ n

2 .

Proof. Let the label of each node be comprised of:

• a distinct ID i between 0 and n− 1 (dlog ne bits);

• for j = i+ 1 mod n, . . . , i+ bn2 c mod n, one bit indicating adjacency to
the node with the ID j.

Then, for any pair of nodes, one of the node labels will contain the bit indicating
adjacency. The bit can be found based on the ID’s.

Theorem 13.4. Any labeling scheme for adjacency in general graphs has a label
size of at least ≈ n

2 ∈ Ω(n) bits.

Proof. Let Gn denote the family of graphs with n nodes. A graph in Gn can
have at most

(
n
2

)
edges. When taking into account that the order of the nodes is

irrelevant, it can be shown that |Gn| ≥ 2(n
2)/n!. Indeed, |Gn| converges towards

2(n
2)/n! for large n.

Assume there is a labeling scheme for adjacency in graphs from Gn with label
size s. First, we argue that the encoder e must be injective on Gn: Since the
labeling scheme is for adjacency, e cannot assign the same labels to two different
graphs.

There are 2s possible labels for any node, and for every G ∈ Gn we can
choose n of them. Thus, we obtain that

|Gn| ≤
((

2s

n

))
=

(
2s + n− 1

n

)

Canceling out the n! term and taking the logarithm on both sides of the
inequality we conclude that s > n−1

2 ∈ Ω(n).

64 CHAPTER 13. LABELING SCHEMES

Remarks:

• The lower bound for general graphs is a bit discouraging; we wanted
to use labeling schemes for queries on large graphs!

• The situation is less dire if the graph is not arbitrary. For instance,
in degree-bounded graphs, in planar graphs, and in trees, the bounds
change to Θ(log n) bits.

• What about other queries, e.g., distance?

• Next, we will focus on rooted trees.

13.2 Rooted Trees

Theorem 13.5. There is a 2 log n labeling scheme for ancestry, i.e., for two
nodes u and v, find out if u is an ancestor of v in the rooted tree T .

Proof. Traverse the tree with a depth first search, and consider the obtained
pre-ordering of the nodes, i.e., enumerate the nodes in the order in which they
are first visited. For a node u denote by l(u) the index in the pre-order. Our
encoder assigns labels e(u) = (l(u), r(u)) to each node u, where r(u) is the
largest value l(v) that appears at any node v in the sub-tree rooted at u. With
the labels assigned in this manner, we can find out whether u is an ancestor of
v by checking if l(v) is contained in the interval (l(u), r(u)].

Algorithm 13.6 Näıve-Distance-Labeling(T)

1: Let l be the label of the root r of T
2: Let T1, . . . , Tδ be the sub-trees rooted at each of the δ children of r
3: for i = 1, . . . , δ do
4: The root of Ti gets the label obtained by appending i to l
5: Näıve-Distance-Labeling(Ti)
6: end for

Theorem 13.7. There is an O(n log n) labeling scheme for distance in trees.

Proof. Apply the encoder algorithm Näıve-Distance-Labeling(T) to label the
tree T . The encoder assigns to every node v a sequence (l1, l2 . . .). The length
of a sequence e(v) is at most n, and each entry in the sequence requires at most
log n bits. A label (l1, . . . , lk) of a node v corresponds to a path from r to v in
T , and the nodes on the path are labeled (l1), (l1, l2), (l1, l2, l3) and so on. The
distance between u and v in T is obtained by reconstructing the paths from e(u)
and e(v).

13.2. ROOTED TREES 65

Algorithm 13.8 Heavy-Light-Decomposition(T)

1: Node r is the root of T
2: Let T1, . . . , Tδ be the sub-trees rooted at each of the δ children of r
3: Let Tmax be a largest tree in {T1, . . . , Tδ} in terms of number of nodes
4: Mark the edge (r, Tmax) as heavy
5: Mark all edges to other children of r as light
6: Assign the names 1, . . . , δ − 1 to the light edges of r
7: for i = 1, . . . , δ do
8: Heavy-Light-Decomposition(Ti)
9: end for

Remarks:

• We can assign the labels more carefully to obtain a smaller label size.
For that, we use the following heavy-light decomposition.

Theorem 13.9. There is an O(log2 n) labeling scheme for distance in trees.

Proof. For our proof, use Heavy-Light-Decomposition(T) to partition T ’s edges
into heavy and light edges. All heavy edges form a collection of paths, called the
heavy paths. Moreover, every node is reachable from the root through a sequence
of heavy paths connected with light edges. Instead of storing the whole path to
reach a node, we only store the information about heavy paths and light edges
that were taken to reach a node from the root.

For instance, if node u can be reached by first using 2 heavy edges, then the
7th light edge, then 3 heavy edges, and then the light edges 1 and 4, then we
assign to v the label (2, 7,3, 1, 4). For any node u, the path p(u) from the root
to u is now specified by the label. The distance between any two nodes can be
computed using the paths.

Since every parent has at most ∆ < n children, the name of a light edge has
at most log n bits. The size (number of nodes in the sub-tree) of a light child
is less than half the size of its parent, so a path can have less than log n light
edges. Between any two light edges, there could be a heavy path, so we can
have up to log n heavy paths in a label. The length of such a heavy path can be
described with log n bits as well, since no heavy path has more than n nodes.
Altogether we therefore need at most O(log2 n) bits.

Remarks:

• One can show that any labeling scheme for distance in trees needs to
use labels of size at least Ω(log2 n).

• The distance encoder from Theorem 13.9 also supports decoders for
other queries. To check for ancestry, it therefore suffices to check if
p(u) is a prefix of p(v) or vice versa.

• The nearest common ancestor is the last node that is on both p(u)
and p(v), and the separation level is the length of the path to that
node.

• Two nodes are siblings if their distance is 2 but they are not ancestors.

66 CHAPTER 13. LABELING SCHEMES

• The heavy-light decomposition can be used to shave off a few bits in
other labeling schemes, e.g., ancestry or adjacency.

13.3 Road Networks

Labeling schemes are used to quickly find shortest paths in road networks.

Remarks:

• A näıve approach is to store at every node u the shortest paths to
all other nodes v. This requires an impractical amount of memory.
For example, the road network for Western Europe has 18 million
nodes and 44 million directed edges, and the USA road network has
24 million nodes and 58 million directed edges.

• What if we only store the next node on the shortest path to all targets?
In a worst case this stills requires Ω(n) bits per node. Moreover,
answering a single query takes many invocations of the decoder.

• For simplicity, let us focus on answering distance queries only. Even
if we only want to know the distance, storing the full table of n2

distances costs more than 1000TB, too much for storing it in RAM.

• The idea for the encoder is to compute a set S of hub nodes that lie on
many shortest paths. We then store at each node u only the distance
to the hub nodes that appear on shortest paths originating or ending
in u.

• Given two labels e(u) and e(v), let H(u, v) denote the set of hub
nodes that appear in both labels. The decoder now simply returns
d(u, v) = min{dist(u, h) + dist(h, v) : h ∈ H(u, v)}, all of which can
be computed from the two labels.

• The key in finding a good labeling scheme now lies in finding good
hub nodes.

Algorithm 13.10 Näıve-Hub-Labeling(G)

1: Let P be the set of all n2 shortest paths
2: while P 6= ∅ do
3: Let h be a node which is on a maximum number of paths in P
4: for all paths p = (u, . . . , v) ∈ P do
5: if h is on p then
6: Add h with the distance dist(u, h) to the label of u
7: Add h with the distance dist(h, v) to the label of v
8: Remove p from P
9: end if

10: end for
11: end while

13.3. ROAD NETWORKS 67

Remarks:

• Unfortunately, algorithm 13.10 takes a prohibitively long time to com-
pute.

• Another approach computes the set S as follows. The encoder (Algo-
rithm 13.11) first constructs so-called shortest path covers. The node
set Si is a shortest path cover if Si contains a node on every shortest
path of length between 2i−1 and 2i. At node v only the hub nodes in
Si that are within the ball of radius 2i around v (denoted by B(v, 2i))
are stored.

Algorithm 13.11 Hub-Labeling(G)

1: for i = 1, . . . , logD do
2: Compute the shortest path cover Si
3: end for
4: for all v ∈ V do
5: Let Fi(v) be the set Si ∩B(v, 2i)
6: Let F (v) be the set F1(v) ∪ F2(v) ∪ . . .
7: The label of v consists of the nodes in F (v), with their distance to v
8: end for

Remarks:

• The size of the shortest path covers will determine how space efficient
the solution will be. It turns out that real-world networks allow for
small shortest path covers: The parameter h is the so-called highway
dimension of G, is defined as h = maxi,v Fi(v), and h is conjectured
to be small for road networks.

• Computing Si with a minimal number of hubs is NP-hard, but one
can compute a O(log n) approximation of Si in polynomial time. Con-
sequently, the label size is at most O(h log n logD). By ordering the
nodes in each label by their ID, the decoder can scan through both
node lists in parallel in time O(h log n logD).

• While this approach yields good theoretical bounds, the encoder is
still too slow in practice. Therefore, before computing the shortest
path covers, the graph is contracted by introducing shortcuts first.

• Based on this approach a distance query on a continent-sized road
network can be answered in less that 1µs on current hardware, orders
of magnitude faster than a single random disk access. Storing all the
labels requires roughly 20 GB of RAM.

• The method can be extended to support shortest path queries, e.g.,
by storing the path to/from the hub nodes, or by recursively querying
for nodes that lie on the shortest path to the hub.

68 CHAPTER 13. LABELING SCHEMES

Chapter Notes

Adjacency labelings were first studied by Breuer and Folkman [BF67]. The
log n + O(log∗ n) upper bound for trees is due to [AR02] using a clustering
technique. In contrast, it was shown that for general graphs the size of universal
graphs is at least 2(n−1)/2! Since graphs of arboricity d can be decomposed into
d forests [NW61], the labeling scheme from [AR02] can be used to label graphs
of arboricity d with d log n + O(log n) bit labels. For a thorough survey on
labeling schemes for rooted trees please check [AHR].

Universal graphs were studied already by Ackermann [Ack37], and later
by Erdős, Rényi, and Rado [ER63, Rad64]. The connection between labeling
schemes and universal graphs [KNR88] was investigated thoroughly. Our adja-
cency lower bound follows the presentation in [AKTZ14], which also summarizes
recent results in this field of research.

Distance labeling schemes were first studied by Peleg [Pel00]. The notion of
highway dimension was introduced by [AFGW10] in an attempt to explain the
good performance of many heuristics to speed up shortest path computations,
e.g., Transit Node Routing [BFSS07]. Their suggestions to modify the SHARC
heuristic [BD08] lead to the hub labeling scheme and were implemented and
evaluated [ADGW11], and later refined [DGSW14]. The Ω(n) label size lower
bound for routing (shortest paths) with stretch smaller than 3 is due to [GG01].

This chapter was written in collaboration with Jochen Seidel. Thanks to
Noy Rotbart for suggesting the topic.

Bibliography

[Ack37] Wilhelm Ackermann. Die Widerspruchsfreiheit der allgemeinen
Mengenlehre. Mathematische Annalen, 114(1):305–315, 1937.

[ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato
Fonseca F. Werneck. A hub-based labeling algorithm for shortest
paths in road networks. In SEA, 2011.

[AFGW10] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato Fon-
seca F. Werneck. Highway dimension, shortest paths, and provably
efficient algorithms. In SODA, 2010.

[AHR] Stephen Alstrup, Esben Bistrup Halvorsen, and Noy Rotbart. A
survey on labeling schemes for trees. To appear.

[AKTZ14] Stephen Alstrup, Haim Kaplan, Mikkel Thorup, and Uri Zwick.
Adjacency labeling schemes and induced-universal graphs. CoRR,
abs/1404.3391, 2014.

[AR02] Stephen Alstrup and Theis Rauhe. Small induced-universal graphs
and compact implicit graph representations. In FOCS, 2002.

[BD08] Reinhard Bauer and Daniel Delling. SHARC: fast and robust uni-
directional routing. In ALENEX, 2008.

[BF67] Melvin A Breuer and Jon Folkman. An unexpected result in cod-
ing the vertices of a graph. Journal of Mathematical Analysis and
Applications, 20(3):583 – 600, 1967.

BIBLIOGRAPHY 69

[BFSS07] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes.
Fast routing in road networks with transit nodes. Science,
316(5824):566, 2007.

[DGSW14] Daniel Delling, Andrew V. Goldberg, Ruslan Savchenko, and Re-
nato F. Werneck. Hub labels: Theory and practice. In SEA, 2014.

[ER63] P. Erdős and A. Rényi. Asymmetric graphs. Acta Mathematica
Academiae Scientiarum Hungarica, 14(3-4):295–315, 1963.

[GG01] Cyril Gavoille and Marc Gengler. Space-efficiency for routing
schemes of stretch factor three. J. Parallel Distrib. Comput.,
61(5):679–687, 2001.

[KNR88] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit repre-
sentation of graphs. In STOC, 1988.

[NW61] C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite
graphs. J. London Math. Soc., 36:445–450, 1961.

[Pel00] David Peleg. Proximity-preserving labeling schemes. Journal of
Graph Theory, 33(3):167–176, 2000.

[Rad64] Richard Rado. Universal graphs and universal functions. Acta
Arith., 9:331–340, 1964.

