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1 Distributed Computing via All-to-All Communication

In this lecture, we discuss distributed computation in a setting where all the computers in the
system can talk to each other (pairwise) via direct bounded-size message exchanges. This is
sometimes also called the congested clique model of distributed computing.

Model: The system is composed of n processors that communicate in synchronous rounds.
Per round, each processor can send O(log n) bits to each other processor (hence, O(n log n) bits
in total). Notice that in one round, each processor can learn the unique identifier of all other
processors (each processor sends its identifier to all other processors, directly). In fact, because
of this, and as nodes can sort all identifiers locally once they known them, we can without loss
of generality think that the nodes have unique identifiers from {1, 2, . . . , n}.

One of the most interesting problems, and also key building blocks in distributed algorithms
in this model is the routing problem, stated as follows:

The Routing Problem: Suppose that there are a number of O(log n)-bit messages, where
the ith message resides in some source node si and should be delivered to some target/destination
node ti. We emphasize that each node might the source and/or destination for several messages.
Initially, for each message, only the source knows the related destination. The objective is to
deliver each message from its source to the destination.

Intutive Discussion The interesting question is how many rounds of all-to-all communication
do we need to solve this problem. Of course, the answer depends on the source and destinations.
For instance, if each node wants to send exactly one message to each other node, that can be
done directly in one round of the model with all-to-all communication. What else can we do?
For instance, this solution doesn’t work if one node wants to send several messages to some
particular other node. What should be do then?

A concrete question is,

What instances of the routing problem can be solved in O(1) rounds?
Can we characterize necessary and sufficient conditions for that?

A clear necessary condition is that each node should be the source for at most O(n) messages,
and each node should be at most the destination for at most O(n) messages. This is because,
per round, each node can send at most n− 1 messages, one to each other node, and can receive
at most n− 1 messages, one from each other node. Interestingly, we see in this lecture that this
necessary condition is also sufficient.

1.1 Viewing Routing as an Edge Coloring Problem

Let us think that we are in the setting that we know all the message source and destinations and
we want to design a routing procedure, knowing all the information, in a centralized way. In
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the next subsection, we come back to the question of how to do such a thing in the distributed
setting, when for each message, only the source of it knows which node is the destination.

We now argue that if each node is the source for at most K messages and each node is the
destination for at most K messages, when K ≤ n, the routing problem can be solved in O(1)
rounds. For that, we cast the routing problem as an instance of edge coloring for a certain
graph.

Consider a bipartite graph H with n nodes on each side. That is, the graph is made of nodes
{a1, a2, . . . , an} on one side and nodes {b1, b2, . . . , bn}. Now, draw an edge between ai and bj iff
in the routing problem, there is a message that has source node i and destination j.

We can use edge colorings of this graph to solve the routing problem:

Lemma 1. Any edge coloring of H with q colors implies a routing algorithm with 2dq/ne rounds.

Proof. Consider a given coloring of H with q colors and partition the colors into 2dq/ne parts,
each of which has n colors. Let us focus on one part. We explain how the messages in the edges
that are colored with this part of colors can be delivered in 2 rounds. Hence, over all the parts,
all messages can be delivered in 2dq/ne rounds.

Focusing on one part of colors, let us renumber the at most n colors in this part so that they
are from [1, n]. Consider all the edges (ai, bj) in the colors of this part, and the corresponding
message that should go from node i of the system to node j. The key idea is this: we interpret
the color of edge (ai, bj) as the identifier on an intermediate node. If the edge is colored with
color k ∈ [1, n], then, node i send the message destined to j instead to the intermediate node
k and node k will then directly send the message to node j. Now, notice that this a correct
procedure and it will never try to send two messages through the same edge in the same round.
That is because, edges of H that have the same color k form a matching in H and thus, they
are disjoint in sources and in destinations. Therefore, in the first round of communication, each
source node sends at most one message to node k, and in the second round, node k should send
at most one message to each node j.

Edge coloring of H: Recall that were are in the case that each node is the source for at
most K ≤ n messages and each node is the destination for at most K ≤ n messages. Hence, the
corresponding bipartite graph H has maximum degree at most n. By a theorem of Vizing, for
any bipartite graph with maximum degree ∆, we can color its edges using ∆ colors such that
any two edges that share an endpoint have different colors1. Hence, there is a coloring of its
edges with n colors. By Lemma 1, this implies we can solve the routing problem in 2 rounds.

1.2 Solving the Routing Problem Distributedly

The solution given above works if we know all of the source and destinations of all messages (and
can solve the edge coloring problem in a centralized fashion). There is an elegant distributed
algorithm by Christoph Lenzen [Len13]2 that solves the problem in O(1) rounds, assuming each
node is the source for at most K messages and each node is the destination for at most K
messages, where K ≤ n. Since describing this whole algorithm does not fit the time of one
lecture, we instead describe a slightly weaker result. We show a randomized algorithm that
solves the problem in O(1) rounds, assuming K ≤ n/(20 log n). We leave it as an (optional)
exercise how to extend the algorithm to work when K ≤ O(n/ log log n) and even further3.

1For general graphs (i.e., non-bipartite), Vizing’s theorem implies a coloring with ∆ + 1 colors, and that is
the best possible in general, e.g., think of a triangle graph.

2Who was a PhD student at ETH Zurich.
3One can apply the same idea repeatedly to get to K ≤ O(n/ log log . . . logn), for any constant number of

repetitions of log.
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Distributed Routing for K ≤ n/(20 log n) Make each source send its message to a 5 log n
independently chosen random intermediate node k1, . . . , k5 logn ∈ [1, . . . , n] and ask that inter-
mediate node to deliver it directly to the destination. That is, for each message, we make 5 log n
copies of it and send toward the destination, through independently chosen random intermedi-
ate nodes. We use independent random intermediate points, for different messages. Also, the
delivery process is done in two separate rounds: in the first round the message is sent from
the source to the intermediate nodes, and in the second round, the message is sent from the
intermediate nodes to the destination. If for an edge, there are 2 or more copies of messages
that are planned to go through that edge in a round, we say that these copies failed.

Lemma 2. With probability at least 1−1/n, for each message, at least one of its copies arrives
at the related destination.

Proof. Let us focus on one message whose source is node i, and one fixed copy of it. What is
the probability that this message fails to reach the intermediate node that it chooses? Notice
that the copy fails in that step, only if chooses an edge {i, k} that is also chosen by another
copy of a message whose source is i. The only messages that can be arranged to go from i to
k are messages whose source is i. There are at most K ≤ n/(20 log n) such messages, and each
such message has 5 log n copies. Hence, at most n/4 edges starting from i are blocked with
other copies of messages. Since the intermediate node k of the copy we are considering is chosen
independent of everything else, we conclude that the probability of the copy failing in the first
step is at most 1/4.

You can see similarly that the probability of each copy failing in the second step — going
from the intermediate node to the destination — is also at most 1/4. That is because, for each
destination j, there are at most K ≤ n/(20 log n) messages destined to j, and each such message
has 5 log n copies. Hence, at most n/4 edge going to node j are blocked with other copies of
messages.

By a union bound, we conclude that each copy of each message succeeds to reach its des-
tination with probability at least 1 − (1/4 + 1/4) = 1/2. Hence, considering that one message
has 5 log n copies, with probability at least 1− (1/2)5 logn = 1− 1/n5, at least one of the copies
makes it to the destination. By a union bound over all the at most Kn ≤ n2 messages, we can
conclude that with probability at least 1 − 1/n3, for each message, at least one of its copies
makes it to the corresponding destination.

Exercise Extend the above method to solve the problem whenever K ≤ O(n/ log logn).
Hint: think about having only 3 log log n copies per message, and then afterwards dealing

with all the left over messages that none of their copies makes it to the destination.
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