

 $\mathrm{FS}~2019$

Prof. R. Wattenhofer Aryaz Eghbali

Principles of Distributed Computing Exercise 9: Sample Solution

1 Communication Complexity of Set Disjointness

a) We obtain

	/ DISJ	000	001	010	011	100	101	110	111	$\leftarrow x$)
$M^{DISJ} =$	000	1	1	1	1	1	1	1	1	
	001	1	0	1	0	1	0	1	0	
	010	1	1	0	0	1	1	0	0	
	011	1	0	0	0	1	0	0	0	
	100	1	1	1	1	0	0	0	0	
	101	1	0	1	0	0	0	0	0	
	110	1	1	0	0	0	0	0	0	
	111	1	0	0	0	0	0	0	0	
	$\uparrow y$)

b) When k = 3, a fooling set of size 4 for *DISJ* is, e.g.,

 $S_1 := \{(111,000), (110,001), (101,010), (100,011)\}.$

Entries in M^{DISJ} corresponding to elements of S_1 are marked dark gray. However, a fooling set does not always need to be on a diagonal of the matrix. An example for such a set is

 $S_2 := \{(001, 110), (010, 001), (011, 100), (100, 010)\},\$

and marked light gray in M^{DISJ} .

- c) In general, $S := \{(x, \overline{x}) \mid x \in \{0, 1\}^k\}$ is a fooling set for *DISJ*. To prove this, we note: If $y > \overline{x}$ then there is always an index *i* such that $x_i = y_i = 1$ and we conclude DISJ(x, y) = 0. Second, we note for any two elements $(x_1, y_1), (x_2, y_2)$ of any fooling set that $x_1 \neq x_2$. Otherwise it was $(x_1, y_j) = (x_2, y_j)$ for $j \in \{1, 2\}$ and thus $f(x_2, y_1) = f(x_1, y_2) = f(x_1, y_1) = f(x_2, y_2) =:$ *z* which contradicts the definition of a fooling set. Similarly it is $y_1 \neq y_2$.
 - For any $(x, y) \in S$ it is DISJ(x, y) = 1.
 - Now consider any $(x_1, y_1) \neq (x_2, y_2) \in S$. Since $x_1 \neq x_2$ and $y_1 \neq y_2$, we conclude that either $y_2 > \overline{x_1}$, in which case $DISJ(x_1, y_2) = 0$, or $y_1 > \overline{x_2}$ causing $DISJ(x_2, y_1) = 0$.

2 Distinguishing Diameter 2 from 4

- a) Choosing $v \in L$ takes O(D): Use any leader election protocol from the lecture. E.g., the node with smallest ID in L can be elected as a leader. Then this node will be v.
 - Computing a BFS tree from a vertex usually takes O(D). Since in our setting all graphs are guaranteed to have constant diameter, the time required for this is O(1). As node v is in L, at most $|N_1(v)| \leq s$ executions of BFS are performed. These can be started one after each other and yield a complexity of O(s).
 - The comment states: Computing an *H*-dominating set $\mathcal{D}OM$ takes time O(D) = O(1).
 - Since $|\mathcal{D}OM| \leq \frac{n \log n}{s}$, the time complexity of computing all BFS trees from each vertex in $\mathcal{D}OM$ (one after each other) is $O(\frac{n \log n}{s})$.
 - Checking whether all trees have depth of at most 2 can be done in O(D) = O(1) as well: Each node knows its depth in any of the computed trees. If its depth is 3 or 4, it floods "diameter is 4" to the graph. If a node gets such a message from several neighbors, it only forwards it to those from which it did not receive it yet. If any node did not receive message "diameter is 4" after 4 rounds, it decides that the diameter is 2. Otherwise it decides that the diameter is 4. This decision will be consistent among all nodes.
 - By adding all these runtimes, we conclude that the total time complexity of Algorithm 2-vs-4 is $O\left(s + \frac{n \log n}{s}\right)$.
- **b)** By deriving $O\left(s + \frac{n\log n}{s}\right)$ as a function of s we can argue that $O\left(s + \frac{n\log n}{s}\right)$ is minimal for $s = \sqrt{n\log n}$. Thus the runtime of the Algorithm is $O(\sqrt{n\log n})$.
- c) Since in this case no BFS tree can have depth larger than 2 the algorithm returns "diameter is 2".
- d) Using the triangle inequality we obtain that $d(w, v) \ge d(u, v) d(u, w) = 3$ thus the BFS tree of w has at least depth 3. Therefore Algorithm 2-vs-4 decides "diameter is 4".
- e) Let w be the leader elected in step 2 of Algorithm 2-vs-4. If the BFS started in w has depth at least 3, we are done. In the other case it is $d(u, w) \leq 2$. Using d) we conclude that d(u, w) = 2. Let w' be a node that connects u to w. Since $w' \in N_1(w)$, Algorithm 2-vs-4 executes a BFS from w'. Then we apply d) using that $w' \in N_1(u)$.
- f) Since $\mathcal{D}OM$ is a dominating set for $H = V \setminus L = V$, it follows immediately that the algorithm executes a BFS from a node $w \in \mathcal{D}OM \cap N_1(u) \neq \emptyset$. Now apply d).
- g) A careful look into the construction of family \mathcal{G} reveals that we essentially showed an $\Omega(n/\log n)$ lower bound to distinguish diameter 2 from 3. Since the graphs considered here cannot have diameter 3, the studied algorithm does not contradict this lower bound.
- h) Consider a clique (with n nodes, n large enough) and remove an arbitrary edge (u, v). Since d(u, v) = 2, the graph has diameter 2. We have $L = \emptyset$ and $\{w\}$ is an *H*-dominating set for all $u \neq w \neq v$. If $\mathcal{DOM} = \{w\}$, then Algorithm 2-vs-4 executes exactly one BFS (from w) which has depth 1 which disproves the claim. Note that this proof works for all $s \leq n-2$.