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Exercise 6

Lecturer: Mohsen Ghaffari

Network Decompositions

Exercise 1: Explain how given a (C,D) network decomposition of graph G, we can determin-
istically compute a (∆ + 1)-coloring of the graph in O(CD) rounds. Here, ∆ denotes an upper
bound on the maximum degree of the graph, and is given to the algorithm as an input.

Solution: We will color graphs G1, G2, . . . , GC one by one, each time considering the coloring
assigned to the previous subgraphs. Suppose that vertices of graphs G1, G2, . . ., Gi are already
colored using colors in {1, 2, . . . ,∆ + 1}. We explain how to color Gi+1 in O(D) rounds. Consider
the clusters X1, X2, . . . , X` of Gi+1 and notice their two properties: (1) they are mutually non-
adjacent, (2) for each cluster Xj , its vertices are within distance D of each other (where distances
are according to the base graph G). For each cluster Xj , let node vj ∈ Xj who has the maximum
identifier among nodes of Xj be the leader of Xj . Then, let vj aggregate the topology of the
subgraph induced by Xj as well as the colors assigned to nodes adjacent to Xj in the previous
graphs G1, G2, . . ., Gi. This again can be done in O(D) rounds, thanks to the fact that all the
relevant information is within distance D + 1 of vj . Once this information is gathered, node vj can
compute a (∆ + 1)-coloring for vertices of Xj , while taking into account the colors of neighboring
nodes of previous graphs, using a simple greedy procedure. Then, node vj can report back these
colors to nodes of Xj . This will happen for all the clusters X1, X2, . . . , X` in parallel, thanks to the
fact that they are non-adjacent and thus, their coloring choices does not interfere with each other.

Exercise 2: In this exercise, we prove that every n-node graph G has an (C,D) (strong-
diameter) network decomposition for C = O(log n) and D = O(log n). The process that we
see that be viewed as a simple and efficient sequential algorithm for computing such a network
decomposition.

We determine the blocks G1, G2, ..., GC of network decomposition one by one, in C phases.
Consider phase i and the graph G\(∪i−1j=1Gj) remaining after the first i−1 phases which defined
the first i blocks G1, . . . , Gi−1. To define the next block, we repeatedly perform a ball carving
starting from arbitrary nodes, until all nodes of G \ ( ∪i−1j=1 Gj) are removed. This ball carving

process works as follows: consider an arbitrary node v ∈ G \ ( ∪ij=1 Gj) and consider gradually

growing a ball around v, hop by hop. In the kth step, the ball Bk(v) is simply the set all nodes
within distance k of v in the remaining graph. In the very first step that the ball does not grow
by more than a 2 factor — i.e., smallest value of k for which |Bk+1(v)|/|Bk(v)| ≤ 2 — we stop
the ball growing. Then, we carve out the inside of this ball — i.e., all nodes in Bk(v) — and
define them to be a cluster of Gi. Hence, these nodes are added to Gi. Moreover, we remove
all boundary nodes of this ball —i.e., those of Bk+1(v) \Bk(v)—and from the graph considered
for the rest of this phase. These nodes will never be put in Gi. We will bring them back in
the next phases, so that they get clustered in the future phases. Then, we repeat a similar ball
carving starting at an arbitrary other node v′ in the remaining graph. We continue a similar
ball carving until all nodes are removed. This finishes the description of phase i. Once no node
remains in this graph, we move to the next phase. The algorithm terminates once all nodes
have been clustered.

Prove the following properties:
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1. Each cluster defined in the above process has diameter at most O(log n). In particular,
for each ball that we carve, the related radius k is at most O(log n).

Solution: We show that the ball carving finishes in dlog ne steps, which implies that the radius
is at most dlog ne as well. First, note that whenever we do not stop the ball growing, the size
of a ball doubles, as |Bk+1(v)] ≥ 2 · |Bk(v)|. Thus, if we did not stop the ball growing within
k steps, the ball Bk(v) has size |Bk(v)| ≥ 2k. After k ≥ dlog ne + 1 steps, this would mean
that Bk(v) contained at least 2k = 2dlogne+1 > n nodes, a contradiction.

2. In each phase i, the number of nodes that we cluster —and thus put in Gi — is at least
1/2 of the nodes of G \ ( ∪ij=1 Gj).

Solution: Note that every node is either clustered or not, thus we show that the number of
nodes included in Gi is at least as large as the number of nodes that are not clustered. Let
us focus on a cluster created by a vertex v, which has radius k. By the stopping condition,
|Bk+1(v)|/|Bk(v)| ≤ 2 must hold. This implies |Bk(v)| ≥ 1/2|Bk+1(v)| or that at least 1/2
of the nodes removed by this step are included in Gi. As is this is true for any ball, it proves
the desired statement.

3. Conclude that the process terminates in at most O(log n) phases, which means that the
network decomposition has at most O(log n) blocks.

Solution: In every step we remove at least 1/2 of the remaining nodes. Thus after building
Gi at most n/2i vertices remain. After dlog ne phases this means that at most n/2dlogne = 1
vertex remains which will trivially form the last cluster.

Exercise 3 (optional): Develop a deterministic distributed algorithm with round complexity
2O(
√
logn·log logn) for computing an (C,D) (strong-diameter) network decomposition in any n-

node network, such that C = O(log n) and D = O(log n).
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