Exercise 11

Lecturer: Mohsen Ghaffari

Cut Edges

Exercise 1: Given a graph $G=(V, E)$, an edge $e \in E$ is called a cut edge if its removal disconnects G. In this exercise, we devise an $O(D)$ round distributed algorithm (with $O(\log n)$ bit messages) that identifies all cut edges, where D denotes the diameter of G.

Let T be a BFS tree of G. For an edge $e \in T$ and an edge $e^{\prime} \notin T$, we say e^{\prime} covers e if and only if the unique cycle in $T \cup\left\{e^{\prime}\right\}$ contains e. That is, in $T \cup\left\{e^{\prime}\right\}$, there is a way to go from one endpoint of e to its other endpoint, without passing through e. In fact, any nontree edge $e^{\prime}=\{u, v\} \notin T$ covers all tree edges e which are on the path from u to w (or from v to w), where w is the lowest common ancestor of u and v.
(a) Argue that any cut edge in G must be a tree edge $e \in T$ for which there is not nontree edge $e^{\prime} \notin T$ that covers e.
(b) Devise an algorithm that in $O(D)$ rounds, makes each node v know all of its at most D ancestors.
(c) Use the above item to argue that in $O(D)$ rounds, we can make the endpoints u, v of any nontree edge $e^{\prime}=\{u, v\}$ know their lowest common ancestor w, at the same time for all nontree edges.
(d) Use the above items to complete an $O(D)$ round algorithm for identifying all cut edges.

Orienting Long Trees

Exercise 2: Consider an arbitrary tree T in a graph $G=(V, E)$. Suppose that G has diameter D. However, T can have arbitrarily large diameter, up to $n-1$. Suppose that we are given a root node $r \in V$. We devise a randomized algorithm that in $O(D+\sqrt{n} \log n)$ rounds, orients all edges of T toward the root r, with high probability. First, mark each edge of T with probability $\frac{1}{\sqrt{n}}$.
(a) Prove that, with high probability, at most $O(\sqrt{n} \log n)$ edges are marked. If you cannot prove the statement with high probability, at least argue that the expected number of marked edges is at most \sqrt{n}.
(b) Prove that, with high probability, each of the connected components of T remaining after the removal of marked edges has diameter at most $O(\sqrt{n} \log n)$.
(c) Devise an $O(\sqrt{n} \log n)$ round algorithm that identifies the connected components remaining after the removal of marked edges.
(d) Using the connected components identified above, devise an $O(D+\sqrt{n} \log n)$ round algorithm that orients all marked edges toward the root. Think about gathering marked edges and which components they connect to a central node.

1. Assume that marked edges are oriented toward the root. Devise an algorithm that, in $O(D+\sqrt{n} \log n)$ extra rounds, orients the edges inside the components, all at the same time, toward the root.
