
Chapter 9

Processes & Concurrency

Each core in the computer can only execute a single program. How can a
computer concurrently execute more than one program?

9.1 Process Scheduling

Definition 9.1 (Process). A program is a sequence of instructions. A process
is a program that is being executed.

Definition 9.2 (Process States). A process can be in one of three states at
any time:

• it can be running: some processor core is executing the process;

• it can be ready (or waiting): the process could be executed, but is not;

• it can be blocked: the process is not currently being executed and some
external event (e.g. an I/O operation) has to happen before the process
becomes ready again; we say the process blocks on or is blocked on that
event.

running

readyblocked

1.
2.

3.

4.

1. Process is selected for execution

2. Process execution is suspended to run an-
other process

3. Process blocks on some external event; its
execution is suspended and cannot be re-
sumed before the event happened

4. External event that blocked process hap-
pens

Figure 9.3: Transitions between the states of a process.

106



9.2. THREADS 107

Remarks:

• The scheduler makes the decision which processes are running at any
point in time, see Figure 9.3.

Definition 9.4 (Scheduler). The scheduler is the part of the OS that decides
which processes are to be executed at which time. It can suspend (or preempt)
the execution of a running process by saving the process’ current state, and pick
a ready process for execution whenever a core is free.

Remarks:

• Process states are an abstraction that describe how the scheduler inter-
acts with processes. Different OS implement the specifics differently,
using different states and transitions.

• Numerous scheduling strategies exist. A simple one is round robin,
where processes take equal-length turns.

• A more elaborate strategy is priority scheduling where a more impor-
tant process takes priority over a less important one. The scheduler
has to make tradeoffs that lead to these different priorities:

– all processes should get to run at some point;

– some processes are more vital than others, e.g. OS services;

– some processes have deadlines, e.g. rendering a video frame;

– the user can decide that a process should take priority;

• Priorities can be fixed or dynamic (recalculated regularly).

• Instead of keeping on running until the scheduler decides to suspend
its execution, a process can also yield the core it is being executed on,
which also sets the process to the ready state. On some embedded
systems, the scheduler never preempts any process and waits until a
process yields its core before scheduling the next process.

• Some processes, for example games, do multiple things at the same
time. How can that be the case when they are a single process?

9.2 Threads

Definition 9.5 (Multithreaded Processes). A multithreaded process is a pro-
cess that contains more than one threads (of execution). All threads within
a process share the address space managed by the process and the files opened by
any thread in the process.



108 CHAPTER 9. PROCESSES & CONCURRENCY

Remarks:

• In modern OS, the scheduler schedules threads. This allows multiple
threads within the same process to run concurrently.

• Since the scheduler schedules threads, the process states from Defi-
nition 9.2 would therefore more aptly be called thread states; we use
“process states” since this is the term used in the literature.

• When we switch execution from one thread to another thread, we have
to store the state information of the currently running thread and load
the state information of the newly selected thread. This is called a
context switch. A context switch between different processes is more
expensive than a context switch between threads of the same process.

• The thread state information (that is saved and loaded during a thread
context switch) is stored in a data structure called the thread control
block (TCB) of the thread. A TCB stores the state of the thread
(in the sense of Definition 9.2), the unique thread ID, the instruction
pointer (also called the program counter ; this is the number of the
last instruction of the process’ code that was executed), the stack of
function calls this thread made, and other accounting information.

• The process state information (that is saved and loaded during a pro-
cess context switch) is stored in an OS data structure called the process
control block (PCB) of the process. A PCB stores the code of the pro-
gram, the unique process ID, a list of open file handles, the address
space available to the process, and other accounting information.

• If multiple processes/threads want to access shared resources while the
scheduler can interleave their execution arbitrarily, how do we make
sure everything works as intended?

9.3 Interprocess Communication

There are two general categories for sharing data between processes: message
passing, and shared memory. In Definition 4.21, we already saw the concept of a
socket as a message passing mechanism. There are other important mechanisms.

Definition 9.6 (Remote Procedure Call). A remote procedure call (RPC)
is a message passing mechanism that allows a process on one machine (the
client) to run a procedure on another machine (the server). The calling process
packs the arguments for the procedure in a message, sends it to the server, and
blocks until the call returns. The server unpacks the message, runs the procedure,
and sends the result back to the client.

Definition 9.7 (Pipe). A pipe is a unidirectional channel of data between
processes that is handled within the OS. One process only writes to the pipe,
and the other process only reads from the pipe. The OS buffers the written data
until it is read.



9.4. MUTUAL EXCLUSION 109

Remarks:

• In this chapter, we focus on shared memory. Memory can be shared
between processes or between threads, and the solutions presented
here can be used in both contexts. We will be speaking of processes
throughout.

Definition 9.8 (Shared Memory). A shared memory system consists of
asynchronous processes that access a common (shared) memory. Apart from
this shared memory, processes can also have some local (private) memory.

Remarks:

• Memory is usually shared among threads within the same process
unless it is explicitly made thread-local.

• Memory is usually not shared between processes unless the program-
mer explicitly uses interprocess communication constructs.

Definition 9.9 (Atomicity). A process can atomically access a word in the
shared memory through a set of predefined operations. An atomic modification
appears instantaneously to the rest of the system.

Remarks:

• Various shared memory systems exist. A main difference is how they
allow processes to access the shared memory. All systems can atomi-
cally read or write a shared memory word W . Most systems do allow
for advanced atomic read-modify-write (RMW) operations, for exam-
ple:

– test-and-set(W ): atomically {t := W ; W := 1; return t;}
– fetch-and-add(W,x): atomically {t := W ; W := W + x; return
t;}

– compare-and-swap(W,x, y): atomically {if W = x then {W := y;
return true;} else return false; endif;}

9.4 Mutual Exclusion

A classic problem in shared memory systems is mutual exclusion. We are given
a number of processes which occasionally need to access the same resource. The
resource may be a shared variable, or a more general object such as a data
structure or a shared printer. The catch is that only one process at the time
is allowed to access the resource. If that is not guaranteed, problems like the
following can happen:

Example 9.10. Consider two processes p1 and p2 that can concurrently update
the balance of an account A in a banking system using Algorithm 9.11 on A:

Now assume A has an initial balance of 0 before p1 executes A.deposit(1)
and p2 executes A.deposit(2). If the execution of p1 and p2 can be interleaved



110 CHAPTER 9. PROCESSES & CONCURRENCY

Algorithm 9.11 Deposit Money to Account

Account internals: balance
Input: deposit amount

1: balance = balance + deposit;

arbitrarily due to scheduling, we could get this schedule:

p1 : evaluate balance + deposit; // 0 + 1(1)

p2 : evaluate balance + deposit; // 0 + 2(2)

p1 : assign balance = 1;(3)

p2 : assign balance = 2;(4)

Considering all possible schedules, instead of always arriving at the expected
balance of 3, we can get a balance of 1, 2, or 3 depending on scheduling decisions.

Remarks:

• If a result depends on scheduling decisions, we have a race condition.

• Race conditions make the behavior of programs unpredictable; they
are notoriously difficult to understand.

• We formalize the prevention of race conditions as follows:

Definition 9.12 (Mutual Exclusion). We are given a number of processes, each
executing the following code sections:
<Entry> → <Critical Section> → <Exit> → <Remaining Code>
A mutual exclusion algorithm consists of code for entry and exit sections, such
that the following holds:

• Mutual Exclusion: At all times at most one process is in the critical
section.

• No deadlock: If some process manages to get to the entry section, later
some (possibly different) process will get to the critical section.

Sometimes we additionally ask for

• No starvation (or no lockout): If some process manages to get to the entry
section, later the same process will get to the critical section.

• Unobstructed exit: No process can get stuck in the exit section.

Remarks:

• Using RMW primitives one can build mutual exclusion algorithms
quite easily. Algorithm 9.14 shows an example with the test-and-set
primitive.

Theorem 9.13. Algorithm 9.14 solves the mutual exclusion problem as in Def-
inition 9.12.



9.4. MUTUAL EXCLUSION 111

Algorithm 9.14 Mutual Exclusion: Test-and-Set

Init: Shared memory word W := 0
<Entry>

1: lock(W ) // Algorithm 9.15

<Critical Section>
2: . . .
<Exit>

3: unlock(W ) // Algorithm 9.16

<Remainder Code>
4: . . .

Algorithm 9.15 lock()

Init: Shared memory word W := 0
1: repeat
2: r := test-and-set(W )
3: until r = 0

Algorithm 9.16 unlock()

Init: Shared memory word W := 0
1: W := 0

Proof. Mutual exclusion follows directly from the test-and-set definition: Ini-
tially W is 0. Let pi be the ith process to successfully execute the test-and-set,
where successfully means that the result of the test-and-set is 0. This happens
at time ti. At time t′i process pi resets the shared memory word W to 0. Be-
tween ti and t′i no other process can successfully test-and-set, hence no other
process can enter the critical section concurrently.

Proving no deadlock works similar: One of the processes loitering in the
entry section will successfully test-and-set as soon as the process in the critical
section exited.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

Remarks:

• No starvation, on the other hand, is not given by this algorithm. Even
with only two processes, there are asynchronous executions where al-
ways the same process wins the test-and-set.

• Algorithm 9.14 can be adapted to guarantee fairness (no starvation),
essentially by ordering the processes in the entry section in a queue.

• The problem of providing mutual exclusion is called synchronization,
and the algorithms and data structures used to provide mutual exclu-
sion are called synchronization mechanisms.



112 CHAPTER 9. PROCESSES & CONCURRENCY

• A natural question is whether one can achieve mutual exclusion with
only reads and writes, that is without advanced RMW operations.
The answer is yes!

• The general idea of Algorithm 9.17 is that process pi (for i ∈ {0, 1})
has to mark its desire to enter the critical section in a “want” memory
word Wi by setting Wi := 1. Only if the other process is not interested
(W1−i = 0) access is granted. This however is too simple since we
may run into a deadlock. This deadlock (and at the same time also
starvation) is resolved by adding a priority variable Π.

• Note that Line 3 in Algorithm 9.17 represents a “spinlock” or “busy-
wait”, similar to Algorithm 9.15.

Algorithm 9.17 Mutual Exclusion: Peterson’s Algorithm

Initialization: Shared words W0,W1,Π, all initially 0.
Code for process pi , i = {0, 1}
<Entry>

1: Wi := 1
2: Π := 1− i
3: repeat until Π = i or W1−i = 0 end repeat
<Critical Section>

4: . . .
<Exit>

5: Wi := 0
<Remainder Code>

6: . . .

Theorem 9.18. Algorithm 9.17 solves the mutual exclusion problem as in Def-
inition 9.12.

Proof. The shared variable Π elegantly grants priority to the process that passes
Line 2 first. If both processes are competing, only process pΠ can access the
critical section because of Π. The other process p1−Π cannot access the critical
section because WΠ = 1 (and Π 6= 1− Π). The only other reason to access the
critical section is because the other process is in the remainder code (that is,
not interested). This proves mutual exclusion!

No deadlock comes directly with Π: Process pΠ gets direct access to the
critical section, no matter what the other process does.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

Thanks to the shared variable Π also no starvation (fairness) is achieved: If
a process pi loses against its competitor p1−i in Line 2, it will have to wait until
the competitor resets W1−i := 0 in the exit section. If process pi is unlucky it
will not check W1−i = 0 early enough before process p1−i sets W1−i := 1 again
in Line 1. However, as soon as p1−i hits Line 2, process pi gets the priority due
to Π, and can enter the critical section.



9.5. SEMAPHORES 113

Remarks:

• Extending Peterson’s Algorithm to more than 2 processes can be done
by a tournament tree, like in tennis. With n processes every process
needs to win log n matches before it can enter the critical section.
More precisely, each process starts at the bottom level of a binary
tree, and proceeds to the parent level if winning. Once winning the
root of the tree it can enter the critical section. Thanks to the priority
variables Π at each node of the binary tree, we inherit all the properties
of Definition 9.12.

• Note that Line 3 in Peterson’s Algorithm does a lot of busy waiting
where process A just keeps checking whether it is its turn while process
B is in its critical section, thereby wasting computation time for the
whole time where B is in its critical section.

• Implementing Peterson’s Algorithm on modern computers can easily
fail because of optimizations like instruction reordering that modern
compilers offer, or memory access reordering of processing cores. The
problems posed by these optimizations can be prevented with some
care, but the solutions to these problems are more expensive than the
synchronization mechanisms that we discuss in the next Section.

9.5 Semaphores

Definition 9.19 (Semaphore). A semaphore is a non-negative integer variable
that can only be modified via atomic operations wait() and signal().

• wait() checks if the semaphore is strictly positive, and if so, decrements
it; if it is 0, the calling process is blocked until the semaphore becomes
positive.

• signal() unblocks a process that is blocked on the semaphore if one exists,
and otherwise increments the semaphore.

Remarks:

• Internally, a semaphore contains an integer S initialized to a non-
negative value, a list L of blocked processes, and a memory word W .

Remarks:

• OS and programming libraries offer semaphores as a synchronization
mechanism.

• What value a semaphore is initialized depends on how it is used.

Definition 9.22 (Mutex, Counting Semaphore). A semaphore that only takes
the values 0 and 1 is called a binary semaphore or a mutex or a lock. A
semaphore that takes more than two values is called a counting semaphore.



114 CHAPTER 9. PROCESSES & CONCURRENCY

Algorithm 9.20 Semaphore: wait()

Input: process P that called wait()
<Entry>

1: lock(W ) // Algorithm 9.15

<Critical Section>
2: if S == 0 then
3: L.addAsLast(P );

<Exit>
4: unlock(W ) // Algorithm 9.16

5: P .block(); // changes state of P to blocked, deschedules it

6: else
7: S--;

<Exit>
8: unlock(W ) // Algorithm 9.16

9: end if

Algorithm 9.21 Semaphore: signal()

<Entry>
1: lock(W ) // Algorithm 9.15

<Critical Section>
2: if L is not empty then
3: P = L.removeFirst();
4: P .unblock(); // changes state of P to ready

5: else
6: S++;
7: end if
<Exit>

8: unlock(W ) // Algorithm 9.16

Remarks:

• Decrementing a mutex from 1 to 0 is also called locking it, while
incrementing a mutex from 0 to 1 is unlocking it.

• Mutexes provide mutual exclusion. Some OS offer data structures
called mutex that behave like a binary semaphore.

• Counting semaphores are useful when there is a limited amount of a
given resource that concurrent processes can use.

• Notice that signal() (see Algorithm 9.21) has no way to check whether
the semaphore is incremented above an intended maximum value.
Thus a semaphore that is used incorrectly can take values outside
of the intended range without providing feedback to the user.

9.6 Classic Problems in Synchronization

To illustrate what problems can occur in a concurrent environment, we show
three classical problems along with solutions using semaphores.



9.6. CLASSIC PROBLEMS IN SYNCHRONIZATION 115

Definition 9.23 (Dining Philosophers Problem). In the dining philosophers
problem, k philosophers sit around a round table. Between every two philso-
phers, there is exactly one chopstick. In the middle of the table there is a big
bowl of food. A philosopher needs two chopsticks to eat and can only pick up
the two chopsticks to her left and right. Each philosopher keeps thinking until
she gets hungry, then she eats (this is the critical section), then thinks again,
and so on. Is there an algorithm that ensures neither deadlock nor starvation
occur?

Remarks:

• We could proceed as follows: every hungry philosopher tries to get
both chopsticks to either side of her, then eats, and only then releases
the chopsticks.

• In this solution, a deadlock occurs if each philosopher grabbed a chop-
stick since then none of them can eat and none of them will release
their chopstick.

• We can prevent this by numbering philosophers and chopsticks in a
clockwise fashion from 0 to k−1, with chopstick i to the right-hand side
of philosopher i. Each philosopher tries to grab the even-numbered
chopstick she can reach first; if k is odd, then philosopher k − 1 will
have two even-numbered chopsticks (0 and k − 1), and she tries to
grab 0 first.

• Algorithm 9.24 is one way to solve the dining philosophers problem.

Algorithm 9.24 Dining Philosophers Algorithm for Process i

Input: process ID i ∈ {0, . . . , k − 1}
Shared data structures: semaphore array chopsticks[k], all initially 1

1: if i is even then
2: even = i mod k;
3: odd = i+ 1 mod k;
4: else
5: even = i+ 1 mod k;
6: odd = i mod k;
7: end if
8: while true do
9: thinkUntilHungry();

10: chopSticks[even].wait(i);
11: chopSticks[odd].wait(i);
12: eat();
13: chopSticks[odd].signal();
14: chopSticks[even].signal();
15: end while

Definition 9.25 (Producer-Consumer Problem). The producer-consumer
problem (or bounded-buffer problem) consists of two processes that have
access to a shared buffer of a fixed size that acts like a queue. The producer



116 CHAPTER 9. PROCESSES & CONCURRENCY

process wants to put units of data into the buffer if it is not full, the consumer
process wants to take units of data out of the buffer if it is not empty.

Remarks:

• The producer-consumer problem occurs in situations where one pro-
cess needs the output of another process to continue working, e.g. an
assembler that needs the output of a compiler.

• We can solve the producer-consumer problem using three semaphores:
one counts how much empty space there is in the buffer, one counts
how much data there is in the buffer, and a mutex for modifying
the buffer, see Algorithms 9.26 and 9.27. The solution also works for
multiple producers and multiple consumers.

Algorithm 9.26 Producer

Input: process ID i
Shared data structures: buffer B, semaphore space initialized to size of B,

semaphore data initially 0, semaphore mutex initially 1
1: while true do
2: space.wait(i);
3: mutex.wait(i);
4: B.put(generateData()); // put new data into buffer

5: data.signal();
6: mutex.signal();
7: end while

Algorithm 9.27 Consumer

Input: process ID i
Shared data structures: buffer B, semaphore space initialized to size of B,

semaphore data initially 0, semaphore mutex initially 1
1: while true do
2: data.wait(i);
3: mutex.wait(i);
4: newData = B.pop(); // remove data from buffer

5: space.signal();
6: mutex.signal();
7: process(newData);
8: end while

Definition 9.28 (Readers-Writers Problem). In the readers-writers prob-
lem there is shared data that some processes (the readers) want to read from
time to time, while other processes (the writers) want to modify. Multiple
readers should be able to read the data at the same time, but while a writer is
modifying the data, no other process can be allowed to read or modify the data.
Is there an algorithm to make sure no deadlock and no starvation occur?



9.7. MONITORS 117

Remarks:

• Notice that the readers-writers problem is a little underspecified: what
if readers want to read and writers want to write at the same time, in
what order should they be allowed to do so?

– One variant of the problem, the Readers-writers problem, priori-
tizes readers: if at least one process is already reading, no other
process that wants to start reading can be kept waiting. Here,
the possibility of writer starvation is built into the problem, and
not just into solutions to the problem!

– The readers-Writers problem prioritizes writers, where a process
can only start reading when no writer is active. The possibility
of reader starvation is built in here.

• For the Readers-writers problem, we use a variable readCount to
count how many processes are currently reading the data. Writers
are only allowed to modify the data when readCount is zero, while
readers increment it whenever they start reading and decrement it
when they stop. We protect modification of readCount with a mutex
readCountMutex.

• To make sure that no other process accesses the data while a writer
is modifying it, we use a separate mutex accessMutex. The first
process to start reading the data locks accessMutex to show that
reading is currently ongoing, and the last process to stop reading un-
locks it again. Every writer has to lock accessMutex before writing.

• Algorithms 9.29 and 9.30 solve the Readers-writers problem.

Remarks:

• As we have seen, semaphores are powerful in solving synchronization
problems. However, they have problems: the use of semaphores is
scattered throughout the code of several processes, making the code
hard to understand, and a single misuse of a single semaphore can
already produce bugs.

• Such bugs can lead to undefined behavior. Since they often only man-
ifest under certain race conditions, they are hard to debug.

• The fundamental problem with semaphores is that the synchronization
mechanism is decoupled from the data it protects.

9.7 Monitors

Definition 9.31 (Monitor). A monitor is an abstract data type that encapsu-
lates shared data with methods to operate on the data. At most one process
can execute any method of the monitor at any given time (mutual exclusion).



118 CHAPTER 9. PROCESSES & CONCURRENCY

Algorithm 9.29 Readers-writers problem: Reader

Input: process ID i
Shared data structures: semaphores readCountMutex, accessMutex both

initially 1, integer readCount:=0
1: while true do
2: readCountMutex.wait(i);
3: readCount++;
4: if readCount == 1 then // first reader waits until last

writer finishes
5: accessMutex.wait(i);
6: end if
7: readCountMutex.signal();
8: read();
9: readCountMutex.wait(i);

10: readCount--;
11: if readCount == 0 then // last reader lets writers start

writing
12: accessMutex.signal();
13: end if
14: readCountMutex.signal();
15: end while

Algorithm 9.30 Readers-writers problem: Writer

Input: process ID i
Shared data structures: semaphore accessMutex initially 1

1: while true do
2: accessMutex.wait(i);
3: write();
4: accessMutex.signal();
5: end while

Remarks:

• The shared data encapsulated by the monitor is only accessible via
the monitor’s methods.

• In the Java Virtual Machine, the keyword synchronized is imple-
mented as a monitor.

• When a process executes a method of a monitor, we say the process
is active in the monitor. If process Q tries to enter monitor M while
process P is currently active in M , then Q will block on M .

• While process P is active in monitor M , it can happen that some
condition has to be satisfied for the method to complete. For example,
let P be a producer in the producer-consumer-problem, and let M be
the monitor for the buffer. While P waits until the buffer has empty
space, consumers have to be allowed to consume data from the buffer.
As the buffer is only accessible via M , P has to block on the condition
“buffer not full” and exit M so consumers can consume data. Once
the condition is satisfied, P can unblock and attempt to re-enter M .



9.7. MONITORS 119

• Abstractly, it can happen that P needs to block while in M ’s critical
section. When it does, it has to exit the monitor and try to re-enter
once the condition it blocked on is satisfied. Monitors coordinate such
issues with condition variables.

Definition 9.32 (Condition Variable). A condition variable is a monitor-
private queue of processes that represents some condition C. A condition vari-
able offers the following interface:

• conditionWait(Semaphore monitorMutex, Process P), which performs
the following:

1. P is added to the condition variable associated with C.

2. P signals the monitorMutex and then blocks.

3. Once it is unblocked, P waits on the monitorMutex so it can safely
re-enter the monitor.

• conditionSignal() unblocks a process that blocked on C.

Algorithm 9.33 Condition Variable: conditionWait()

Condition Variable internals: list of processes blocked on this condition
variable L, semaphore conditionMutex initialized to 1

Input: semaphore monitorMutex, process P that called conditionWait()
1: conditionMutex.wait(P );
2: L.addAsLast(P );
3: conditionMutex.signal();
4: monitorMutex.signal(); // leave the monitor’s critical section

5: P .block();
6: monitorMutex.wait(P ); // re-enter monitor once unblocked

Algorithm 9.34 Condition Variable: conditionSignal()

Condition Variable internals: list of processes blocked on this condition
variable L, semaphore conditionMutex initialized to 1

Input: process P that called conditionSignal()
1: conditionMutex.wait(P );
2: if L is not empty then
3: Pblocked = L.removeFirst();
4: Pblocked.unblock();
5: end if
6: conditionMutex.signal();

Remarks:

• Algorithms 9.33 and 9.34 implement a condition variable.

• A condition variable does not internally represent the condition it
is used to control, instead that condition will be checked for in the
monitor. That way, condition variables are very flexible.



120 CHAPTER 9. PROCESSES & CONCURRENCY

• In the example of producer-consumer, we would have the conditions
“buffer not full” and “buffer not empty”. A producer-consumer-
monitor would offer a method produce(data) that checks whether
“buffer not full” before letting a producer add data, and a method
consume() that checks whether “buffer not empty” before letting a
consumer take data.

• Algorithms 9.35, 9.36 and 9.37 solve the producer-consumer prob-
lem with a monitor. The significant difference to the solution with
semaphores is that all synchronization mechanisms are now encapsu-
lated in the monitor. This makes them easier to design, understand
and debug, and any process can use the methods of the monitor to
safely take part without having to implement any synchronization.

Algorithm 9.35 Producer-Consumer-Monitor

Internals: semaphore monitorMutex initially 1;
condition variables bufferNotFull, bufferNotEmpty, initially empty;
bufferSize:= size of buffer; full:=0

procedure produce(Data data, Process P){
1: monitorMutex.wait(P );
2: while full == bufferSize do
3: bufferNotFull.conditionWait(monitorMutex, P );
4: end while
5: full++;
6: bufferNotEmpty.conditionSignal();
7: monitorMutex.signal();
}

procedure consume(Process P){
8: monitorMutex.wait(P );
9: while full == 0 do

10: bufferNotEmpty.conditionWait(monitorMutex, P );
11: end while
12: full--;
13: bufferNotFull.conditionSignal();
14: monitorMutex.signal();
}

Algorithm 9.36 Producer for Monitor from Algorithm 9.35

Internals: Producer-Consumer-Monitor M
Input: Producer process P

1: while true do
2: M .produce(P .generateData(), P );
3: end while



BIBLIOGRAPHY 121

Algorithm 9.37 Consumer for Monitor from Algorithm 9.35

Internals: Producer-Consumer-Monitor M
Input: Consumer process P

1: while true do
2: M .consume(P );
3: end while

Chapter Notes

The first solution to the mutual exclusion problem for two processes was given
by the Dutch mathematician T.J. Dekker in 1959 according to an unpublished
paper by Edsger W. Dijkstra [3]. Dijkstra himself is widely credited with pub-
lishing the founding paper in the field of concurrent programming [2] that solved
the mutual exclusion problem for n processes.

Semaphores were invented by Dijkstra around 1962/1963 [4]. He called the
operations P() and V() (from the Dutch words “probeer” for “try” and “ver-
hoog” for “increase”) instead of wait() and signal().

Monitors were the result of a number of refinements to the basic idea of
encapsulating data with synchronization mechanisms by C.A.R. Hoare and P.
Brinch Hansen [6, 7, 8]. The ideas by Hoare and Hansen have slightly different
semantics which was too much detail for this script; most concurrency textbooks
expound on Hoare monitor semantics and Hansen monitor semantics.

The Dining Philosophers Problem, the Producer Consumer Problem, and
the Readers Writers Problem (both versions) are classic examples often used to
evaluate newly suggested synchronization mechanisms. Dijkstra posed the Din-
ing Philosophers Problem as an exam problem in 1965 in terms of access to tape
drives; Hoare came up with the formulation in terms of hungry philosophers soon
after. Dijkstra also introduced the Producer Consumer Problem [5] in 1972 to
illustrate the usefulness of Hoare’s/Hansen’s developing ideas about conditional
critical sections that would evolve and be incorporated into monitors.

The two original variants of the Readers Writers Problem were posed and
solved with the use of semaphores by Courtois, Heymans, and Parnas [1]. The
Readers-writers problem is called the first readers-writers problem in the litera-
ture, and the readers-Writers problem is the second readers-writers problem in
the literature; using “first” and “second” derives from Courtois et al. naming
the variants “Problem 1” and “Problem 2” in their paper.

This chapter was written in collaboration with Georg Bachmeier.

Bibliography

[1] Pierre-Jacques Courtois, Frans Heymans, and David Lorge Parnas. Concur-
rent control with “readers” and “writers”. Communications of the ACM,
14(10):667–668, 1971.

[2] E. W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, 1965.



122 CHAPTER 9. PROCESSES & CONCURRENCY

[3] E. W. Dijkstra. Cooperating sequential processes. In Per Brinch Hansen, ed-
itor, The Origin of Concurrent Programming: From Semaphores to Remote
Procedure Calls, pages 3–61. Springer New York, 2002.

[4] E. W. Dijkstra. Over de sequentialiteit van procesbeschrijvingen, undated.
circulated privately; original at https://www.cs.utexas.edu/users/EWD/

translations/EWD35-English.html English translation at https://www.

cs.utexas.edu/users/EWD/translations/EWD35-English.html.

[5] Edsger W Dijkstra. Information streams sharing a finite buffer. Information
Processing Letters, 1(5):179–180, 1972.

[6] Per Brinch Hansen. Operating system principles. Prentice-Hall, Inc., 1973.

[7] C. A. R. Hoare. A structured paging system. The Computer Journal,
16(3):209–215, 1973.

[8] C. A. R. Hoare. Monitors: An operating system structuring concept. Com-
mun. ACM, 17(10):549–557, 1974.

https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html
https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html
https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html
https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html

