
Chapter 2

Network Layer & Routing

How is data navigated between the billions of computers of the internet?

2.1 Graphs

Communication networks and many other types of networks can be modeled as
graphs.

Definition 2.1 (Graph). A graph G is a pair (V,E), where V is a set of nodes
and E ⊆ V × V is a set of edges between the nodes. The number of nodes is
denoted by n and the number of edges by m.

Remarks:

• In the internet, there are many types of nodes: Computers or smart-
phones that communicate over an infrastructure that consists of routers
or switches. These nodes are connected by wired or wireless edges.

• A typical way to store a graph is an adjacency matrix. An adjacency
matrix is a binary n×n square matrix with a 1-entry in location (i, j)
if and only if nodes i and j are connected by an edge.
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v3

v4
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v1 v2 v3 v4

v1 0 1 1 0
v2 1 0 1 0
v3 1 1 0 1
v4 0 0 1 0

Figure 2.2: A graph G = (V,E) with node set V = {v1, v2, v3, v4} and edge set
E = {{v1, v2}, {v1, v3}, {v2, v3}, {v3, v4}}, and the adjacency matrix of G.
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Remarks:

• We say that node u is incident to edge {u, v} ∈ E and we say that
nodes u and v are adjacent. The neighborhood N(v) of node v is the
set of nodes adjacent to v, i.e., N(v) = {u ∈ V | {u, v} ∈ E}. The
size |N(v)| = δ(v) of the neighborhood of node v is referred to as the
degree of v. In Figure 2.2, δ(v1) = 2.

• A directed graph G = (V,E) is a graph, where each edge has a direc-
tion, i.e., we distinguish between edges (u, v) and (v, u). If all edges
of a graph are undirected, then the graph is called undirected. The
matrix representation of an undirected graph is always symmetric,
whereas an asymmetric matrix can also encode directed edges.

Definition 2.3 (Weighted Graph). A weighted graph G = (V,E, ω) is a graph,
where ω : E → R assigns a weight ω(e) for each edge e ∈ E. The weight of
graph G is ω(G) =

∑
e∈E ω(e).

Remarks:

• To capture weighted graphs, the adjacency matrix representation can
be extended by replacing the 1-entries by the weights of the corre-
sponding edges.

• If the graph is sparse, i.e., has few edges, the matrix representation can
take a lot of unnecessary space. Such a sparse matrix can be stored
as an adjacency list. In an adjacency list, every element corresponds
to an edge of the graph identified by its endpoints.

Definition 2.4 (Path). Let G = (V,E) be a graph. A path between nodes
v1 and vk is a sequence of nodes (v1, v2, . . . , vk), where {vi, vi+1} ∈ E for all
1 ≤ i < k. The path has k − 1 hops.

Definition 2.5 (Connected Graph). A graph G = (V,E) is connected if there
exists a path between any two nodes u, v ∈ V .

Definition 2.6 (Cycle). Let G = (V,E) be a graph. A cycle is a sequence of
nodes (v1, v2, . . . , vk, v1) such that {vk, v1} ∈ E, {vi, vi+1} ∈ E for all 1 ≤ i < k,
and no node appears twice.

Definition 2.7 (Tree). A tree is a connected graph that contains no cycles.

Remarks:

• Trees are connected graphs with n − 1 edges. By removing any edge
in a tree, the tree becomes disconnected.

• A rooted tree is a tree with a special root node r. Every other node v
has a parent, that is the node adjacent to v and closer to r.

• Next, we will discuss ways to construct spanning trees. A spanning
tree is a tree that connects all nodes in a graph.
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2.2 Spanning Trees

Definition 2.8 (Subgraph). Let G = (V,E) be a graph. A subgraph G′ =
(V ′, E′) of G is a graph such that V ′ ⊆ V and E′ ⊆ E.

Definition 2.9 (Spanning tree). Given a graph G = (V,E), a spanning tree
T = (V,E′) is a subgraph of G that is a tree.

Definition 2.10 (MST). Given a weighted graph G = (V,E, ω), a minimum
spanning tree (MST) T is a spanning tree that minimizes the total weight ω(T ).

Remarks:

• In the beginning of the 20th century, at the time of electrification,
engineers were faced with the problem of designing an efficient network
of power lines. In particular, a Moravian (Czech) academic called
Otakar Bor̊uvka defined this problem abstractly, and observed that
the power grid should have the following properties: (1) it should
connect all the nodes; (2) building lines is expensive, thus redundant
edges (edges which can be removed without disconnecting the power
grid), should be avoided; (3) the cost should be minimized. In other
words, he defined the Moravian Spanning Tree (MST) problem.

Algorithm 2.11 MST Algorithm

1: Given a weighted graph G = (V,E, ω)
2: Let S = {u} be a set of visited nodes, initialized with any node u ∈ V
3: Let T be a tree just consisting of the single node u ∈ S, no edges
4: while S 6= V do
5: Find minimum weight edge e = {v, w} with v ∈ S and w ∈ V \ S
6: Add node w to S
7: Add edge e to T
8: end while

Lemma 2.12. Algorithm 2.11 outputs a minimum spanning tree.

Proof. In every iteration of the while loop, a new edge is added. Since the new
edge connects the current tree to a new unseen node, it does not produce a
cycle, and the output is indeed a tree. Since nodes are added until S = V , the
tree is a spanning tree.

Now for minimum weight: To simplify the proof, let us assume that no two
edges have the same weight. Assume (for the sake of contradiction) that our
tree T is not of minimum weight, and the true minimum spanning tree T ∗ has
weight ω(T ∗) < ω(T ). Let e be the first edge added to T that is not in T ∗.
Edge e is the cheapest edge that connects a node in set S with a node in V \S.
Since T ∗ is not using e, it must use another edge e∗ to connect the nodes in S
with the nodes in V \ S, with ω(e∗) > ω(e) Replacing e∗ with e in T ∗ improves
ω(T ∗) by ω(e∗) − ω(e) > 0, a contradiction to the assumption that ω(T ∗) was
minimum.

Theorem 2.13. The time complexity of Algorithm 2.11 is O(m log n).
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Proof. We use a heap data structure to memorize the edges which are eligible,
i.e., edges which connect nodes in S with nodes in V \ S. Whenever a node
v is added to set S, we add all edges adjacent to v to the heap. Adding an
edge e to the heap costs time O(logm), as there are at most m edges in the
heap. Removing the minimum-weight edge e from the heap also costs time
O(logm). Testing whether the current minimum-weight edge e is still eligible
(one of its adjacent nodes still in V \ S) costs constant time. As such, every
edge e enters and leaves the heap at most once, with m edges this gives a total
cost of O(m logm). With m < n2, we have logm < 2 log n, and a total runtime
of O(m log n).

Remarks:

• The term O() used in Theorem 2.13 is called “big O” and is often used
in math. Roughly speaking, O(f) means “in the order of function f ,
ignoring constant factors and smaller additive terms”. More formally,
for two functions f and g, it holds that f ∈ O(g) if there are constants
x0 and c so that |f(x)| ≤ c|g(x)| for all x ≥ x0. For an elaborate
discussion on the big O notation we refer to other introductory math
classes, or Wikipedia.

2.3 Shortest Path

Definition 2.14 (Shortest path). Let G = (V,E, ω) be a weighted graph. The
shortest path between nodes u ∈ V and v ∈ V corresponds to the path P between
u and v of minimum total weight ω(P ).

Definition 2.15 (Distance). Let G = (V,E, ω) be a weighted graph and let P
be the shortest path between nodes u ∈ V and v ∈ V . The distance d(u, v)
between u and v is ω(P ).

Remarks:

• In the unweighted case, the distance corresponds to the number of
hops of the shortest path.

• A shortest path tree (SPT) is a spanning tree T , rooted at node r, of
graph G = (V,E, ω), where the distance from any node v ∈ V to r in
T equals to the distance d(r, v) in G.

Lemma 2.17. Algorithm 2.16 computes the shortest path between node r and
every other node v.

Proof. By induction, we assume that every node v in set S with dv ≤ d has
the correct distance dv and parent pv. This is true initially, with only root r
in set S. In every iteration of the while loop, a new node w is added to set S.
The new node w we add to S has the minimum distance dw = dv + ω(e) to the
root. As such, node w is the nearest node that is directly reachable from set
S. The nodes not directly reachable from S cannot be closer than w because
any (shortest) path must go through some node reachable from S. So node w
can be added to S, with v being the correct parent, and dw being the correct
distance. Since nodes are added until S = V , every node will be included.
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Algorithm 2.16 SPT Algorithm

1: Given a weighted graph G = (V,E, ω) and a node r ∈ V
2: Set a parent node pv = null for every node v ∈ V
3: Set dr = 0 and dv =∞ for every node r 6= v ∈ V
4: Let S = {r} be the set of visited nodes
5: while S 6= V do
6: Find edge e = {v, w} with v ∈ S and w ∈ V \S with minimum dv +ω(e)
7: Set pw = v
8: Set dw = dv + ω(e)
9: S = S ∪ {w}

10: end while

Theorem 2.18. Algorithm 2.16 runs in time O(m log n).

Proof. The proof is similar to the proof of Theorem 2.13. We use a heap data
structure to memorize the edges which are eligible, i.e., which nodes in S connect
with which nodes in V \ S. Whenever a node w is added to set S, we add all
edges adjacent to w to the heap. Adding an edge e to the heap costs time
O(logm), as there are at most m edges in the heap. Removing the minimum-
weight edge e from the heap also costs time O(logm). Testing whether the
current minimum-weight edge e is still eligible (one of its adjacent nodes still in
V \ S) costs constant time. As such, every edge e enters and leaves the heap at
most once, with m edges this gives a total cost of O(m logm). With m < n2,
we have logm < 2 log n, and a total runtime of O(m log n).

Remarks:

• Runtime can be improved to O(m + n log n) by using a so-called Fi-
bonacci heap.

2.4 Addressing

To allow unambiguous node to node communication, every node requires a
unique address.

Definition 2.19 (Address). Every node in a graph has an address.

Remarks:

• In the graph model, the nodes can be addressed by their unique names
v1, v2, . . . , vn. What about the internet?

Protocol 2.20 (IPv4). Every node in the network is assigned a unique 32-bit
label. For readability, the 32 bits are grouped into 4 chunks of 8 bits, i.e., the
addresses range between 0.0.0.0 and 255.255.255.255.
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Remarks:

• Some IPv4 addresses have a special meaning. The IPv4 address
127.0.0.1, for example, is reserved for the localhost, i.e., an address
for a computer back to itself.

• A prefix of k bits of an IPv4 address corresponds to the first k bits
of the address. An address block is the set of addresses that share a
prefix. The set of (private) addresses sharing the first 12 bits between
172.16.0.0 and 172.31.255.255 is denoted by 172.16.0.0/12. In the early
days of the internet, IPv4 addresses were assigned in huge blocks, e.g.,
MIT owns the address block 18.0.0.0/8. This waste of addresses (as
well as the need for hiearchical addressing) resulted in the need for
more IP addresses, giving rise to the IPv6 protocol.

• Soon many devices will be internet capable, including specialized heart-
rate pacemakers. There are estimates that there will be over 25 billion
devices connected to the internet by 2020. These devices have to be
reachable by an address.

Protocol 2.21 (IPv6). Every node in the network is assigned a unique 128-bit
label. In the IPv6 notation, the address is represented as 8 chunks of 16 bits
separated by colons, where each chunk is written as 4 hexadecimal digits.

Remarks:

• Since IPv6 has a huge number of addresses, nodes often have more
than one address.

• To simplify the IPv6 notation, the standard is to leave out leading
zeros in every chunk. Furthermore, a consecutive section of zeros can
be replaced by a double colon. However, the double colon notation
can only be used once in an address to preserve unambiguity. There-
fore, the IPv6 address 6666:0db8:0000:0000:ff00:0000:0042:8329 can be
written as 6666:db8::ff00:0:42:8329.

• Every IPv4 address is included in the IPv6 domain. They contain
the IPv4 address in the least-significant 32 bits. These addresses are
usually written in a special notation, e.g., the IPv4 address 8.8.4.4 can
be represented as ::ffff:8.8.4.4.

• IP addresses are not really user friendly. When browsing the in-
ternet, a site is accessed by another address, the hostname, e.g.,
www.netflix.com. The Domain Name System (DNS) is a service
that translates the hostname into an IP address. We will learn about
it in Chapter 4.

• There are many more examples of real world addressing. For example,
every land line phone has a unique address, the phone number.
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2.5 Packets

The data is partitioned into packets; each packet is handled individually by the
network and directed to its destination.

Definition 2.22 (Packet). Every network packet contains a header and a pay-
load. The payload of a packet corresponds to the actual data of the packet. The
header contains information for delivering the payload.

Remarks:

• The size of an IPv4 packet is theoretically limited to 65, 535 bytes and
thus, to send a lot of information, the nodes need to send a lot of
packets.

• The IPv4 header contains at least 160 bits of information. The header
contains, e.g., the source and the destination IPv4 address. One field
of 4 bits is reserved for the version number, e.g., for IPv4, this field
contains the binary value 0100. Furthermore, an IPv4 header contains
a checksum (for error checking the contents of the header), and a
number of possible options that can be used, e.g., for debugging. Due
to the variable amount of options, the header contains a field for the
length (in bytes) of the header, up to 480 bits. There is also a field
for the total length (in bytes) of the packet.

• Some nodes or edges can handle larger packets than others and some-
times, a packet has to be split into smaller fragments before forwarding
it. The header contains an identification number of 16 bits for identify-
ing a group of fragments plus more fields for ordering of the fragments,
and whether or not there are more fragments to come. Fragmenting
is unpopular, so in practice, packets are usually smaller than 1, 500
bytes.

• To prevent packets from traveling in the internet indefinitely (due to
routing misconfigurations), the header contains an 8 bit time-to-live
(TTL) field, which specifies how many hops a packet is allowed to
travel before it is dropped. Every node decrements the TTL by one
and drops the packet if TTL = 0.

• Some of the IPv4 header fields are rarely used and, perhaps surpris-
ingly, the IPv6 header contains less fields than the IPv4 header. For
example, the IPv6 header does not contain a checksum. In total, the
IPv6 header has 320 bits, most of these for source and destination
address, which are each 128 bits. It also contains a Hop Limit field
that has the same purpose as the TTL in IPv4.

• In the literature, a packet is sometimes referred to as a datagram.

2.6 Routing

The task of a routing protocol is to decide along which path(s) a packet travels
from its source to its destination.
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Definition 2.23 (Routing). Every node v has a routing table that maps every
destination address to a neighbor of v.

Remarks:

• The process of an intermediate node receiving a packet and sending
it to the next node along the path to the destination is referred to as
forwarding. To perform forwarding, every node has to know to which
neighbor to forward each packet.

Routing table of v1

Destination Next node
v1 deliver
v2 v2

v3 v3

v4 v3

v1

v3

v4

v2

Table 2.24: A simplified routing table.

Remarks:

• Since there are millions of devices connected to the internet, it is in-
feasible for every node to store an entry in the routing table for every
destination. Towards this end, close-by nodes often have similar ad-
dresses, i.e., they share a common prefix. Thanks to this “hierarchical”
addressing, routing table sizes remain manageable, as often enough a
single entry for all addresses with the same prefix is sufficient. Nodes
just match a destination address to longest matching prefix in their
routing table – this is known as longest prefix matching.

• Assigning addresses that minimize the maximum routing table storage
needed per node is an interesting question. In the literature, this
problem is known as the compact routing problem.

• The default route defines where to forward packets when no specific
entry is available in the routing table for a destination. In a local area
network, the default route normally points to the gateway/modem
that has a connection to the internet.

Algorithm 2.25 Link-State (LS) Routing Algorithm.

1: Given a weighted graph G = (V,E, ω)
2: Learn ω(e) for every edge e ∈ E
3: Compute shortest paths to all nodes, e.g., by using Algorithm 2.16
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Remarks:

• The nodes eventually discover changes in the network topology and
update their routing information.

• Link-State routing is used in practice, for example, by the Open Short-
est Path First (OSPF) protocol. On top of Algorithm 2.25, OSPF of-
fers advanced features such as routing along multiple paths to increase
performance.

• A drawback of LS routing is that the nodes need to know the whole
topology of the network and therefore, LS routing is not feasible on
a larger scale. However, autonomous systems in the internet are rel-
atively small and therefore, LS algorithm is useful for routing within
autonomous systems.

Definition 2.26 (Autonomous System). Let G = (V,E) be a graph. An au-
tonomous system (AS) is a collection of nodes owned by one company, i.e., a
subgraph G′ = (V ′, E′) of G, where every u ∈ V ′ has the knowledge of the whole
topology of G′.

Remarks:

• Every autonomous system is identified by a unique autonomous sys-
tem number (ASN), which helps to unify multiple blocks of addresses
(that do not share the same prefix) given to the same AS. The ASN
is used, e.g., by the Border Gateway Protocol (BGP) to advertise
connections between distinct autonomous systems.

• The number of autonomous systems in the internet is relatively small,
below 100, 000.

Algorithm 2.27 Distance-Vector (DV) Routing Algorithm.

1: Given a weighted graph G = (V,E, ω) and a node u ∈ V
2: Initialize a distance estimate D(u → v) = ω({u, v}) for all neighbors N(u)

and D(u→ w) =∞ for all other nodes
3: Send distance vector D(u) = {D(u→ v) | v ∈ N(u)} to all neighbors N(u)
4: while true do
5: Upon receiving a distance vector D(v) from a neighbor v, update the

distance estimate to all destinations accordingly
6: if D(u→ w) changed for any w then
7: Send the updated distance vector D(u) to all neighbors
8: end if
9: end while

Remarks:

• Overhead in the packet size can be reduced by only sending the up-
dated entries in the distance vector in Line 7.

• DV routing is distributed, i.e., the nodes do not need to acquire the
knowledge of the whole network topology to perform routing.
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• On the negative side, the DV algorithm has troubles if (the weights of)
the network links are subject to change. Imagine a network with nodes
u, v, w and edges with weights ω({u, v}) = ω({v, w}) = 1. Eventually
Algorithm 2.27 will compute D(u → w) = 2 and D(v → w) = 1.
Now, we set a new weight ω({v, w}) = 100 and let v detect the weight
change. According to Algorithm 2.27, node v still thinks that there
is a path to from u and w that has a cost of 2, since u reported that
D(u → w) = 2. Thus, v tells u that its cost of the path to w is now
3. Once u learns this new cost, it will similarly update its estimate to
4 and so on. This is known as the count-to-infinity problem.

• Distance-Vector routing is used for example by the Routing Informa-
tion Protocol (RIP). In RIP, the cost to the destination if defined sim-
ply by the number of hops, i.e., the underlying graph is unweighted. In
the RIP protocol, the distance vectors are exchanged between nodes
approximately every 30 seconds. Furthermore, RIP limits the maxi-
mum cost of a path to 15, i.e., the protocol can only be executed in a
graph where the maximum distance between nodes is 15.

Definition 2.28 (Intra-Domain and Inter-Domain). The division of the in-
ternet into autonomous systems allows for different routing protocols. Routing
within an autonomous system is known as intra-domain routing, often link-
state routing algorithms are used. Routing between different autonomous sys-
tems is known as inter-domain routing, and the routing protocol is the Border
Gateway Protocol (BGP).

Algorithm 2.29 Border Gateway Protocol (BGP)

1: Basically, BGP is a DV Routing Protocol, see Algorithm 2.27
2: BGP nodes send out annoucements about every 30 seconds
3: BGP nodes send reachability information: every node announces which ad-

dress blocks (prefixes) it can reach
4: Instead of just distance, nodes announce the whole AS path to each prefix
5: The network is not weighted, an edge between two AS nodes costs 1.

Remarks:

• Since nodes announce whole AS paths, BGP is sometimes called a
Path Vector Routing Protocol.

• Sending whole paths solves the count-to-infinity and other nasty prob-
lems. In our previous count-to-infinity example, node v2 immediately
sees that the path of node v1 goes through v2 itself, so it is not a viable
alternative.

• If an AS does not want other nodes to route through it, the AS will
prepend its number multiple times to make the path longer, and hence
less attractive.

• BGP allows outbound policies: If a node absolutely does not want to
attract traffic to a certain prefix from a neighbor, it simply does not
announce the prefix to this neighbor.
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• BGP also allows inbound policies: If a node does not want to route
through a neighbor, the node just ignores the announcement of that
neighbor.

• For example, large provider ASs will only route traffic through smaller
customer ASs if necessary.

2.7 Tunnels

Definition 2.30 (Tunnel). The payload of a packet is a complete packet, with
header and payload. In other words, we have two headers.

Remarks:

• A good application for a tunnel is a virtual private network (VPN),
as defined by IPsec. Some node u wants to send a packet to node
w as if it was sent by node v. So node u prepares a packet header
with source v and destination w, and tunnels that packet in a packet
header with source u and destination v. When the first header arrives
at v, node v will forward the payload (which is itself a packet with a
correct header) to w. VPNs can be used to access a company network
(v, w) from nodes outside the company network (u). VPNs can be
used to access web services with country restrictions.

• Tunnels are used to sneak through firewalls. A firewall checks whether
a packet header is correct, i.e. source and destination addresses make
sense. If a firewall is so simplistic, one may simply tunnel an “inter-
esting” packet inside an unsuspicious packet.

• Tunnels are also used to translate back and forth between IPv4 and
IPv6 protocols. If some nodes on a path only understand IPv4, an
IPv6 packet can be tunneled through these nodes by prepending an
IPv4 header.

• Another application of tunnels is security. One can send unencrypted
traffic over a network in an encrypted tunnel.

• Tunnels are also used in Multiprotocol Label Switching (MPLS): Many
internet service providers (ISPs) implement virtual circuit style rout-
ing by prepending an MPLS header, to get more control which paths
packets are taking.

• What are virtual circuits? Packets are not the only approach to net-
work communication. In the plain old telephone service, a circuit is
established on a path for the duration of the call and disconnected
afterwards. Simulation of a circuit with packets is called a virtual
circuit.

2.8 Beyond IP

The network layer features other protocols, beyond the internet protocol IP.
The routing protocol RIP is such a protocol, but also the Internet Control
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Message Protocol (ICMP). ICMP is used by network devices, like routers, to
send error messages indicating that a requested service is not available or that
a host could not be reached. ICMP starts with the regular IPv4 header with IP
protocol number 1, and then appends a short ICMP header. ICMP is used by
some diagnostic tools like ping or traceroute, which tell you whether a node is
online, and what the route to a node is.

Chapter Notes

Graph theory and networks are very central topics and have been studied even
before the time of modern computers. For example, Euler studied traversal
problems (among other things) already in the 18th century. Prim’s algorithm
(Algorithm 2.11) dates back to 1957 [9] and Dijkstra invented his famous al-
gorithm (Algorithm 2.16) in 1959 [2]. The algorithm by Dijkstra can also be
used to compute the shortest paths between all pairs of nodes, i.e., it solves
the all pairs shortest path (APSP) problem, instead of just a fixed pair. Not
much later than Dijkstra, the Floyd-Warshall algorithm [3, 12], that can also
deal with negative edge weights, was invented. This algorithm, however, has a
slightly worse running time of O(n3).

Due to the vastness of the modern internet, there are various textbooks
covering details of computer networks [4, 11]. More details of the IPv4 [8] and
IPv6 [1] can be found from the RFC specifications and similarly for the RIP
protocol [5], OSPF protocol [7], the BGP protocol [10] and the Domain Name
System [6].

This chapter was written in collaboration with Jara Uitto.
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