
Chapter 4

Application Layer &
Sockets

If you ever write Internet code, almost surely it will be application layer code.

4.1 HTTP

Today a large majority of all data is transferred using the HTTP protocol, with
a share of over 80%. HTTP is used by websites such as Facebook, Wikipedia,
or Google, but also by popular content streaming services such as Netflix or
Youtube.

Definition 4.1 (URL). A Uniform Resource Locator (URL) is a string that
uniquely identifies a resource on a server. In its most common form it consists
of a scheme detailing the protocol to use, the host identifier on which the
resource is located and a path detailing the location on the server.

Remarks:

• The scheme in this section will either be http for unencrypted HTTP
or https for HTTP over an encrypted connection. If the scheme is
http, then by default the client will contact the server on port 80. For
https the client uses port 443.

• HTTPS and HTTP only differ in the underlying transport protocol.
While HTTP directly communicates over a TCP connection, HTTPS
further encrypts its traffic by inserting an encryption layer between
HTTP and the TCP connection. Please refer to Section 4.6 for more
details regarding layers, and Chapter 13 for encryption.

• The host identifier may either be the server’s IP address or a domain
name, which would then be translated to the IP address using a DNS
lookup. Refer to Section 4.3 for details about DNS.

• There are a number of optional fields that may also be part of a URL.
These are username and password for simple authentication, a port if

28

4.1. HTTP 29

a non-default port is used, a query-string to pass arguments to a re-
source, and a fragment describing which part of the resource is of inter-
est: scheme://user:password@host:port/path?query#fragment.

Protocol 4.2 (HTTP). The Hypertext Transport Protocol (HTTP) is a network
protocol built on top of TCP, used by a client to interact (retrieve, store, etc.)
with resources on a server.

Remarks:

• HTTP has simple request-response semantics, i.e., the client issues a
request and the server responds. The requests and responses are in a
human readable format.

• HTTP is a client-server protocol, in which the client requests an oper-
ation, called method, on the resource and the server returns a response.
The most common method for HTTP requests is GET which is used
to retrieve a resource from the server. Other methods include HEAD,
used to retrieve metadata about a resource from the server, POST and
PUT, commonly used to update an existing resource or create a new
resource on the server, and DELETE, used to remove a resource from
the server.

• Both request and response comprise a header and a payload separated
by an empty line.

• The request header contains a request line, consisting of a method, a
URL specifying which resource it should be applied to, and an HTTP
version. In addition the header may include a number of request
options, i.e., Key: Value pairs with additional information about the
client and the request, each on a new line. The request header is
terminated by two successive newline characters: \n\n.

• The PUT and POST methods include a payload, i.e., some data that is
transferred along with the request. Semantically this corresponds to
the content of the resource that the client is attempting to create or
update. If a payload is included in the request, a Content-Length

header option specifies the length of the payload in bytes, and the
payload is appended after the two newline characters.

• The server response header consists of a response line containing a
protocol version, a numeric return code and a human readable re-
sponse. Additionally it may include response options, in the same
format as the request options. Options usually include the resource
Content-Type and Content-Length. The response header is termi-
nated by two successive newline characters and is followed by the
payload, i.e., content, of the resource.

• The numeric return codes returned by the server are 3-digit numbers
organized into groups according to their first digit:

– 1xx: Informational Not used, but reserved for future use

30 CHAPTER 4. APPLICATION LAYER & SOCKETS

– 2xx: Success The action was successfully received, understood,
and accepted, e.g., 200, indicating a successful request returning
the requested resource.

– 3xx: Redirection Further action must be taken in order to com-
plete the request

– 4xx: Client Error The request contains bad syntax or cannot
be fulfilled, e.g., 404, indicating that a non-existing resource was
requested.

– 5xx: Server Error The server failed to fulfill an apparently valid
request

• A resource may be any content that can be serialized and returned in
response to a request. This includes textual as well as media contents.

• Most resources on the Internet are HTML pages and associated me-
dia resources, such as images and videos. A browser on the user’s
computer is used to render the HTML pages and associated media
into a webpage and display it to the user. However, the pervasive de-
ployment of HTTP for user content has resulted in HTTP becoming
the primary transport mechanism for other resources as well. Stan-
dards such as Representational State Transfer (REST), XML-RPC,
Webservices (SOAP), and JSON-RPC are nowadays used to enable
application to application communication on top of HTTP.

• The server may respond to a request with a continuous stream of
data. Conceptually streaming is no different from a download, the
only difference is that the server does not announce the size of the
returned response in the response options and it does not close the
connection.

• HTTP is a stateless protocol.

Definition 4.3 (Stateless Protocol). A protocol is stateless if each request is
treated independently. In other words, the communication consists of indepen-
dent request-response pairs. A stateless protocol relieves the server from storing
information about its clients.

Remarks:

• Stateless protocols are simpler but limited in applicability. For exam-
ple, authenticating a user is tricky in a stateless protocol.

• To allow stateful applications on top of HTTP, a Cookies-option has
been introduced by browsers. This option can be used to send small
amounts of data (session identifier, authentication token, . . .) from
the client to the server with every request, allowing the server to
recognize the user, thus storing state about the user.

Protocol 4.4 (HTTP 1.0). HTTP 1.0 is the first version of HTTP.

4.1. HTTP 31

GET /index.html HTTP/1.0

User-Agent: Mozilla/5.0

Accept: text/html

HTTP/1.0 200 OK

Content-Type: text/html; charset=UTF-8

Content-Length: 312

<html>...

Figure 4.5: Simple HTTP 1.0 interaction retrieving the index.html resource on
the server. The client request on the left is terminated by an empty line. On
the right side, the response header and content are sent back by the server.

Remarks:

• HTTP 1.0 was only intended to transfer hypertext and some embed-
ded resources such as images.

• In HTTP 1.0 a client opens a new connection for each request, which is
closed once the response is delivered. Due to the increasing number of
resources required to render a webpage, this results in a large number
of (slow start) TCP connections between client and server.

Protocol 4.6 (HTTP 1.1). HTTP 1.1 is the second released version of HTTP,
which includes a number of incremental changes such as request pipelining, pro-
tocol upgrade capabilities, range request, better support for caching and compres-
sion.

Remarks:

• Pipelining uses persistent connections that are reused for multiple re-
quests before being closed. The client opens a connection once and
issues multiple requests on that connection. A browser may still open
multiple concurrent connections, but the overall number of connec-
tions is reduced, and the overhead of establishing the connection and
the TCP slow start is amortized over multiple requests.

• If supported by the server, range requests allow the client to specify
a byte-range that is to be returned in the request options. Without
range requests it is not possible to resume an interrupted download.

• Protocol upgrades are used to switch to completely different protocols
over the same connection. The server responds to the current request
and then the protocol is switched to the protocol indicated in the
request options.

• One example of a protocol upgrade are WebSockets. For security rea-
sons, scripts running in the browser are not allowed to open TCP
connections to servers.1 Protocol upgrades allow an HTTP connec-
tion to be used as a WebSocket, allowing bidirectional communication
between a client script and the server, including server-side pushes of
messages.

1HTTP requests made from a script do indirectly open a TCP connection, but the browser
is managing the connection. Like this, scripts cannot connect to an arbitrary port of a server.

32 CHAPTER 4. APPLICATION LAYER & SOCKETS

Protocol 4.7 (HTTP/2). HTTP/2 or HTTP 2.0 is the latest major release of
HTTP. It includes a number of changes that are not backward compatible.

Remarks:

• While in previous versions of HTTP headers are human readable,
HTTP/2 uses a binary format to reduce the size of the request and the
response, resulting in lower latency and a smaller protocol overhead.

• HTTP/2 introduces multiplexing of logical streams onto a single con-
nection. Each request-response pair forms a logical stream. The
streams are split into frames that may be interleaved arbitrarily and
sent over a single shared connection. This allows a single connection
between client and server to be used for an arbitrary number of concur-
rent requests, thus eliminating the need to open multiple connections
to the same server to load resources concurrently. Multiplexing fur-
thermore enables dynamic prioritization of requests and server-side
pushes, e.g., a server could push additional resources for a webpage
without waiting for the client to request them.

4.2 HTML

Definition 4.8 (HTML). Hypertext Markup Language (HTML) is a markup
language used to annotate plain text with hyperlinks and rendering instructions,
enabling the creation of structured documents.

Definition 4.9 (Element). An HTML element is a part of a document delimited
by a pair of opening and closing tags. Tags themselves are delimited by angle
brackets (< and >).

Remarks:

• Figure 4.10 displays a simple HTML document. HTML elements are
used both as rendering directives, e.g., the tag will result
in bold text, and semantic markup, e.g., <head> delimits a region
containing the metadata of the document.

• Elements can be nested arbitrarily, e.g., a bold text as part of an italic
text. The resulting structure is a rooted tree of elements in which child
elements span parts of a parent element. Notice that this implies that
tags must be closed in the inverse order they have been opened.

• The content of a tag is defined as the text between the opening and
closing tags. The content may also be empty, i.e., the opening tag is
directly followed by a closing tag. Some empty elements may use the
<tag/> shorthand instead of <tag></tag>. An example of an empty
tag is the linebreak
 which forces a line break and does not have
any content itself.

• Elements may have attributes that specify the behavior of the element.
For example a hyperlink has a content, i.e., the clickable text, and a
location which the browser should visit when clicked. Such a link has
the following markup: content

4.2. HTML 33

<html>

<head>

<title>This is a title</title>

</head>

<body>

<p>Hello world!</p>

</body>

</html>

Figure 4.10: Simple HTML document with header and a formatted body.

• Most browsers have a basic interpretation of how an element is to be
rendered. This behavior can be arbitrarily modified by applying styles
to the elements.

Definition 4.11 (Cascading Style Sheets). Cascading style sheets (CSS) can
be used to override the rendering defaults included in a browser.

Remarks:

• A cascading style sheet consists of a set of rules. Each rule has a
selector, which specifies which elements the rule should be applied to,
and a declaration, specifying how the rendering should be changed
from the browser’s defaults.

• Simple selectors could for example match all elements with a given
element, e.g., if the text in a element should also be italic.

• Selectors may make use of the tree structure of the document, e.g.,
a rule may match all elements whose parent is a <p> using
p > strong as a selector.

• The declaration is a block of key-value pairs, each specifying one as-
pect of the rendering.

• The cascading style sheet is either inlined into the HTML document
as a <style> element in the <head>, or it is stored in a separate file
and bound to the document using a <link> element in the head.

p > strong {

color: red;

}

Figure 4.12: A cascading style sheet with one rule matching all strong-elements
that are direct children of a p-element. The declaration specifies that the text
in all matched elements should be red.

34 CHAPTER 4. APPLICATION LAYER & SOCKETS

4.3 DNS

When visiting a website, do you enter an IP address like 195.176.255.237 or do
you prefer using a name like www.google.com? In the latter case you are using
DNS.

Protocol 4.13 (DNS). The domain name system (DNS) maps human readable
domain names to the IP addresses of servers which are serving requests for those
domains.

Remarks:

• Translating a domain name to IP addresses is called resolving the
domain name.

• Besides mapping domain names to IP addresses, DNS also provides
the inverse mapping from IP addresses to domain names.

Definition 4.14 (Nameserver). A server in the domain name system is called
a nameserver. It offers the domain name resolution service to its clients.

Remarks:

• DNS is a request-response based protocol. The client sends a request
packet to the nameserver, which looks up the matching record and
returns it as a response to the client. The protocol is not human
readable and is composed of two single packets which hold all fields
for both request and response.

• Despite being part of the core functionality of the Internet, DNS is
implemented in the application layer, as a protocol on top of UDP.

• DNS is implemented as a distributed database in order to guard
against single points of failure, to distribute traffic over a large num-
ber of servers, and to enable local caching for faster domain name
resolution.

• The distributed database stores resource records (RRs). Resource
records may have a multitude of types. Common types are A and AAAA

for domain name to IPv4 and IPv6 mappings respectively, CNAME for
canonical names, NS to delegate the domain name to another name-
server, and MX to locate the mailserver responsible for the queried
domain.

• There is no single server holding all the database’s records, instead
each nameserver only knows a subset of domain names.

Definition 4.15 (Authoritative Nameserver). A server that is responsible for a
domain name is called the domain’s authoritative nameserver. The authoritative
nameserver is the server in which the mapping can be configured by the domain
name owner. It is the server that should be contacted to ultimately resolve the
domain name.

4.3. DNS 35

Remarks:

• In order to resolve the domain name of a server we first need to locate
the authoritative nameserver for that domain name. This chicken-
and-egg problem is solved by introducing a hierarchy of nameservers
that delegate the resolution of domain names until the authoritative
nameserver is found.

• The hierarchy results in a tree structure with well known static name-
servers at the root, which then delegate the resolution to their descen-
dants.

Definition 4.16 (Root Nameserver). A root nameserver is a nameserver that
serves as the reliable point of contact when resolving a domain name. A list of
root nameserver IPs is included with the operating system of all nameservers.
Root nameservers are contacted if no better nameserver is known.

Remarks:

• There are a total of thirteen root nameservers in the world, operated
by a multitude of organizations. Having the root nameservers oper-
ated by a diverse group of organizations should ensure that the system
is resilient against failures.

• Some root nameservers share the same IP address. IP anycast routing
assures that the closest server is reached.

• Upon receiving a request, a nameserver checks whether it has the
required information to respond to the request. Should the nameserver
not have the necessary information, it will delegate the request to
another nameserver, or drop the request if it does not know a better
nameserver. The delegating server returns a NS response containing
the next nameserver the client should contact.

• The first level below the root servers are the regional nameservers
responsible for the top level domains (TLDs). Regional nameservers
then delegate to a number of registrars which cater to the end users.
Further levels are introduced to divide the load and the responsibility
of a domain to a number of nameservers.

• If we were to always perform resolution by contacting the root name-
servers, they would become bottlenecks. For this reason clients and
nameservers cache the responses and return these if a matching re-
quest is received. To this end each response contains a time-to-live
(TTL) field which specifies how long, in seconds, the response may
be cached. The higher levels in the hierarchy specify a high TTL,
since they have very few changes over time. Lower levels, where the
majority of changes are performed specify lower TTL values.

• It is desirable for some nameservers to act as a local cache, e.g., an
ISP nameserver may directly serve its customers to reduce latency
and reduce the number of requests. Instead of delegating the request
to another nameserver, these nameservers perform the resolution on

36 CHAPTER 4. APPLICATION LAYER & SOCKETS

behalf of the client. This mechanism is called recursive resolution and
allows the nameserver to cache the response and later serve similar
requests locally.

4.4 Mail

Definition 4.17 (Mailserver). A mailserver is a server that routes mail mes-
sages from the sender to the recipient and stores incoming mail messages for its
users.

Remarks:

• A mail address is composed of a username and a domain, separated
by an @. Mail destined to users of the same domain is delivered to
the same mailserver. The mailserver that is responsible for handling a
domain’s mail is specified by an MX record returned by the nameserver
of that domain. Mail on a mailserver awaiting to be retrieved by the
user is said to be spooled.

• When sending a mail, the sending user will look up the responsible
mailserver for the recipient’s domain through DNS and contacts it to
deliver the mail. The delivery from the user to the receiving mailserver
is done using SMTP.

• Most modern clients may be configured to use a single mailserver for
outgoing mail. When sending a mail the client contacts its outgo-
ing mailserver instead of the destination mail server. The outgoing
mailserver then delivers the mail on behalf of the client, allowing a
number of advanced features such as sender authentication and auto-
matically reattempting delivery should the destination mailserver be
unreachable. In this scenario SMTP is used in both interactions, from
the client to the outgoing mailserver and the outgoing mailserver to
the destination mailserver.

Protocol 4.18 (SMTP). The simple mail transfer protocol (SMTP) is a pro-
tocol used to deliver mails from a client to a mailserver.

Remarks:

• SMTP is an interactive human readable protocol over TCP connec-
tions. A mailserver listens to port 25 for unencrypted incoming con-
nections, while port 465 is commonly used for encrypted incoming
connections. Similar to HTTPS the encryption is implemented by
adding an SSL layer inbetween the TCP layer and the SMTP layer.
An interactive succession of requests and responses is called a session.

• The client issues requests in the form of text commands, while the
server responds with a numerical response code and a textual response.

• Common commands include HELO to initiate a session, RCPT TO to
specify the mail recipient, MAIL FROM to specify the mail sender and
DATA to specify the mail content.

4.4. MAIL 37

• With the exception of DATA, the commands are terminated by a new-
line. The DATA command is followed by the content of the mail, hence
it allows multiple lines to follow, and is terminated by a \n.\n, i.e., a
punctuation mark on an otherwise empty line.

• Similar to HTTP, the response codes are grouped into function groups:

– 2xx: Success The command issued by the client succeeded.

– 3xx: Start mail input In response to a DATA command, the client
may send the mail body.

– 4xx: Client error The client issued an invalid command.

– 5xx: Server error The server failed to act on the command.

• Initially SMTP did not include any form of authentication, since it is
solely used for mail delivery, i.e., it is not possible to retrieve someone
else’s mails over SMTP. The destination mailservers often still accept
mails from unauthenticated sessions, however outgoing mailservers to-
day require the user-agent to authenticate to reduce the risk of denial-
of-service attacks and spam.

• Multipurpose Internet Mail Extensions (MIME) is a standard that
describes how the content of a mail may be encoded. MIME enables
HTML formatted messages, attachments, and avoids some problems
with plaintext mails.

Protocol 4.19 (POP). The post office protocol (POP) is a protocol that enables
a client to retrieve and manipulate spooled mail messages on a mailserver.

Remarks:

• The first version of POP was introduced in 1984. Later versions in-
troduced incremental changes. The latest version, POP3, includes an
extension mechanism and a flexible authentication mechanism.

• POP3 is the retrieval counterpart of SMTP. It is therefore not sur-
prising that the protocols are very similar with text based commands
and text based responses. However, unlike SMTP, the responses do
not contain a numeric response code, instead responses are prefixed
with +OK if the command succeeded and failure causes the connection
to be closed.

• Common commands include USER and PASS for authentication, STAT
to retrieve overall statistics of the mailbox, LIST to retrieve a list of
messages including the message ID and its length, RETR to retrieve a
message and DELE to delete a message.

• Similar to the DATA command in SMTP, some responses may return
multiple lines, in which case they are terminated using a punctuation
mark on an otherwise empty line.

• Using SMTP and POP3, the mailserver is used for temporary storage
of mails until they are retrieved. If a user uses multiple computers,
mails retrieved on one client will not be synchronized with the other
client.

38 CHAPTER 4. APPLICATION LAYER & SOCKETS

• Modern alternatives to POP3 include the Internet Message Access
Protocol (IMAP) and web-based mail clients.

Protocol 4.20 (IMAP). The Internet Message Access Protocol (IMAP) is a
protocol used by mail clients to access mail messages from a mailserver over
a TCP connection. IMAP was designed with the goal of permitting complete
management of a mailbox by multiple mail clients, therefore, clients generally
leave messages on the server until the user explicitly deletes them.

Remarks:

• An IMAP server typically listens on port number 143. IMAP over
SSL (IMAPS) is assigned port number 993.

• In contrast to POP, IMAP focuses on organizing the mail directly on
the mailserver as opposed to downloading them and organizing them
locally. For this purpose IMAP introduces the concept of folders into
which mail can be organized and retrieved from. Keeping the mail on
the mailserver furthermore allows multiple synchronized clients.

• IMAP is a human readable protocol that follows a similar format as
POP. IMAP prefixes the last line of a request-response pair with an
alphanumeric unique tag. The tag is generated by the client and sent
with the request, and the server will reply with the same tag in its
response. This uniquely identifies the last line of a response and hence
reduces the ambiguity of having some responses span multiple lines.

4.5 Socket API

Definition 4.21 (Socket). A socket is the principal abstraction for network
communication exposed in programming languages. A socket exposes the neces-
sary information and methods to a user application, to exchange data between
clients and servers.

Remarks:

• A socket is endpoint of a connection between two applications. Data
sent through a socket on one end is received by the socket on the other
end.

• In order to establish a connection, the server must have a socket lis-
tening for incoming connections, and the client creates an outgoing
socket connecting to the listening server socket.

• TCP and UDP are the most common transport layer protocols used
when communicating between applications, however a multitude of
other protocols exist with various tradeoffs in terms of latency, security
and consistency.

4.5. SOCKET API 39

1 import java . i o . ∗ ;
2 import java . net . ∗ ;
3
4 public class Hel loWorldCl ient {
5 public stat ic void main (St r ing [] a rgs) throws

IOException {
6 i f (args . l ength != 3) {
7 System . e r r . p r i n t l n (
8 ”Usage : java Hel loWorldCl ient <name> <host

> <port number>”) ;
9 System . e x i t (1) ;

10 }
11 St r ing name = args [0] ;
12 St r ing host = args [1] ;
13 int port = In t eg e r . pa r s e In t (args [2]) ;
14
15 Socket sock = new Socket (host , port) ;
16 Pr intWriter out = new PrintWriter (
17 sock . getOutputStream () , true) ;
18 BufferedReader in = new BufferedReader (
19 new InputStreamReader (sock . getInputStream ())) ;
20
21 out . p r i n t (name + ”\n”) ;
22 out . f l u s h () ;
23 System . out . p r i n t l n (in . readLine ()) ;
24 }
25 }

Listing 4.22: Simple greeting client in Java.

Remarks:

• Our example client (Listing 4.22) takes three arguments: a name, a
host and a port. The client connects to the specified host and port
(line 15), sends the provided name (line 21), and reads the server’s
response (line 23). Both the request and response are terminated by
a newline character, which allows the use of the readLine method to
retrieve the contents.

• Java buffers most of its I/O operations. This includes network com-
munication. After calling the print method of the PrintWriter on line
21, the written data is buffered as more data may be added. Calling
flush instructs the underlying socket implementation to construct a
TCP packet and send the data that was buffered so far. Manually
flushing is not always necessary and happens automatically if the size
of the buffered data exceeds the maximum packet size or a timeout
is triggered. Splitting data into individual packets requires that the
data is reassembled on the receiving side.

40 CHAPTER 4. APPLICATION LAYER & SOCKETS

1 import java . net . ∗ ;
2 import java . i o . ∗ ;
3
4 public class Hel loWorldServer {
5 public stat ic void main (St r ing [] a rgs) throws

IOException {
6 int portNumber = 31337;
7
8 ServerSocket s e rve rSocke t = new ServerSocket (
9 portNumber) ;

10 Socket c l i e n t S o c k e t = se rve rSocke t . accept () ;
11
12 PrintWriter out = new PrintWriter (
13 c l i e n t S o c k e t . getOutputStream () ,
14 true) ;
15 BufferedReader in = new BufferedReader (
16 new InputStreamReader (
17 c l i e n t S o c k e t . getInputStream ())) ;
18
19 St r ing name = in . readLine () . tr im () ;
20 out . p r i n t (”He l lo ” + name + ”\n”) ;
21 out . c l o s e () ;
22 in . c l o s e () ;
23 }
24 }

Listing 4.23: Simple greeting server in Java.

Remarks:

• The server in Listing 4.23 listens for an incoming connection on port
31337. Once a connection is established, the server reads a line, i.e.,
the name of the client terminated by a newline character, responds
with a greeting terminated by a newline, and closes the connection.

• Our program only accepts a single connection and then terminates.
Real servers continually accept incoming connections and hand off the
actual interaction to a thread.

• Notice that the server does not flush the buffered data, but the close
method on the PrintWriter also causes the buffered data to be flushed.

4.6 Protocol Layers

The structure of network protocols (Chapter 2), transport protocols (Chapter 3)
and application protocols (Chapter 4) is similar. Let’s formalize this similarity
by introducing a layered architecture for network communication.

Definition 4.24 (Internet Protocol Suite). The Internet protocol suite is a
computer networking model, and set of communications protocols, used in the
Internet as well as similar computer networks. It divides the responsibility of

4.6. PROTOCOL LAYERS 41

individual protocols into layers that expose an abstract interface to higher up
protocols.

Ethernet header IP header TCP header HTTP header Payload

Figure 4.25: An example of nested layers for an HTTP request. Each layer has
its own header and a payload consisting of the next higher layer.

Remarks:

• The Internet protocol suite defines the following layers:

– Application layer

– Transport layer

– Network layer

– Link layer

• Layers are stacked so that higher layer protocols do not need to deal
with the implementation details of lower layers, instead they may rely
on the abstract interface exposed by those layers. Protocols in a layer
should be designed in such a way that they are interchangeable. For
example the format of an IP packet is independent of the physical
medium it is transferred on, e.g., wire or air.

• The layering is implemented by repeatedly nesting packets of a layer
in the next lower layer. Each layer is composed of a header and a
payload. The payload simply contains the next higher layer packet.
Figure 4.25 shows an example of how a link layer packet, Ethernet in
this case, looks like.

• Over time the network has consolidated to just a few protocols that
are in use, and the predominant network layer protocol is IP.

HTTP

TCP

IP

802.11

Browser

802.11 Eth.

Wifi Access Point

IP IP

Eth. Eth.

Router

HTTP

TCP

IP

Eth.

Server

Figure 4.26: The browser issues an HTTP request over Wifi (802.11 link layer
protocol) which is received by an access point and forwarded over Ethernet to
a router. The router reads the IP header to identify the next hop and forwards
the packet accordingly. Only the server needs to parse the entire stack of layers
to get the original HTTP request.

42 CHAPTER 4. APPLICATION LAYER & SOCKETS

Remarks:

• Separating the protocols into layers also allows keeping routing devices
simple: a network switch does not need to understand the application
protocol in order to correctly route a packet.

• Figure 4.26 shows an example of how packets can be routed without
parsing the entirety of the packets.

• It may not always be possible to uniquely assign a protocol to a layer.
Lower layer protocols may sometimes be tunnelled by higher layer
protocols. In Section 2.7 we have seen that IP packets can be tunnelled
through a VPN connection with IPsec by wrapping IP packets in IPsec
packets. If we were to establish a TCP connection over IP tunnelled
through IPsec, then the IP layer may be categorized as the transport
layer or the network layer depending on whether we consider the point
of view of the TCP connection or the IPsec connection.

Chapter Notes

Application layer protocols are specified in Requests for Comments (RFCs)
which are the canonical specification of Internet protocols. This allows a number
of manufacturers to implement these protocols and guarantee compatibility.

Mail is one of the earliest applications, it even predates DNS. Mail relies on
a number of protocols, some of which we have discussed in this chapter. SMTP
was introduced in 1982 with RFC 821 [6], and initially required users to log
into the nameserver where the mails were stored in a file structure to read and
send mails. POP was introduced in 1984 with RFC 918 [7], allowing users to
retrieve mail on a mailserver and read it locally, while still using SMTP to send
outgoing mails.

DNS was introduced in 1983 in RFC 883 [5]. It initially did not include any
authentication of the responses, meaning that it was trivial for an intermediary
nameserver to impersonate authoritative nameservers and redirect users to the
wrong server. Domain Name System Security Extensions (DNSSEC) published
in RFC 2065 [3] introduces authentication through digital signatures authen-
ticating responses, and a public key infrastructure to authenticate the domain
name owners.

HTTP 1.0 was released in 1996 in RFC 1945 [2] and was quickly superseded
in 1997 by version 1.1 in RFC 2068 [4]. In 2009 Google announced a new
transport protocol called speedy (SPDY) between its Chrome browser and its
own services. After successful deployment of SPDY by Google it was picked up
by the IETF and evolved into HTTP/2, which will eventually supersede both
HTTP/1 and SPDY. HTTP/2 was finalized and published in 2015 as RFC
7540 [1].

This chapter was written in collaboration with Christian Decker.

Bibliography

[1] M. Belshe, R. Peon, and M. Thomson. RFC 7540: Hypertext Transfer
Protocol Version 2 (HTTP/2), 2015.

BIBLIOGRAPHY 43

[2] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hypertext Transfer
Protocol – HTTP/1.0, 1996.

[3] D. Eastlake and C. Kaufman. RFC 2065: Domain Name System Security
Extensions, 1997.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. RFC 2068:
Hypertext Transfer Protocol – HTTP/1.1, 1997.

[5] P. Mockapetris. RFC 883: Domain Names - Implementation and Specifica-
tion, 1983.

[6] Jonathan B. Postel. RFC 821: Simple Mail Transfer Protocol, 1982.

[7] J. K. Reynolds. RFC 918: Post Office Protocol, 1984.

