ETH zürich

HOW EFFECTIVE CAN SIMPLE ORDINAL PEER GRADING BE?

IOANNIS CARAGIANNIS, GEORGE A. KRIMPAS, ALEXANDROS A. VOUDOURIS, University of Patras

Jakub Golinowski MSc student in Computer Science at ETH Zürich Work under supervision of Darya Melnyk

MASSIVE OPEN ONLINE COURSES

OPENCLASSROOMS

courserd

BUSINESS MODEL

PROBLEM

Up to 50 000 students per course

BUSINESS MODEL VS PROBLEM

IDEA – PEER GRADING

Outsource grading to students

Cardinal grading (absolute grading)

	Торіс	Max. Points	Points	Signature	
1	ML & Bayesian inference	20			
2	Kernels	20			
3	Neural Networks	20			
4	Gaussian processes	20			
5	Unsupervised learning	20			
Total		100			
Grade:					

Source: Machine Learning Exam 2015 (ETHZ)

Ordinal grading (sorting)

e_5	
_	

Ordinal grading (sorting)

- Cardinal grading (absolute grading)
 - Assign low grades → improve own performance,
 - Lack of experience.
- Ordinal grading (sorting)
 - Free from incentive to under-grade,
 - Requires less grading experience.

- Cardinal grading (absolute grading)
 - Assign low grades → improve own performance,
 - Lack of experience.

Ordinal grading (sorting)

- Free from incentive to under-grade,
- Requires less grading experience.

SETTING

Student cannot grade his own paper

SINGLE GRADER

Is this ordering correct?

 u_3 (the best)

 u_2 (the worst)

 u_4

MODELLING STUDENTS' GRADING BEHAVIOUR

GROUND TRUTH

GROUND TRUTH

SINGLE STUDENT'S RANKING

Which ordering is correct?

AGGREGATE INFORMATION

EXAMPLE (k = 3)

Perfect Graders

$P = \begin{bmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{bmatrix}$

EXAMPLE (k = 3)

Not Perfect Graders

$P = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{bmatrix}$

SINGLE EXAM

$$v_1 = \begin{bmatrix} \boldsymbol{u}_3 \\ u_4 \\ u_2 \end{bmatrix} \quad v_2 = \begin{bmatrix} \boldsymbol{u}_3 \\ u_5 \\ u_1 \end{bmatrix} \quad v_4 = \begin{bmatrix} u_7 \\ \boldsymbol{u}_3 \\ u_1 \end{bmatrix}$$

Type – grading result of exam paper

 $\sigma_{u_3} = (1, 1, 2)$

Extract types

$$\sigma_{u_5} = (1, 1, 2)$$

Compute Borda Score

$$\sigma_{u_1} = (\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}) \rightarrow B(\sigma_{u_1}) = \mathbf{3} + \mathbf{3} + \mathbf{3} = 9$$

$$\sigma_{u_2} = (\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{3}) \rightarrow B(\sigma_{u_1}) = \mathbf{3} + \mathbf{2} + \mathbf{1} = 6$$

$$\sigma_{u_3} = (\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{3}) \rightarrow B(\sigma_{u_1}) = \mathbf{3} + \mathbf{3} + \mathbf{2} = 8$$

$$\sigma_{u_4} = (\mathbf{2}, \mathbf{2}, \mathbf{3}, \mathbf{3}) \rightarrow B(\sigma_{u_1}) = \mathbf{2} + \mathbf{2} + \mathbf{1} = 5$$

$$\sigma_{u_5} = (\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{3}) \rightarrow B(\sigma_{u_1}) = \mathbf{3} + \mathbf{3} + \mathbf{2} = 8$$

Compute Borda Score

Order by Borda Score

TYPE-ORDERING AGGREGATION RULE

	Borda	Type-ordering aggregation rule
Ordering rule	Borda score	Optimal
Number of possible levels	$\mathcal{O}(k^2)$	$\mathcal{O}(a^k)$

THEORETICAL ANALYSIS

ASSUMPTIONS

many students

Lower number means better student

ASSUMPTIONS

Exams in a bundle ~ i. i. d.

ASSUMPTIONS

Exams in a bundle ~ i. i. d.

EXPECTED EFFICIENCY

$$\hat{C} = \int_0^1 \int_x^1 \left(\sum_{\sigma, \sigma': \sigma \succ \sigma'} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma'] + \frac{1}{2} \sum_{\sigma} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma] \right) dy dx$$

$$\hat{C} = \int_{0}^{1} \int_{x}^{1} \left(\sum_{\sigma, \sigma': \sigma \succ \sigma'} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma'] + \frac{1}{2} \sum_{\sigma} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma] \right) dydx$$
Wanted: *x* has better type as *y*

$$\hat{C} = \int_{0}^{1} \int_{x}^{1} \left(\sum_{\sigma, \sigma': \sigma \succ \sigma'} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma'] + \frac{1}{2} \sum_{\sigma} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma] \right) dy dx$$

Less wanted: *x* has the same type as *y*

$$\hat{C} = \int_0^1 \int_x^1 \left(\sum_{\sigma, \sigma': \sigma \succ \sigma'} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma'] + \frac{1}{2} \sum_{\sigma} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma] \right) dy dx$$
$$\sigma \succ \sigma' \Rightarrow \sigma \text{ is a better type}$$

$$\hat{C} = \int_{0}^{1} \int_{x}^{1} \left(\sum_{\sigma, \sigma': \sigma \succ \sigma'} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma'] + \frac{1}{2} \sum_{\sigma} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma] \right) dydx$$
For all example papers $1 > y > x$

$$\hat{C} = \int_{0}^{1} \int_{x}^{1} \left(\sum_{\sigma, \sigma': \sigma \succ \sigma'} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma'] + \frac{1}{2} \sum_{\sigma} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma] \right) dydx$$
For all examples $1 > x > 0$

WEIGHTS

$$\hat{C} = \int_0^1 \int_x^1 \left(\sum_{\sigma, \sigma': \sigma \succ \sigma'} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma'] + \frac{1}{2} \sum_{\sigma} \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma] \right) dy dx$$

$$\hat{C} = \sum_{\sigma,\sigma':\sigma \succ \sigma'} \int_0^1 \int_x^1 \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma'] dy dx + \frac{1}{2} \sum_{\sigma} \int_0^1 \int_x^1 \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma] dy dx$$

WEIGHTS

$$\hat{C} = \sum_{\sigma,\sigma':\sigma \succ \sigma'} \int_0^1 \int_x^1 \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma'] dy dx + \frac{1}{2} \sum_{\sigma} \int_0^1 \int_x^1 \mathbb{P}[x \rhd \sigma \text{ and } y \rhd \sigma] dy dx$$

$$C = \sum_{\sigma,\sigma':\sigma \succ \sigma'} W(\sigma,\sigma') + \frac{1}{2} \sum_{\sigma} W(\sigma,\sigma)$$
Probability
Theory
weight: $W(\sigma,\sigma') = \int_0^1 \int_x^1 \mathbb{P}[x \succ \sigma \text{ and } y \succ \sigma'] dy dx$
Calculus
Jakub Golinowski - ETH Zürich
Linear
Algebra

RESULTS

$$\hat{C} = \sum_{\sigma,\sigma':\sigma \succ \sigma'} W(\sigma,\sigma') + \frac{1}{2} \sum_{\sigma} W(\sigma,\sigma)$$

$$W(\sigma,\sigma') = \int_0^1 \int_x^1 \mathbb{P}[x \triangleright \sigma] \cdot \mathbb{P}[y \triangleright \sigma'] dy dx$$

Probabilities are **polynomials** → integrals can be **analytically** solved!

Jakub Golinowski - ETH Zürich

RESULTS

$$\hat{C} = \sum_{\sigma,\sigma':\sigma \succ \sigma'} W(\sigma,\sigma') + \frac{1}{2} \sum_{\sigma} W(\sigma,\sigma)$$

$$W(\sigma,\sigma') = \int_0^1 \int_x^1 \mathbb{P}[x \triangleright \sigma] \cdot \mathbb{P}[y \triangleright \sigma'] dy dx$$

Weights are easy to compute (closed form solution)

CONCLUSION

 $\hat{C}(k,\succ,P) = \sum_{\sigma,\sigma':\sigma\succ\sigma'} W(\sigma,\sigma') + \frac{1}{2} \sum_{\sigma} W(\sigma,\sigma)$

OPTIMIZATION

 $\hat{C}(k, \succ, P) = \sum_{\sigma, \sigma': \sigma \succ \sigma'} W(\sigma, \sigma') + \frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)$

 $\max_{\succ} \sum_{\sigma, \sigma': \sigma \succeq \sigma'} W(\sigma, \sigma') + \frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)$

Weights are independent of $> \rightarrow$ computed only once

ADDING ELASTICITY

$$W(\sigma,\sigma') = \int_0^1 \int_x^1 f(x,y) \mathbb{P}[x \rhd \sigma] \cdot \mathbb{P}[y \rhd \sigma'] dy dx$$

$$\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} 1 \ if \ y - x \ge 5\% \\ 0 \ otherwise \end{cases}$$

ADDING ELASTICITY

$$W(\sigma,\sigma') = \int_0^1 \int_x^1 f(x,y) \mathbb{P}[x \rhd \sigma] \cdot \mathbb{P}[y \rhd \sigma'] dy dx$$

$$\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} 1 \ if \ x \le 20\% \\ 0 \ otherwise \end{cases}$$

OPTIMIZATION

 $\hat{C}(k, \succ, P, \mathbf{f}) = \sum_{\sigma \sigma': \sigma \succeq \sigma'} W(\sigma, \sigma') + \frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)$

 $\max_{\succ} \sum_{\sigma, \sigma': \sigma \succeq \sigma'} W(\sigma, \sigma') + \frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)$

Weights are still independent of $> \rightarrow$ computed only once

REFORMULATE PROBLEM

 $\max_{\succ} \sum_{\sigma, \sigma': \sigma \succ \sigma'} W(\sigma, \sigma') + \frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)$

REFORMULATE PROBLEM

Different weights \Rightarrow Keep edge with bigger weight

Equal weights \Rightarrow discard

Equal weights \Rightarrow discard

Strongly connected regions (cycles)

Strongly connected regions (cycles)

Brute force (or Borda in case of large cycle)

FIELD EXPERIMENT

k = 6, n = 136

FIELD EXPERIMENT

$$P_{\text{real}} = \begin{bmatrix} 0.463 & 0.257 & 0.102 & 0.058 & 0.058 & 0.058 \\ 0.205 & 0.316 & 0.227 & 0.110 & 0.066 & 0.073 \\ 0.161 & 0.191 & 0.257 & 0.205 & 0.132 & 0.051 \\ 0.102 & 0.117 & 0.191 & 0.242 & 0.279 & 0.066 \\ 0.044 & 0.066 & 0.139 & 0.220 & 0.301 & 0.227 \\ 0.022 & 0.051 & 0.080 & 0.161 & 0.161 & 0.522 \end{bmatrix}$$

$P_{\rm mallows} =$	0.6337	0.1753	0.0824	0.0494	0.0339	$\begin{array}{c} 0.0253 \\ 0.0339 \\ 0.0494 \\ 0.0824 \\ 0.1753 \\ 0.6337 \end{array}$
	0.1753	0.5112	0.1549	0.0768	0.0479	0.0339
	0.0824	0.1549	0.4865	0.1500	0.0768	0.0494
	0.0494	0.0768	0.1500	0.4865	0.1549	0.0824
	0.0339	0.0479	0.0768	0.1549	0.5112	0.1753
	0.0253	0.0339	0.0494	0.0824	0.1753	0.6337

SIMULATIONS

All2all: f(x, y) = 1

SIMULATIONS

Th-10% and Th-50%: $f(x, y) = \begin{cases} 1 & if \ x \le th\% \\ 0 & otherwise \end{cases}$

SIMULATIONS

Acc-2% and Acc-5%: $f(x,y) = \begin{cases} 1 \text{ if } y - x \ge acc\% \\ 0 \text{ otherwise} \end{cases}$

SMALL STRONGLY CONNECTED COMPONENTS

		realisti	c model		mallows model				
size	all2all	th-50%	acc- 2%	acc-5%	all2all	th-50%	acc- 2%	acc-5%	
1	448	460	449	451	453	459	449	449	
3–7	13	2	12	10	6	3	10	12	
8–11	1	0	1	1	2	0	2	0	
≥ 12	0	0	0	0	1	0	1	1	
max	10	3	10	10	20	4	20	20	

PERFORMANCE

noise	perfect grading		realistic grading				mallows grading			
setting	theory	$n = 10^4$	theory		$n = 10^4$		theory		$n = 10^4$	
method	borda	borda	opt	borda	opt	borda	opt	borda	opt	borda
all2all	92.01	92.02	80.01	79.57	80.09	79.57	85.15	84.38	85.16	84.39
th-10%	96.94	96.95	87.61	87.18	87.60	87.17	92.05	90.52	92.07	90.54
h-50%	94.13	94.14	83.62	83.43	83.62	83.43	88.39	87.80	88.40	87.81
$\operatorname{acc-2\%}$	93.57	93.57	81.27	80.73	81.27	80.74	86.52	85.72	86.52	85.73
acc-5%	95.47	95.47	82.97	82.42	82.97	82.42	88.42	87.61	88.42	87.62

$$v_1 = \begin{bmatrix} \mathbf{u}_3 \\ u_4 \\ u_2 \end{bmatrix} \quad v_2 = \begin{bmatrix} \mathbf{u}_3 \\ u_5 \\ u_1 \end{bmatrix} \quad v_4 = \begin{bmatrix} u_7 \\ \mathbf{u}_3 \\ u_1 \end{bmatrix}$$

Type – grading result of exam paper

$$\sigma_{u_3} = (1, 1, 2)$$

noise	perfect grading		realistic grading				mallows grading			
setting	theory	$n = 10^4$	theory		$n = 10^4$		theory		$n = 10^4$	
method	borda	borda	opt	borda	opt	borda	opt	borda	opt	borda
all2all	92.01	92.02	80.01	79.57	80.09	79.57	85.15	84.38	85.16	84.39
th-10%	96.94	96.95	87.61	87.18	87.60	87.17	92.05	90.52	92.07	90.54
th-50%	94.13	94.14	83.62	83.43	83.62	83.43	88.39	87.80	88.40	87.81
$\operatorname{acc-2\%}$	93.57	93.57	81.27	80.73	81.27	80.74	86.52	85.72	86.52	85.73
acc-5%	95.47	95.47	82.97	82.42	82.97	82.42	88.42	87.61	88.42	87.62

What about combining filters?

How to interpret a grade?

THANK YOU!

PLEASE ASK QUESTIONS

ADDITIONAL SLIDES

TABLE OF CONTENT

Jakub Golinowski - ETH Zürich

115

WRONG BUNDLING EXAMPLE

SETTING *n* students

n papers

SETTING n students

BUILDING BUNDLE GRAPH

- Start from complete bipartite graph $K_{n,n}$ (all graders connected to all papers),
- Remove the edges between graders and their own papers,
- Draw a perfect matching uniformly at random among all perfect matchings (that do not include previously removed edges),
- Repeat previous step until each grader has k papers (and each paper has 3 graders)

n students

n papers

- Start from complete bipartite graph $K_{n,n}$ (all graders connected to all papers),
- Remove the edges between graders and their own papers,
- Draw a perfect matching uniformly at random among all perfect matchings (that do not include previously removed edges),
- Repeat previous step until each grader has k papers (and each paper has 3 graders)

n students

n papers

- Start from complete bipartite graph $K_{n,n}$ (all graders connected to all papers),
- Remove the edges between graders and their own papers,
- Draw a perfect matching uniformly at random among all perfect matchings (that do not include previously removed edges),
- Repeat previous step until each grader has k papers (and each paper has 3 graders)
 n students

- Start from complete bipartite graph $K_{n,n}$ (all graders connected to all papers),
- Remove the edges between graders and their own papers,
- Draw a perfect matching uniformly at random among all perfect matchings (that do not include previously removed edges),

n students

Repeat previous step until each grader has k papers (and each paper has 3 graders)

n papers

- Start from complete bipartite graph $K_{n,n}$ (all graders connected to all papers),
- Remove the edges between graders and their own papers,
- Draw a perfect matching uniformly at random among all perfect matchings (that do not include previously removed edges),
- Repeat previous step until each grader has k papers (and each paper has 3 graders)
 n students

- Start from complete bipartite graph $K_{n,n}$ (all graders connected to all papers),
- Remove the edges between graders and their own papers,
- Draw a perfect matching uniformly at random among all perfect matchings (that do not include previously removed edges),

n students

Repeat previous step until each grader has k papers (and each paper has 3 graders)

n papers

SETTING

- k-regular bipartite graph G = (U, V, E) with n nodes on each side. U contains exam papers and V contains graders,
- k edges from each grader v_i to k exam papers from U.
- Student cannot grade her own paper edge from v_i to u_i is forbidden for all values of i.

n students

n papers

MODELLING STUDENT'S GRADING BEHAVIOUR

QUALITY $q \in \left[\frac{1}{2}, 1\right]$

GRADING BEHAVIOUR

• Let
$$k = 3$$
, $q = 0.7$, true rank $v_i^{true} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$.

• First attempt:

GRADING BEHAVIOUR

• Let
$$k = 3$$
, $q = 0.7$, true rank $v_i^{true} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$.

• Second attempt:

no cycle – grading outcome

DERIVATIONS

EXPECTED FRACTION OF CORRECTLY RECOVERED PAIRWISE RELATIONS

$$C = \sum_{\sigma,\sigma':\sigma \succ \sigma'} W(\sigma,\sigma') + \frac{1}{2} \sum_{\sigma} W(\sigma,\sigma)$$

From assumptions:

infinite number of students \Rightarrow no dependency between the rank vectors that the exam papers x and y get after grading:

$$\mathbb{P}[x \triangleright \sigma \text{ and } y \triangleright \sigma'] = \mathbb{P}[x \triangleright \sigma] \cdot \mathbb{P}[y \triangleright \sigma']$$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, which is a probability that an exam paper x has type $\sigma = (\sigma_1, \dots, \sigma_k)$.

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma = (\sigma_1, \dots, \sigma_k)$.

Procedure:

- Denote by $\mathcal{E}(x, \sigma_i)$ an event that *i*-th element of exam paper's x type is σ_i , which is equivalent to the event that the exam paper x was ranked σ_i -th in a bundle,
- Based on above determine the probability that $\sigma = (\sigma_1, ..., \sigma_k)$ is of a particular type,
- Multiply above calculated probability by the number of ways in which such a type could have been achieved.

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma = (\sigma_1, \dots, \sigma_k)$.

Procedure:

- Denote by $\mathcal{E}(x, \sigma_i)$ an event that i-th element of exam paper's x type is σ_i , which is equivalent to the event that the exam paper x was ranked σ_i -th in a bundle,
- Based on above determine the probability that $\sigma=(\sigma_1,\dots,\sigma_k)$ is of a particular type,
- Multiply above calculated probability by the number of ways in which such a type could have been achieved.

$$\sigma = (\sigma_1, \dots, \sigma_k)$$

$$\mathbb{P}[\mathcal{E}(x, \sigma_1) \text{ and } \dots \text{ and } \mathcal{E}(x, \sigma_k)] = \prod_{i=1}^k \mathbb{P}[\mathcal{E}(x, \sigma_i)]$$
nfinitely many students => the quality of each exampaper in the bundle does not affect quality of other exam papers

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma = (\sigma_1, \dots, \sigma_k)$.

Procedure:

In how man

type be c

bundles it originates from.

- Denote by $\mathcal{E}(x, \sigma_i)$ an event that *i*-th element of exam paper's x type is σ_i , which is equivalent to the event that the exam paper x was ranked σ_i -th in a bundle,
- Based on above determine the probability that $\sigma = (\sigma_1, ..., \sigma_k)$ is of a particular type,
- Multiply above calculated probability by the number of ways in which such a type could have been achieved.

$$\sigma = (\sigma_1, \dots, \sigma_k)$$

$$\mathbb{P}[\mathcal{E}(x, \sigma_1) \text{ and } \dots \text{ and } \mathcal{E}(x, \sigma_k)] = \prod_{i=1}^k \mathbb{P}[\mathcal{E}(x, \sigma_i)]$$
y ways can a given
istributed among
$$\mathcal{N}(\sigma) = \frac{k!}{d_1! \cdots d_k!}$$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma = (\sigma_1, \dots, \sigma_k)$.

$$\mathbb{P}[x \triangleright \sigma] = N(\sigma) \prod_{i=1}^{k} \mathbb{P}[\mathcal{E}(x, \sigma_i)]$$

Probability that the exam paper x was ranked σ_i -th in a bundle can be further decomposed. How?

Idea: use the definition of noise matrix P

NOISE MATRIX REMINDER

Model students' grading behaviour by introducing a $k \times k$ noise matrix $P = (p_{i,j})_{i,j \in [k]}$, where $p_{i,j}$ denotes the probability that the student will rank the paper on the position *i* when its true rank is *j*.

Example: $p_{2,3} = 0.4$ means that the students will put the paper on the position 2 with probability 0.4 if its true ranking is 3.

Intermediate problem of finding the probability that the exam x was ranked σ_i -th in a bundle.

Procedure:

- Consider all possible true rankings that an exam paper x may have in a bundle,
- Account for x having such a **true ranking** and in the same time being ranked σ_i -th by the grader (**noise matrix**!),

$$\mathbb{P}[\mathcal{E}(x,\sigma_{i})] = \sum_{j=1}^{k} p_{\sigma_{i},j} \binom{k-1}{j-1} x^{j-1} (1-x)^{k-j}$$

Sum over all possible true rankings of an exam paper in a bundle

Intermediate problem of finding the probability that the exam x was ranked σ_i -th in a bundle.

Procedure:

- Consider all possible true rankings that an exam paper x may have in a bundle,
- Account for x having such a **true ranking** and in the same time being ranked σ_i -th by the grader (**noise matrix**!),

$$\mathbb{P}[\mathcal{E}(x,\sigma_{i})] = \sum_{j=1}^{k} p_{\sigma_{i},j} {\binom{k-1}{j-1}} x^{j-1} (1-x)^{k-j}$$

Probability of giving exam x rank σ_i if the **true rank** is j (**noise matrix**)

Intermediate problem of finding the probability that the exam x was ranked σ_i -th in a bundle.

Procedure:

- Consider all possible true rankings that an exam paper x may have in a bundle,
- Account for x having such a **true ranking** and in the same time being ranked σ_i -th by the grader (**noise matrix**!),

$$\mathbb{P}[\mathcal{E}(x,\sigma_i)] = \sum_{j=1}^{k} p_{\sigma_i,j} \binom{k-1}{j-1} x^{j-1} (1-x)^{k-j}$$
Probability that the **true rank** of *x* in the bundle is *j*

Intermediate problem of finding the probability that the exam x was ranked σ_i -th in a bundle.

Procedure:

- Consider all possible true rankings that an exam paper x may have in a bundle,
- Account for x having such a **true ranking** and in the same time being ranked σ_i -th by the grader (**noise matrix**!),

$$\mathbb{P}[\mathcal{E}(x,\sigma_i)] = \sum_{j=1}^k p_{\sigma_i,j} \binom{k-1}{j-1} x^{j-1} (1-x)^{k-j}$$

Number of ways in which papers ahead of **x** can be distributed in a bundle.

Intermediate problem of finding the probability that the exam x was ranked σ_i -th in a bundle.

Procedure:

- Consider all possible true rankings that an exam paper x may have in a bundle,
- Account for x having such a **true ranking** and in the same time being ranked σ_i -th by the grader (**noise matrix**!),

$$\mathbb{P}[\mathcal{E}(x,\sigma_i)] = \sum_{j=1}^k p_{\sigma_i,j} \binom{k-1}{j-1} x^{j-1} (1-x)^{k-j}$$

Reminder: x is in range [0,1] and the lower x, the better is its true ranking **Conclusion:** $x^{j-1}(1-x)^{k-j}$ is the probability that there are j-1 papers in the bundle ahead of x.

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma = (\sigma_1, ..., \sigma_k)$.

$$\mathbb{P}[x \triangleright \sigma] = N(\sigma) \prod_{i=1}^{k} \mathbb{P}[\mathcal{E}(x, \sigma_i)] = N(\sigma) \prod_{i=1}^{k} \sum_{j=1}^{k} p_{\sigma_i, j} \binom{k-1}{j-1} x^{j-1} (1-x)^{k-j}$$

Exchange sum and products operator and denoting by L_k set of **all** kentry vectors $l = (l_1, ..., l_k)$ with $l_i \in \{1, ..., k\}$:

$$\mathbb{P}[x \rhd \sigma] = N(\sigma) \sum_{l \in L_k} \prod_{i=1}^k p_{\sigma_i, l_i} \binom{k-1}{l_i - 1} x^{l_i - 1} (1-x)^{k-l_i}$$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma = (\sigma_1, ..., \sigma_k)$.

$$\mathbb{P}[x \rhd \sigma] = N(\sigma) \sum_{l \in L_k} \prod_{i=1}^k p_{\sigma_i, l_i} \binom{k-1}{l_i - 1} x^{l_i - 1} (1-x)^{k-l_i}$$

Push multiplication to the exponent and denote $|l|_1 = \sum_{i=1}^k l_i$:

$$\mathbb{P}[x \triangleright \sigma] = N(\sigma) \sum_{l \in L_k} \left(\prod_{i=1}^k p_{\sigma_i, l_i} \binom{k-1}{l_i - 1} \right) x^{|l|_1 - k} (1-x)^{k^2 - |l|_1}$$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma = (\sigma_1, ..., \sigma_k)$.

$$\mathbb{P}[x \rhd \sigma] = N(\sigma) \sum_{l \in L_k} \left(\prod_{i=1}^k p_{\sigma_i, l_i} \binom{k-1}{l_i - 1} \right) x^{|l|_1 - k} (1-x)^{k^2 - |l|_1}$$

Use
$$(1-x)^m = \sum_{j=0}^m \binom{m}{j} (-1)^j x^j$$

$$\mathbb{P}[x \triangleright \sigma] = N(\sigma) \sum_{l \in L_k} \left(\prod_{i=1}^k p_{\sigma_i, l_i} \binom{k-1}{l_i - 1} \right) x^{|l|_1 - k} \sum_{j=0}^{k^2 - |l|_1} \binom{k^2 - |l|_1}{j} (-1)^j x^j$$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma = (\sigma_1, ..., \sigma_k)$.

$$\mathbb{P}[x \rhd \sigma] = N(\sigma) \sum_{l \in L_k} \left(\prod_{i=1}^k p_{\sigma_i, l_i} \binom{k-1}{l_i - 1} \right) x^{|l|_1 - k} \sum_{j=0}^{k^2 - |l|_1} \binom{k^2 - |l|_1}{j} (-1)^j x^j$$

Order the terms:

$$\mathbb{P}[x \rhd \sigma] = N(\sigma) \sum_{l \in L_k} \sum_{j=0}^{k^2 - |l|_1} \left(\prod_{i=1}^k p_{\sigma_i, l_i} \binom{k-1}{l_i - 1} \right) \binom{k^2 - |l|_1}{j} (-1)^j x^{|l|_1 - k + j}$$

KEY Conclusion: $\mathbb{P}[x \triangleright \sigma]$ is a univariate **polynomial** of degree $k^2 - k$

MODELLING WHOLE POPULATION FROM SAMPLE

MODELLING A POPULATION

Table III. Perfomance of the optimal type-ordering aggregation rules for approximations of the Mallows model. The data for Mallows are presented again here for direct comparison.

# samples	1	00	10	000	Mallows		
setting	theory	$n = 10^4$	theory	$n = 10^4$	theory	$n = 10^4$	
all2all	84.95	84.95	85.14	85.15	85.15	85.16	
th-10%	91.82	91.85	92.05	92.04	92.05	92.07	
th-50%	88.21	88.21	88.39	88.38	88.39	88.40	
$\operatorname{acc-2\%}$	86.31	86.31	86.51	86.51	86.52	86.52	
$\operatorname{acc-5\%}$	88.19	88.20	88.41	88.41	88.42	88.42	

EXAMPLE (k = 3)

Very bad Graders

$P = \begin{bmatrix} 0.1 & 0.3 & 0.6 \\ 0.3 & 0.4 & 0.3 \\ 0.6 & 0.3 & 0.1 \end{bmatrix}$

REFORMULATE PROBLEM

 $\max_{\succ} \sum_{\sigma, \sigma': \sigma \succ \sigma'} W(\sigma, \sigma') + \frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)$

