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BUSINESS MODEL

Teach for free
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PROBLEM

Up to 50 000 students per course

ETH ZUrich
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BUSINESS MODEL V5 PROBLEM

Teach for free
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IDEA - PEER GRADING

Qutsource grading to students
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HOW TO GRADE

Cardinal grading (absolute grading)

‘ [ Topic Max. Points ‘ Points ] Signature |
1 ML & Bayesian inference 20
2 | Kernels 20
3 | Neural Networks 20
4 | Gaussian processes 20
5 | Unsupervised learning 20

Source: Machine Learning Exam 2015 (ETHZ)
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HOW TO GRADE

Ordinal grading (sorting)

Jakub Golinowski - ETH ZUrich
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HOW TO GRADE

Ordinal grading (sorting)
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HOW TO GRADE

- Cardinal grading (absolute grading)
* Assign low grades =2 improve own performance,
» Lack of experience.

» Ordinal grading (sorting)
* Free from incentive to under-grade,
« Requires less grading experience.

Jakub Golinowski - ETH ZUrich 10



HOW TO GRADE

("« Cardinal grading (absolute grading) 2

* Assign low grades =2 improve own performance,

x - Lack of experience. y

(< Ordinal grading (sorting)

* Free from incentive to under-grade,
« « Requires less grading experience.
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BUNDLES OF k EXAMS
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BUNDLES OF k EXAMS

n papers
Student cannot grade his own paper
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SINGLE GRADER

% u; (the best)

=\ U

=| u, (the worst)

|
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MODELLING STUDENTS
GRADING BEHAVIOUR

Jakub Golinowski - ETH ZUrich
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GROUND TRUTH
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GROUND TRUTH



SINGLE STUDENT’S RANKING

U, (U
V1 = Uz Vg = Uy
Uy | Us

vl u?(The beST) p -
. A = U =|u
u, (the worst) <
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AGGREGATE INFORMATION
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EXAMPLE (k = 3)

Perfect Graders

P=(0.0 1.0 0.0

1.0 0.0 0.0]
(020 S0 S5




EXAMPLE (k = 3)

Not Perfect Graders

P=103 04 0.3

0.5 0.3 O.Z]
Bl 6 e U




SINGLE EXAM

Uy Vs Uy
‘ ‘ i V1 = u4- Uy = Vy = us
| ul

Type — grading result
| of exam paper
= = oy, = (1,1,2)
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AGGREGATION RULE - BORDA

Uq U, Ug Uy Uc
G = A0 D)
= (63
Ty = (A7)
= (A0
T = (0 1,2)

Jakub Golinowski - ETH ZUrich
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AGGREGATION RULE - BORDA

I e S
oy, = (L,B1) > B(aul) =3+3+3=9
oy, = (1,233) > B(o,,)=3+2+1=6
oy, = (1,12)) > B(o,,)=3+3+2=38
oy, = (2233) > B(0o,,)=2+2+1=5
oy, = (1,823) > B(o,, ) =3+3+2=38

Jakub Golinowski - ETH ZUrich
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AGGREGATION RULE - BORDA

Uq U, Ug Uy Uc
gy, = (1,1,1) > B(o,, ) =9
oy, = (1,2,3) > B(oy,) =6
oy, = (1,1,2) > B(o,,) =8
S = (B2 = Bl @) — 5
oy, = (1,1,2) > B(o,,) = 8
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AGGREGATION RULE - BORDA

Uq U, Ug Uy Uc
gy, = (1,1,1) > B(o,, ) =9
P, = (LN B 5 )] =65
G = (S 28 (o= B
oy, = (1,2,3) > B(oy,) =6
G, = (O = (G =S

Jakub Golinowski - ETH ZUrich



TYPE-ORDERING AGGREGATION RULE

Borda Type-orcflerlng
aggregation rule

Ordering rule Borda score Optimal

Number of

2 k
possible levels 0(k*) 0(“ )

Jakub Golinowski - ETH ZUrich 34



THEORETICAL ANALYSIS

Jakub Golinowski - ETH ZUrich
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ASSUMPTIONS

co many students

Jakub Golinowski - ETH ZUrich
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ASSUMPTIONS

Ground truth
S

Lower number means better student

Jakub Golinowski - ETH ZUrich
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ASSUMPTIONS

Exams in a bundle ~ 1. I. d.

Ground truth
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ASSUMPTIONS

Exams in a bundle ~ 1. I. d.

Ground truth
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EFFICIENCY
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EFFICIENCY

Achieved ordering 1,2,3,4,5
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EFFICIENCY

Achieved ordering  1,2,3,5,4
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Achieved ordering 1,2,3,4,5

U3

= B
=N

Jakub Golinowski - ETH ZUrich



EFFICIENCY

A
Achieved ordering 1,2,5,4,3
\
(251
— 2
l N\
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EXPECTED EFFICIENCY

o YN 1
sz f ( Z IP[xl>aandyl>a’]+§z]P[x>aandy>a]>dydx
0 Jx

o0 :0>01 o
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EXPECTED FRACTION OF CORRECTLY
RECOVERED PAIRWISE RELATIONS

o 1
C:j J( z P[x>aandy>a’]+§Z]P’[xl>aandyl>a]>dydx
0 Yx
(o)

o,0:0>ar
Wanted: x has better type as y

Jakub Golinowski - ETH ZUrich 46



EXPECTED FRACTION OF CORRECTLY
RECOVERED PAIRWISE RELATIONS

o 1
C:j J( z P[x>aandy>a’]+§Z]P’[xl>aandyl>a]>dydx
0 Yx
(o)

o,0:0>ar

Less wanted: x has the same type as y
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EXPECTED FRACTION OF CORRECTLY
RECOVERED PAIRWISE RELATIONS

o 1
C:j J( z P[x>aandy>a’]+§Z]P’[xl>aandyl>a]>dydx
0 Yx
(o)

o,0:0>ar

o >0 = oisabetter type
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EXPECTED FRACTION OF CORRECTLY
RECOVERED PAIRWISE RELATIONS

o 1
C=jj< z P[x>aandy>a’]+§Z]P’[xl>aandyl>a]>dydx
0 Yx
(o)

o,0:0>01

For all exam papers1 >y > x
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EXPECTED FRACTION OF CORRECTLY
RECOVERED PAIRWISE RELATIONS

o 1
C=jj< z P[x>aandy>a’]+§Z]P’[xl>aandyl>a]>dydx
0 Yx
(o)

o,0:0>01

For all exam papers1 > x > 0
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WEIGHTS

N [ 1
Czj j < z Plx >ocandy > o] Ez xl>aandyl>a]>dydx
0 Jx =

O'O' :0>ao/

1
Z jj]P[xDaandyba dydx EEIJ [x > 0 and y > oldydx
o

O'O' :0>ao/
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WEIGHTS

NIH

Z ijP’[xDaandyDa dydx + ij [x > 0andy > oldydx

O'O' Hoplon) o

Wi P = /4
z S’ z s Probability

O'O' :0>ao/

©
o
weight: W(o,0') = fol f; Plx > 0 and y & o'|dydx

...
Linear

‘ .
m Algebra
Jakub Golinowski - ETH ZUrich 52




RESULTS

= z W(00)+22W(0 o)

O'O' :0>0!

i
W(o,0") = j j Plx = o] - Ply & ¢'|dydx

0

Probabilities are polynomials - infegrals can be analytically solved!

Jakub Golinowski - ETH ZUrich
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RESULTS

= z W(aa)+zzW(a o)

O'O' :0>0!

1 1
W) = || Pl e ol Ply & oldyds

0

Weights are easy to compute (closed form solution)

Jakub Golinowski - ETH ZUrich
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CONCLUSION

C(k,>,P) = 2 W(00)+22W(a o)

O'O' o>o'!

Jakub Golinowski - ETH ZUrich
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OPTIMIZATION

G- SR z W(o,c") + = zW(aa)

O'O' :o>0'

max z W(aa)+zzW(a o)

O'O' :g>0o/

Weights are independent of > > computed only once

Jakub Golinowski - ETH ZUrich 56



ADDING ELASTICITY

W(o,0") = f

| Pl e o Ply & o ldydx
0 JYx

I A==
0 otherwise

f(x,y) ={

Jakub Golinowski - ETH ZUrich
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ADDING ELASTICITY

W(o,0") = f

| Pl e o Ply & o ldydx
0 JYx

IS0
0 otherwise

fx,y) ={

Jakub Golinowski - ETH ZUrich

58



OPTIMIZATION

ClA P — z W(aa)+ZZW(0 o)

O'O' :o>0"'

max z W(aa)+zzW(a o)

O'O' :g>0o/

Weights are still independent of > > computed only once
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REFORMULATE PROBLEM

1
max z W(o,o") + Ez W (o, o)
o,0":0>a/ o
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REFORMULATE PROBLEM

1
max z W(o,o") + Ez W (o, o)
o,0":0>a/ o
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AUXILIARY GRAPH

Different weights = Keep edge with bigger weight
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AUXILIARY GRAPH

Equal weights = discard
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AUXILIARY GRAPH

Equal weights = discard
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AUXILIARY GRAPH

Strongly connected regions (cycles)
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AUXILIARY GRAPH

Strongly connected regions (cycles)
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AUXILIARY GRAPH

Brute force (or Borda in case of large cycle)
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Grading errors

L]
T

FIELD EXPERIMENT

k=6mn=136

Grade in exam
0 2 4 G 8 10
T T T T T T

L R ®

0e 0@
o 0 @
o oQ0c @Oo .0.0
: o e o.oo;
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(a) Realistic noise
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Grading errors

o
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Grade in exam
2 4 6

8
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o0
o 00 000000
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o 5,300,

(b) Mallows noise
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FIELD EXPERIMENT

P, real —

P, mallows —

[ 0.463 0.257 0.102 0.058 0.058 0.058
0.205 0.316 0.227 0.110 0.066 0.073
0.161 0.191 0.257 0.205 0.132 0.051
0.102 0.117 0.191 0.242 0.279 0.066
0.044 0.066 0.139 0.220 0.301 0.227

| 0.022 0.051 0.080 0.161 0.161 0.522

[ 0.6337 0.1753 0.0824 0.0494 0.0339 0.0253
0.1753 0.5112 0.1549 0.0768 0.0479 0.0339
0.0824 0.1549 0.4865 0.1500 0.0768 0.0494
0.0494 0.0768 0.1500 0.4865 0.1549 0.0824
0.0339 0.0479 0.0768 0.1549 0.5112 0.1753

| 0.0253 0.0339 0.0494 0.0824 0.1753 0.6337

Jakub Golinowski - ETH ZUrich
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SIMULATIONS

All2all:
flx,y) =1

Jakub Golinowski - ETH ZUrich



SIMULATIONS

Th-10% and Th-50%:

1 Trst S
0 otherwise

flx,y) =+

Jakub Golinowski - ETH ZUrich
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SIMULATIONS

Acc-2% and Acc-5%:

& LIRS R GGy )
0 otherwise

flx,y) =+

Jakub Golinowski - ETH ZUrich

Vi



SMALL STRONGLY

CONNECTED COMPONENTS

realistic model mallows model
size all2all | th-50% | acc-2% | acc-b% | all2all | th-50% | acc-2% | acc-b%
1 448 460 449 451 453 459 449 449
3-7 13 2 12 10 6 3 10 12
8-11 1 0 1 1 2 0 2 0
> 12 0 0 0 0 1 0 1 1
max 10 3 10 10 20 4 20 20

Jakub Golinowski - ETH ZUrich
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PERFORMANCE

noise perfect grading realistic grading mallows grading

setting | theory | n = 10? theory n = 10% theory n = 10%

method | borda borda opt borda opt borda opt borda opt borda
all2all | 92.01 | 92.02 | 80.01 | 79.57 | 80.09 | 79.567 | 85.15 | 84.38 | 85.16 | 84.39
th-10% 96.94 96.95 87.61 87.18 | 87.60 | 87.17 92.05 | 90.52 | 92.07 | 90.54
th-50% 94.13 94.14 83.62 | 83.43 | 83.62 | 83.43 88.39 | 87.80 | 88.40 | 87.81
acc-2% 93.57 93.57 81.27 | 80.73 | 81.27 | 80.74 86.52 | 85.72 | 86.52 | 85.73
acc-5% 95.47 95.47 82.97 82.42 | 82.97 | 82.42 88.42 | 87.61 88.42 | 87.62

Jakub Golinowski - ETH ZUrich
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CONCLUSION

Teach for free
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CONCLUSION

Uus Uus U e e e T —
v = [u4] v, = [usl Vy = [U3] Uq U, Ug Uy Ucg

= & % oy, = (1,1,1) > B(0,,) = 9
oy, = (1,1,2) > B(o,,) = 8
oy. = (1,1,2) > B(oy,) =8
oy, = (1,2,3) > B(oy,) =6
Go— (B2 = Bl | = 5

oy, = (1,1,2)
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CONCLUSION

max Z W(o,c") + = ZW(O'O')

O'O' :0>0o/
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CONCLUSION

noise perfect grading realistic grading mallows grading

setting | theory | n = 10% theory n = 10% theory n = 10%

method | borda borda opt borda opt borda opt borda opt borda
all2all | 92.01 | 92.02 | 80.01 | 79.57 | 80.09 | 79.57 | 85.15 | 84.38 | 85.16 | 84.39
th-10% 96.94 96.95 87.61 87.18 | 87.60 | 87.17 92.05 | 90.52 | 92.07 | 90.54
th-50% 94.13 94.14 83.62 | 83.43 | 83.62 | 83.43 88.39 | 87.80 | 88.40 | 87.81
acc-2% 93.57 93.57 81.27 | 80.73 | 81.27 | 80.74 86.52 | 85.72 | 86.52 | 85.73
acc-b% 95.47 95.47 82.97 82.42 | 82.97 | 82.42 88.42 | 87.61 88.42 | 87.62
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THANK YOU!

PLEASE ASK QUESTIONS

Jakub Golinowski - ETH ZUrich
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ADDITIONAL SLIDES

Jakub Golinowski - ETH ZUrich
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WRONG BUNDLING
EXAMPLE

Jakub Golinowski - ETH ZUrich
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SETTING

n students
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BUILDING BUNDLE GRAPH

Jakub Golinowski - ETH ZUrich

87



HOW TO BUILD BUNDLE GRAPH

Start from complete bipartite graph K, , (all graders connected to all papers),
Remove the edges between graders and their own papers,

Draw a perfect matching uniformly at random among all perfect matchings (that
do not include previously removed edges),

Repeat previous step until each grader has k papers (and each paper has 3
graders)

n students

n papers

Jakub Golinowski - ETH ZUrich 88



HOW TO BUILD BUNDLE GRAPH

Start from complete bipartite graph K, , (all graders connected to all papers),
Remove the edges between graders and their own papers,

Draw a perfect matching uniformly at random among all perfect matchings (that
do not include previously removed edges),

Repeat previous step until each grader has k papers (and each paper has 3
graders)

n students

= ONOLONO 1O
------------
=2

/ ooo

n papers

‘,’/’/ ' T~

A
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HOW TO BUILD BUNDLE GRAPH

Start from complete bipartite graph K, , (all graders connected to all papers),
Remove the edges between graders and their own papers,

Draw a perfect matching uniformly at random among all perfect matchings (that
do not include previously removed edges),

Repeat previous step until each grader has k papers (and each paper has 3
graders)

n students

SRR

n papers
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HOW TO BUILD BUNDLE GRAPH

Start from complete bipartite graph K, , (all graders connected to all papers),
Remove the edges between graders and their own papers,

Draw a perfect matching uniformly at random among all perfect matchings (that
do not include previously removed edges),

Repeat previous step until each grader has k papers (and each paper has 3
graders)

n students

S
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HOW TO BUILD BUNDLE GRAPH

Start from complete bipartite graph K, , (all graders connected to all papers),
Remove the edges between graders and their own papers,

Draw a perfect matching uniformly at random among all perfect matchings (that
do not include previously removed edges),

Repeat previous step until each grader has k papers (and each paper has 3
graders)

n students

= ONOLONE 1. O O
-------\
Tgﬁ

INENENE '

P

®
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\
Tgﬁ

| 4 | 4 @
dh b &b 4 4
PR AT

A RRREE

n papers
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HOW TO BUILD BUNDLE GRAPH

Start from complete bipartite graph K, , (all graders connected to all papers),
Remove the edges between graders and their own papers,

Draw a perfect matching uniformly at random among all perfect matchings (that
do not include previously removed edges),

Repeat previous step until each grader has k papers (and each paper has 3
graders)

n students

LA S
DARRERRRRERRA

n papers
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SETTING

k-regular bipartite graph ¢ = (U,V, E) with n nodes on each side.
U contains exam papers and V confains graders,

k edges from each grader v; to k exam papers from U.

e enlFednpeikdracdesniciawn e peieesicliCimsy @RS
forbidden for all values of i.

n students

DL A0 o
BERRERRE 5

=) |9 8

Jakub Golinowski - ETH ZUrich 94
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MODELLING STUDENT'S
GRADING BEHAVIOUR

Jakub Golinowski - ETH ZUrich
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QUALITY q € |3, 1]
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GRADING BEHAVIOUR

Uq
ik =l e (U7l Ialmi e [uz].
Us

First attempt:

B~
E§

u3 U,
cycle

Jakub Golinowski - ETH ZUrich
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GRADING BEHAVIOUR

Uy
Lz ="t —F7 e Tehlqy v — [uz].

Uz
Second attempt:

no cycle — grading outcome

Jakub Golinowski - ETH ZUrich

98



DERIVATIONS

Jakub Golinowski - ETH ZUrich
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EXPECTED FRACTION OF CORRECTLY
RECOVERED PAIRWISE RELATIONS

= z W(a,a’)+%ZW(a,a)

o,0:0>01

From assumptions:
Infinite number of students = no dependency between the rank
vectors that the exam papers x and y get after grading:

Plx>0candy o o'l =Plx > 0] - Ply & o]

Now problem boils down to finding explicit formula for P[x = a], which
is a probability that an exam paper x has type o = (o4, ..., 0% ).

Jakub Golinowski - ETH ZUrich 100



FINDING P[x & o]

Now problem boils down to finding explicit formula for P[x = o], that is
a probability that an exam paper x has type ¢ = (ay, ..., 0y).

Procedure:

« Denote by E(x, ;) an event that i-th element of exam paper’s x
type is g;, which is equivalent to the event that the exam paper x
was ranked og;-th in a bundle,

« Based on above determine the probability that o = (g4, ..., g3) IS of G
particular type,

* Multiply above calculated probability by the number of ways in
which such a type could have been achieved.

Jakub Golinowski - ETH ZUrich 101



FINDING P[x & o]

Now problem boils down to finding explicit formula for P[x = o], thatis
a probability that an exam paper x has type o = (a4, ..., o).

Procedure:

« Denote by £(x,0;) an event that i-th element of exam paper’s x type
is 0;, which is equivalent to the event that the exam paper x was
ranked o;-th in a bundle,

 Based on above determine the probability that ¢ = (04, ..., 6y ) is of a
particular type,

«  Multiply above calculated probability by the number of ways in
which such a type could have been achieved.

R (G 8

k
Plex. g liandes=and &b o) F= 1_[ P[E(x, 0y)]
i=1

Infinitely many students => the quality of each exam
paper in the bundle does not affect quality of other
exam papers

Jakub Golinowski - ETH ZUrich 102



FINDING P[x & o]

Now problem boils down to finding explicit formula for P[x = o], thatis
a probability that an exam paper x has type ¢ = (ay, ..., 0y).

HlereselUit=:
« Denote by E(x, ;) an event that i-th element of exam paper’s x
type is o;, which is equivalent to the event that the exam paper x

was ranked og;-th in a bundle,
« Based on above determine the probability that o = (o4, ..., g3) IS of G

particular type,
« Multiply above calculated probability by the number of ways in
which such a type could have been achieved.

R ({8

k
P[E(x,07) and ... and E(x, 04)] = 1_[ P[E(x, ;)]
i=1

In how many ways can a given N(g) = k!
type be distributed among Y
bundies it originates from. Jakub Golinowski - ETH ZUrich 103
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FINDING P[x & o]

Now problem boils down to finding explicit formula for P[x = ¢], that is
a probability that an exam paper x has type o = (a4, ..., 0% ).

k
Plx ool =N@) | | PlECa]

Probability that the exam paper x was ranked o;-th in a bundle
can be further decomposed. How?e

ldea: use the definition of noise maftrix P

Jakub Golinowski - ETH ZUrich 104



NOISE MATRIX REMINDER

Model students’ grading behaviour by infroducing a
k X k noise matrix P = (pll)ue , Where p; ; denotes

the probability that the s’ruden’r will rank the paper on
the position i when its true rank is j.

Example: p, ; = 0.4 means that the students will put
the paper on the position 2 with probability 0.4 if its
true ranking is 3.
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FINDING P[£(x, 7;)]

Intermediate problem of finding the probability that the exam x was
ranked o;-th in a bundle.

Procedure:

« Consider all possible true rankings that an exam paper x may have
in a bundle,

« Account for x having such a true ranking and in the same fime
being ranked g;-th by the grader (noise matrix!),

P[E(x,07)] = zllpai'f (f: 11) N

Sum over all possible true rankings of an exam paper in a bundle
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FINDING P[£(x, 7;)]

Intermediate problem of finding the probability that the exam x was
ranked o;-th in a bundle.

Procedure:

« Consider all possible true rankings that an exam paper x may have
in a bundle,

« Account for x having such a true ranking and in the same fime
being ranked g;-th by the grader (noise matrix!),

P[E(x,07)] = zllpai'f (f: 11) N

Probability of giving exam x rank g; if the true rank is j (noise maitrix)
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FINDING P[£(x, 7;)]

Intermediate problem of finding the probability that the exam x was
ranked o;-th in a bundle.

Procedure:

« Consider all possible true rankings that an exam paper x may have
in a bundle,

« Account for x having such a true ranking and in the same fime
being ranked g;-th by the grader (noise matrix!),

Probability that the true rank of x in the bundle is j

Jakub Golinowski - ETH ZUrich 108



FINDING P[£(x, 7;)]

Intermediate problem of finding the probability that the exam x was
ranked o;-th in a bundle.

Procedure:

« Consider all possible true rankings that an exam paper x may have
in a bundle,

« Account for x having such a true ranking and in the same fime
being ranked g;-th by the grader (noise matrix!),

P[E(x,07)] = zllpai'f (f: 11) N

Number of ways in which papers ahead of x can be distributed in a bundle.
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FINDING P|E(x, o) ]

Intermediate problem of finding the probability that the exam x was
ranked o;-th in a bundle.

Procedure:

« Consider all possible true rankings that an exam paper x may have
in a bundle,

« Account for x having such a true ranking and in the same fime
being ranked g;-th by the grader (noise matrix!),

k ! I :
]P[&‘(x, O'l')] B zj=1po'i,j (I]{ 4 ]]:)x\]_l(lY—x)k}

Reminder: x is in range [0,1] and the lower x, the better is its tfrue ranking

Conclusion: x/~1(1 — x)*~J is the probability that there are j — 1 papers in the
bundle ahead of x.
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FINDING P[x & o]

Now problem boils down to finding explicit formula for P[x = o], that is a
probability that an exam paper x has type ¢ = (04, ..., 0%).

Plx = o] = N(G)l_[z P[E(x, g;)] —N(J)I_L 121 1p011( )x] 1(1 — x)k-J

Exchange sum and products operator and denoting by L, set of all k-
entry vectors | = (14, ..., l,) with [; € {1, ..., k}:

Plx > o] = N(o) Z 1_[ Do, ll( - D 2li=1(1 — x)k-l

LEL}
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FINDING P[x & o]

Now problem boils down to finding explicit formula for P[x = o], that is a
probability that an exam paper x has type ¢ = (04, ..., 0%).

P[x > o] = N(o) Z 1_[ B ll( o D xli=1(1 — x)k-

lEL}

Push multiplication to the exponent and denote |I|; = Y%, I; :

AT Y0) Z (1_[ Payl; (i B 1)>x|lll_k(1 — x)¥** =l

lEL
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FINDING P[x & o]

Now problem boils down to finding explicit formula for P[x = o], that is a
probability that an exam paper x has type ¢ = (04, ..., 0%).

e e dig z (1_[ Poyl; (z % 1))’6”'1_"(1 =) < T

lEL

Use (1— 0™ = X7, () (—1Jx)

pix ol =8 Y. ([T pou (1)) 2~ Z( S0 oy

lEL Jj=0
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FINDING P[x & o]

Now problem boils down to finding explicit formula for P[x = o], that is @
probability that an exam paper x has type o = (a4, ..., 0% ).

k2—|lly
P[x > o] = N(o) z <1_[ o (5{ E 1)>xllll—k z <k2 —] |l|1> (1)) xJ
leLy j=0
Order the terms:
k%—|1]4
P[x = a] = N(o) Z Z <1_[ Dot (Z : 1)) <k2 ; |l|1> (—1)/x!ta—k+J
[EL; j=

KEY Conclusion: P[x = ¢] is a univariate polynomial of degree k? — k
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MODELLING WHOLE
POPULATION FROM SAMPLE
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MODELLING A POPULATION

Table Ill. Perfomance of the optimal type-ordering aggregation rules for approxi-
mations of the Mallows model. The data for Mallows are presented again here for
direct comparison.

| #samples

100

1000

Mallows

setting

all2all
th-10%
th-50%
acc-2%
acc-5%

theory

n = 10%

theory

n = 10%

Jakub Golinowski - ETH ZUrich
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n = 104

116



EXAMPLE (k = 3)

Very bad Graders

P=103 04 0.3

UL IR 0p e 0.6]
O Wty e 0t




REFORMULATE PROBLEM

1
max z W(o,o") + Ez W (o, o)
o,0":0>a/ o

- RVA_ o
= =

N AN
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