ETHzürich

HOW EFFECTIVE CAN SIMPLE ORDINAL PEER GRADING BE?

IOANNIS CARAGIANNIS, GEORGE A. KRIMPAS, ALEXANDROS A. VOUDOURIS, University of Patras

Jakub Golinowski
MSc student in Computer Science at ETH Zürich Work under supervision of Darya Melnyk

MASSIVE OPEN ONLINE COURSES

coursera

OPENCLASSROOMS

kadenze

BUSINESS MODEL

PROBLEM

Up to 50000 students per course

 68 < < 8.

BUSINESS MODEL VS PROBLEM

IDEA - PEER GRADING

Outsource grading to students

©

HOW TO GRADE

- Cardinal grading (absolute grading)

	Topic	Max. Points	Points	Signature
1	ML \& Bayesian inference	20		
2	Kernels	20		
3	Neural Networks	20		
4	Gaussian processes	20		
5	Unsupervised learning	20		
Total		100		

Grade:

Source: Machine Learning Exam 2015 (ETHZ)

HOW TO GRADE

－Ordinal grading（sorting）

$$
\begin{aligned}
& \text { a. 술 } \\
& \text { \%. 管 } \\
& \text { \%. 管 } \\
& \text { 4. 管 } \\
& \text { c. 管 }
\end{aligned}
$$

HOW TO GRADE

－Ordinal grading（sorting）

$$
\begin{aligned}
& \text { 2. 管 } \\
& \text { a. 算 } \\
& \text { \%. 管 } \\
& \text { 。国 } \\
& \text { e. 管 }
\end{aligned}
$$

HOW TO GRADE

- Cardinal grading (absolute grading)
- Assign low grades \rightarrow improve own performance,
- Lack of experience.
- Ordinal grading (sorting)
- Free from incentive to under-grade,
- Requires less grading experience.

HOW TO GRADE

- Cardinal grading (absolute grading)
- Assign low grades \rightarrow improve own performance,
- Lack of experience.
- Ordinal grading (sorting)
- Free from incentive to under-grade,
- Requires less grading experience.

SETTING

BUNDLES OF k EXAMS

BUNDLES OF k EXAMS

Student cannot grade his own paper

SETTING

SETTING

SETTING

SETTING

SETTING

SETTING

SINGLE GRADER

Is this ordering correct?

MODELLING STUDENTS' GRADING BEHAVIOUR

GROUND TRUTH

GROUND TRUTH

SINGLE STUDENT'S RANKING

$$
\begin{array}{ll}
v_{1}=\left[\begin{array}{l}
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right] & v_{1}=\left[\begin{array}{l}
u_{2} \\
u_{4} \\
u_{3}
\end{array}\right] \\
v_{1}=\left[\begin{array}{l}
u_{3} \\
u_{2} \\
u_{4}
\end{array}\right] & v_{1}=\left[\begin{array}{l}
u_{3} \\
u_{4} \\
u_{2}
\end{array}\right] \\
v_{1}=\left[\begin{array}{l}
u_{4} \\
u_{3} \\
u_{2}
\end{array}\right] & v_{1}=\left[\begin{array}{l}
u_{4} \\
u_{2} \\
u_{3}
\end{array}\right]
\end{array}
$$

Which ordering is correct?

AGGREGATE INFORMATION

$$
P=\left[\begin{array}{ccc}
p_{1,1} & \cdots & p_{1, k} \\
\vdots & \ddots & \vdots \\
p_{k, 1} & \cdots & p_{k, k}
\end{array}\right]
$$

EXAMPLE $(k=3)$

Perfect Graders

$$
P=\left[\begin{array}{lll}
1.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 1.0
\end{array}\right]
$$

EXAMPLE $(k=3)$

Noł Perfect Graders

$$
P=\left[\begin{array}{lll}
0.5 & 0.3 & 0.2 \\
0.3 & 0.4 & 0.3 \\
0.2 & 0.3 & 0.5
\end{array}\right]
$$

SINGLE EXAM

$$
v_{1}=\left[\begin{array}{l}
u_{3} \\
u_{4} \\
u_{2}
\end{array}\right] \quad v_{2}=\left[\begin{array}{l}
u_{3} \\
u_{5} \\
u_{1}
\end{array}\right] \quad v_{4}=\left[\begin{array}{l}
u_{7} \\
u_{3} \\
u_{1}
\end{array}\right]
$$

Type - grading result of exam paper

$$
\sigma_{u_{3}}=(1,1,2)
$$

AGGREGATION RULE - BORDA

Extract types

$$
\begin{aligned}
& u_{1} \\
& \sigma_{u_{1}}=(1,1,1) \\
& \sigma_{u_{2}}=(1,2,3) \\
& \sigma_{u_{3}}=(1,1,2) \\
& \sigma_{u_{4}}=(2,2,3) \\
& \sigma_{u_{5}}=(1,1,2)
\end{aligned}
$$

AGGREGATION RULE - BORDA

Compute Borda Score

$$
\begin{aligned}
& \text { un } \\
& \left.\sigma_{u_{1}}=(1,1,1)\right) \rightarrow B\left(\sigma_{u_{1}}\right)=3+3+3=9 \\
& \sigma_{u_{2}}=(1,2,39) \rightarrow B\left(\sigma_{u_{1}}\right)=3+2+1=6 \\
& \left.\sigma_{u_{3}}=(1,1,2)\right) \rightarrow B\left(\sigma_{u_{1}}\right)=3+3+2=8 \\
& \sigma_{u_{4}}=(2,2,39) \rightarrow B\left(\sigma_{u_{1}}\right)=2+2+1=5 \\
& \left.\sigma_{u_{5}}=(1,1,2)\right) \rightarrow B\left(\sigma_{u_{1}}\right)=3+3+2=8
\end{aligned}
$$

AGGREGATION RULE - BORDA

Compute Borda Score

$$
\begin{aligned}
& \text { 品 } \\
& u_{1} \\
& \sigma_{u_{1}}=(1,1,1) \rightarrow B\left(\sigma_{u_{1}}\right)=9 \\
& \sigma_{u_{2}}=(1,2,3) \rightarrow B\left(\sigma_{u_{1}}\right)=6 \\
& \sigma_{u_{3}}=(1,1,2) \rightarrow B\left(\sigma_{u_{1}}\right)=8 \\
& \sigma_{u_{4}}=(2,2,3) \rightarrow B\left(\sigma_{u_{1}}\right)=5 \\
& \sigma_{u_{5}}=(1,1,2) \rightarrow B\left(\sigma_{u_{1}}\right)=8
\end{aligned}
$$

AGGREGATION RULE - BORDA

Order by Borda Score

$$
\begin{aligned}
& u_{u_{1}} \\
& \sigma_{u_{1}}=(1,1,1) \rightarrow B\left(\sigma_{u_{1}}\right)=9 \\
& \sigma_{u_{3}}=(1,1,2) \rightarrow B\left(\sigma_{u_{1}}\right)=8 \\
& \sigma_{u_{5}}=(1,1,2) \rightarrow B\left(\sigma_{u_{1}}\right)=8 \\
& \sigma_{u_{2}}=(1,2,3) \rightarrow B\left(\sigma_{u_{1}}\right)=6 \\
& \sigma_{u_{4}}=(2,2,3) \rightarrow B\left(\sigma_{u_{1}}\right)=5
\end{aligned}
$$

TYPE-ORDERING AGGREGATION RULE

	Borda	Type-ordering aggregation rule
Ordering rule	Borda score	Optimal
Number of possible levels	$\mathcal{O}\left(k^{2}\right)$	$\mathcal{O}\left(a^{k}\right)$

THEORETICAL ANALYSIS

ASSUMPTIONS

∞ many students

ASSUMPTIONS

Ground truth

Lower number means better student

ASSUMPTIONS

Exams in a bundle ~ i. i. d.

ASSUMPTIONS

Exams in a bundle ~ i. i. d.

EFFICIENCY

EFFICIENCY

EFFICIENCY

EFFICIENCY

EFFICIENCY

EXPECTED EFFICIENCY

$$
\hat{c}=\int_{0}^{1} \int_{x}^{1}\left(\sum_{\sigma, \sigma^{\prime}, \sigma \nabla \sigma,} \mathbb{P}\left[x \triangleright \sigma \text { and } y \triangleright \sigma^{\prime}\right]+\frac{1}{2} \sum_{\sigma} \mathbb{P}[x \triangleright \sigma \text { and } y \triangleright \sigma]\right) d y d x
$$

EXPECTED FRACTION OF CORRECTLY RECOVERED PAIRWISE RELATIONS

$$
\hat{C}=\int_{0}^{1} \int_{x}^{1}\left(\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} \mathbb{P}\left[x \triangleright \sigma \text { and } y \triangleright \sigma^{\prime}\right]+\frac{1}{2} \sum_{\sigma} \mathbb{P}[x \triangleright \sigma \text { and } y \triangleright \sigma]\right) d y d x
$$

EXPECTED FRACTION OF CORRECTLY RECOVERED PAIRWISE RELATIONS

$$
\begin{gathered}
\hat{C}=\int_{0}^{1} \int_{x}^{1}\left(\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} \mathbb{P}\left[x \triangleright \sigma \text { and } y \triangleright \sigma^{\prime}\right]+\frac{1}{2} \sum_{\sigma} \mathbb{P}[x \triangleright \sigma \text { and } y \triangleright \sigma]\right) d y d x \\
\text { Less wanted: } x \text { has the same type as } y
\end{gathered}
$$

EXPECTED FRACTION OF CORRECTLY RECOVERED PAIRWISE RELATIONS

$$
\hat{C}=\int_{0}^{1} \int_{x}^{1}(\underbrace{\sum_{\sigma: \sigma>\sigma,}}_{\sigma \rightarrow \sigma^{\prime}} \mathbb{P}\left[x \triangleright \sigma \text { and } y \triangleright \sigma^{\prime}\right]+\frac{1}{2} \sum_{\sigma} \mathbb{P}[x \triangleright \sigma \text { and } y \triangleright \sigma]) d y d x
$$

EXPECTED FRACTION OF CORRECTLY RECOVERED PAIRWISE RELATIONS

$$
\hat{C}=\int_{0}^{1} \int_{x}^{1}(\underbrace{\left.\sum_{\sigma, \sigma \succ \sigma^{\prime}} \mathbb{P}\left[x \triangleright \sigma \text { and } y \triangleright \sigma^{\prime}\right]+\frac{1}{2} \sum_{\sigma} \mathbb{P}[x \triangleright \sigma \text { and } y \triangleright \sigma]\right) d y d x .}_{\text {For all exam papers } 1>y>x}
$$

EXPECTED FRACTION OF CORRECTLY RECOVERED PAIRWISE RELATIONS

$$
\hat{C}=\int_{0}^{1} \int_{x}^{1}(\underbrace{\left.\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma \prime} \mathbb{P}\left[x \triangleright \sigma \text { and } y \triangleright \sigma^{\prime}\right]+\frac{1}{2} \sum_{\sigma} \mathbb{P}[x \triangleright \sigma \text { and } y \triangleright \sigma]\right) d y d x}_{\text {For all exam papers } 1>x>0}
$$

WEIGHTS

$$
\begin{gathered}
\hat{C}=\int_{0}^{1} \int_{x}^{1}\left(\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} \mathbb{P}\left[x \triangleright \sigma \text { and } y \triangleright \sigma^{\prime}\right]+\frac{1}{2} \sum_{\sigma} \mathbb{P}[x \triangleright \sigma \text { and } y \triangleright \sigma]\right) d y d x \\
\hat{C}=\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} \int_{0}^{1} \int_{x}^{1} \mathbb{P}\left[x \triangleright \sigma \text { and } y \triangleright \sigma^{\prime}\right] d y d x+\frac{1}{2} \sum_{\sigma} \int_{0}^{1} \int_{x}^{1} \mathbb{P}[x \triangleright \sigma \text { and } y \triangleright \sigma] d y d x
\end{gathered}
$$

WEIGHTS

$\hat{C}=\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma} \int_{0}^{1} \int_{x}^{1} \mathbb{P}\left[x \triangleright \sigma\right.$ and $\left.y \triangleright \sigma^{\prime}\right] d y d x+\frac{1}{2} \sum_{\sigma} \int_{0}^{1} \int_{x}^{1} \mathbb{P}[x \triangleright \sigma$ and $y \triangleright \sigma] d y d x$

$$
C=\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} W\left(\sigma, \sigma^{\prime}\right)+\frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)
$$

Probability

 Theoryweight: $W\left(\sigma, \sigma^{\prime}\right)=\int_{0}^{1} \int_{x}^{1} \mathbb{P}\left[x \triangleright \sigma\right.$ and $\left.y \triangleright \sigma^{\prime}\right] d y d x$

RESULTS

$$
\hat{C}=\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} W\left(\sigma, \sigma^{\prime}\right)+\frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)
$$

$$
W\left(\sigma, \sigma^{\prime}\right)=\int_{0}^{1} \int_{x}^{1} \mathbb{P}[x \triangleright \sigma] \cdot \mathbb{P}\left[y \triangleright \sigma^{\prime}\right] d y d x
$$

Probabilities are polynomials \rightarrow integrals can be analytically solved!

RESULTS

$$
\hat{C}=\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} W\left(\sigma, \sigma^{\prime}\right)+\frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)
$$

$$
\begin{aligned}
& \qquad W\left(\sigma, \sigma^{\prime}\right)=\int_{0}^{1} \int_{x}^{1} \mathbb{P}[x \triangleright \sigma] \cdot \mathbb{P}\left[y \triangleright \sigma^{\prime}\right] d y d x \\
& \text { Weights are easy to compute (closed form solution) }
\end{aligned}
$$

CONCLUSION

$$
\hat{C}(k, \succ, P)=\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} W\left(\sigma, \sigma^{\prime}\right)+\frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)
$$

OPTIMIZATION

$$
\hat{C}(k, \succ, P)=\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} W\left(\sigma, \sigma^{\prime}\right)+\frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)
$$

$$
\max _{\succ} \sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} W\left(\sigma, \sigma^{\prime}\right)+\frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)
$$

Weights are independent of $>\rightarrow$ computed only once

ADDING ELASTICITY

$$
\begin{gathered}
W\left(\sigma, \sigma^{\prime}\right)=\int_{0}^{1} \int_{x}^{1} f(x, y) \mathbb{P}[x \triangleright \sigma] \cdot \mathbb{P}\left[y \triangleright \sigma^{\prime}\right] d y d x \\
f(x, y)=\left\{\begin{array}{l}
1 \text { if } y-x \geq 5 \% \\
0 \text { otherwise }
\end{array}\right.
\end{gathered}
$$

ADDING ELASTICITY

$$
\begin{gathered}
W\left(\sigma, \sigma^{\prime}\right)=\int_{0}^{1} \int_{x}^{1} f(x, y) \mathbb{P}[x \triangleright \sigma] \cdot \mathbb{P}\left[y \triangleright \sigma^{\prime}\right] d y d x \\
f(x, y)=\left\{\begin{array}{l}
1 \text { if } x \leq 20 \% \\
0 \text { otherwise }
\end{array}\right.
\end{gathered}
$$

OPTIMIZATION

$$
\hat{C}(k,>, P, f)=\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} W\left(\sigma, \sigma^{\prime}\right)+\frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)
$$

$$
\max _{\succ} \sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} W\left(\sigma, \sigma^{\prime}\right)+\frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)
$$

Weights are still independent of $>\rightarrow$ computed only once

REFORMULATE PROBLEM

$$
\max _{\succ} \sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} W\left(\sigma, \sigma^{\prime}\right)+\frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)
$$

REFORMULATE PROBLEM

$$
\max _{\succ} \sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} W\left(\sigma, \sigma^{\prime}\right)+\frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)
$$

AUXILIARY GRAPH

Different weights \Rightarrow Keep edge with bigger weight

AUXILIARY GRAPH

Equal weights \Rightarrow discard

Jakub Golinowski - ETH Zürich

AUXILIARY GRAPH

Equal weights \Rightarrow discard

AUXILIARY GRAPH

Strongly connected regions (cycles)

Jakub Golinowski - ETH Zürich

AUXILIARY GRAPH

Strongly connected regions (cycles)

AUXILIARY GRAPH

Brute force (or Borda in case of large cycle)

FIELD EXPERIMENT

$$
k=6, n=136
$$

FIELD EXPERIMENT

$$
P_{\text {real }}=\left[\begin{array}{llllll}
0.463 & 0.257 & 0.102 & 0.058 & 0.058 & 0.058 \\
0.205 & 0.316 & 0.227 & 0.110 & 0.066 & 0.073 \\
0.161 & 0.191 & 0.257 & 0.205 & 0.132 & 0.051 \\
0.102 & 0.117 & 0.191 & 0.242 & 0.279 & 0.066 \\
0.044 & 0.066 & 0.139 & 0.220 & 0.301 & 0.227 \\
0.022 & 0.051 & 0.080 & 0.161 & 0.161 & 0.522
\end{array}\right]
$$

$$
P_{\text {mallows }}=\left[\begin{array}{lllllll}
0.6337 & 0.1753 & 0.0824 & 0.0494 & 0.0339 & 0.0253 \\
0.1753 & 0.5112 & 0.1549 & 0.0768 & 0.0479 & 0.0339 \\
0.0824 & 0.1549 & 0.4865 & 0.1500 & 0.0768 & 0.0494 \\
0.0494 & 0.0768 & 0.1500 & 0.4865 & 0.1549 & 0.0824 \\
0.0339 & 0.0479 & 0.0768 & 0.1549 & 0.5112 & 0.1753 \\
0.0253 & 0.0339 & 0.0494 & 0.0824 & 0.1753 & 0.6337
\end{array}\right]
$$

SIMULATIONS

All2all: $f(x, y)=1$

SIMULATIONS

Th-10\% and Th-50\%:
$f(x, y)=\left\{\begin{array}{l}1 \text { if } x \leq \text { th\% } \\ 0 \text { otherwise }\end{array}\right.$

SIMULATIONS

Acc-2\% and Acc-5\%:

$\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\left\{\begin{array}{l}1 \text { if } y-x \geq \text { acc } \% \\ 0 \text { otherwise }\end{array}\right.$

SMALL STRONGLY CONNECTED COMPONENTS

	realistic model				mallows model			
size	all2all	th-50\%	acc-2\%	acc-5\%	all2all	th-50\%	acc-2\%	acc-5\%
1	448	460	449	451	453	459	449	449
$3-7$	13	2	12	10	6	3	10	12
$8-11$	1	0	1	1	2	0	2	0
≥ 12	0	0	0	0	1	0	1	1
\max	10	3	10	10	20	4	20	20

PERFORMANCE

noise	perfect grading			realistic grading				mallows grading			
setting	theory	$n=10^{4}$	theory		$n=10^{4}$		theory			$n=10^{4}$	
method	borda	borda	opt	borda	opt	borda	opt	borda	opt	borda	
all2all	92.01	92.02	80.01	79.57	80.09	79.57	85.15	84.38	85.16	84.39	
th-10\%	96.94	96.95	87.61	87.18	87.60	87.17	92.05	90.52	92.07	90.54	
th-50\%	94.13	94.14	83.62	83.43	83.62	83.43	88.39	87.80	88.40	87.81	
acc-2\%	93.57	93.57	81.27	80.73	81.27	80.74	86.52	85.72	86.52	85.73	
acc-5\%	95.47	95.47	82.97	82.42	82.97	82.42	88.42	87.61	88.42	87.62	

CONCLUSION

CONCLUSION

$$
v_{1}=\left[\begin{array}{l}
u_{3} \\
u_{4} \\
u_{2}
\end{array}\right] \quad v_{2}=\left[\begin{array}{l}
u_{3} \\
u_{5} \\
u_{1}
\end{array}\right] \quad v_{4}=\left[\begin{array}{l}
u_{7} \\
u_{3} \\
u_{1}
\end{array}\right]
$$

Type - grading result of
exam paper

$$
\sigma_{u_{3}}=(1,1,2)
$$

CONCLUSION

CONCLUSION

noise	perfect grading		realistic grading				mallows grading				
setting	theory	$n=10^{4}$	theory		$n=10^{4}$		theory			$n=10^{4}$	
method	borda	borda	opt	borda	opt	borda	opt	borda	opt	borda	
all2all	92.01	92.02	80.01	79.57	80.09	79.57	85.15	84.38	85.16	84.39	
th-10\%	96.94	96.95	87.61	87.18	87.60	87.17	92.05	90.52	92.07	90.54	
th-50\%	94.13	94.14	83.62	83.43	83.62	83.43	88.39	87.80	88.40	87.81	
acc-2\%	93.57	93.57	81.27	80.73	81.27	80.74	86.52	85.72	86.52	85.73	
acc-5\%	95.47	95.47	82.97	82.42	82.97	82.42	88.42	87.61	88.42	87.62	

What about combining filters?

How to interpret a grade?

THANK YOU!

PLEASE ASK QUESTIONS

ADDITIONAL SLIDES

TABLE OF CONTENT

WRONG BUNDLING EXAMPLE

SETTING

SETTING

SETTING

SETTING

BUILDING BUNDLE GRAPH

HOW TO BUILD BUNDLE GRAPH

- Start from complete bipartite graph $K_{n, n}$ (all graders connected to all papers),
- Remove the edges between graders and their own papers,
- Draw a perfect matching uniformly at random among all perfect matchings (that do not include previously removed edges),
- Repeat previous step until each grader has k papers (and each paper has 3 graders)
n students

HOW TO BUILD BUNDLE GRAPH

- Start from complete bipartite graph $K_{n, n}$ (all graders connected to all papers),
- Remove the edges between graders and their own papers,
- Draw a perfect matching uniformly at random among all perfect matchings (that do not include previously removed edges),
- Repeat previous step until each grader has k papers (and each paper has 3 graders)

HOW TO BUILD BUNDLE GRAPH

- Start from complete bipartite graph $K_{n, n}$ (all graders connected to all papers),
- Remove the edges between graders and their own papers,
- Draw a perfect matching uniformly at random among all perfect matchings (that do not include previously removed edges),
- Repeat previous step until each grader has k papers (and each paper has 3 graders)
n students

HOW TO BUILD BUNDLE GRAPH

- Start from complete bipartite graph $K_{n, n}$ (all graders connected to all papers),
- Remove the edges between graders and their own papers,
- Draw a perfect matching uniformly at random among all perfect matchings (that do not include previously removed edges),
- Repeat previous step until each grader has k papers (and each paper has 3 graders)

HOW TO BUILD BUNDLE GRAPH

- Start from complete bipartite graph $K_{n, n}$ (all graders connected to all papers),
- Remove the edges between graders and their own papers,
- Draw a perfect matching uniformly at random among all perfect matchings (that do not include previously removed edges),
- Repeat previous step until each grader has k papers (and each paper has 3 graders)
n students

HOW TO BUILD BUNDLE GRAPH

- Start from complete bipartite graph $K_{n, n}$ (all graders connected to all papers),
- Remove the edges between graders and their own papers,
- Draw a perfect matching uniformly at random among all perfect matchings (that do not include previously removed edges),
- Repeat previous step until each grader has k papers (and each paper has 3 graders)

SETTING

- K-regular bipartite graph $G=(U, V, E)$ with n nodes on each side. U contains exam papers and V contains graders,
- k edges from each grader v_{i} to k exam papers from U.
- Student cannot grade her own paper edge from v_{i} to u_{i} is forbidden for all values of i.

MODELLING STUDENT'S GRADING BEHAVIOUR

QUALITY $q \in\left[\frac{1}{2}, 1\right]$

GRADING BEHAVIOUR

- Let $k=3, q=0.7$, true rank $v_{i}^{\text {true }}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$.
- First attempt:

GRADING BEHAVIOUR

- Let $k=3, q=0.7$, true rank $v_{i}^{\text {true }}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$.
- Second attempt:

no cycle - grading outcome

DERIVATIONS

EXPECTED FRACTION OF CORRECTLY RECOVERED PAIRWISE RELATIONS

$$
C=\sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma \prime} W\left(\sigma, \sigma^{\prime}\right)+\frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)
$$

From assumptions:
infinite number of students \Rightarrow no dependency between the rank vectors that the exam papers x and y get after grading:

$$
\mathbb{P}\left[x \triangleright \sigma \text { and } y \triangleright \sigma^{\prime}\right]=\mathbb{P}[x \triangleright \sigma] \cdot \mathbb{P}\left[y \triangleright \sigma^{\prime}\right]
$$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, which is a probability that an exam paper x has type $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$.

FINDING $\mathbb{P}[x \triangleright \sigma]$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$.

Procedure:

- Denote by $\mathcal{E}\left(x, \sigma_{i}\right)$ an event that i-th element of exam paper's x type is σ_{i}, which is equivalent to the event that the exam paper x was ranked σ_{i}-th in a bundle,
- Based on above determine the probability that $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ is of a particular type,
- Multiply above calculated probability by the number of ways in which such a type could have been achieved.

FINDING $\mathbb{P}[x \triangleright \sigma]$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$.
Procedure:

- Denote by $\mathcal{E}\left(\mathrm{x}, \sigma_{\mathrm{i}}\right)$ an event that i -th element of exam paper's x type is σ_{i}, which is equivalent to the event that the exam paper x was ranked σ_{i}-th in a bundle,
- Based on above determine the probability that $\sigma=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{k}}\right)$ is of a particular type,
- Multiply above calculated probability by the number of ways in which such a type could have been achieved.

$$
\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)
$$

| $\qquad \mathbb{P}\left[\mathcal{E}\left(x, \sigma_{1}\right)\right.$ and \ldots and $\left.\mathcal{E}\left(x, \sigma_{k}\right)\right]=\prod_{i=1}^{k} \mathbb{P}\left[\mathcal{E}\left(x, \sigma_{i}\right)\right]$ |
| :--- | :--- |
| Infinitely many students $=>$ the quality of each exam
 paper in the bundle does not affict quality of other
 exam papers |

FINDING $\mathbb{P}[x \triangleright \sigma]$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$.
Procedure:

- Denote by $\mathcal{E}\left(x, \sigma_{i}\right)$ an event that i-th element of exam paper's x type is σ_{i}, which is equivalent to the event that the exam paper x was ranked σ_{i}-th in a bundle,
- Based on above determine the probability that $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ is of a particular type,
- Multiply above calculated probability by the number of ways in which such a type could have been achieved.

$$
\begin{gathered}
\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right) \\
\mathbb{P}\left[\mathcal{E}\left(x, \sigma_{1}\right) \text { and } \ldots \text { and } \mathcal{E}\left(x, \sigma_{k}\right)\right]=\prod_{i=1}^{k} \mathbb{P}\left[\mathcal{E}\left(x, \sigma_{i}\right)\right]
\end{gathered}
$$

In how many ways can a given type be distributed among

$$
N(\sigma)=\frac{k!}{d_{1}!\cdots d_{k}!}
$$

\qquad

FINDING $\mathbb{P}[x \triangleright \sigma]$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$.

$$
\mathbb{P}[x \triangleright \sigma]=N(\sigma) \prod_{i=1}^{k} \mathbb{P}\left[\mathcal{E}\left(x, \sigma_{i}\right)\right]
$$

Probability that the exam paper x was ranked σ_{i}-th in a bundle can be further decomposed. How?

Idea: use the definition of noise matrix P

NOISE MATRIX REMINDER

Model students' grading behaviour by introducing a $k \times k$ noise matrix $P=\left(p_{i, j}\right)_{i, j \in[k]}$, where $p_{i, j}$ denotes the probability that the student will rank the paper on the position i when its true rank is j.
Example: $p_{2,3}=0.4$ means that the students will put the paper on the position 2 with probability 0.4 if its true ranking is 3 .

FINDING $\mathbb{P}\left[\mathcal{E}\left(x, \sigma_{i}\right)\right]$

Intermediate problem of finding the probability that the exam x was ranked σ_{i}-th in a bundle.
Procedure:

- Consider all possible true rankings that an exam paper x may have in a bundle,
- Account for x having such a true ranking and in the same time being ranked σ_{i}-th by the grader (noise matrix!),

$$
\mathbb{P}\left[\varepsilon\left(x, \sigma_{i}\right)\right]=\sum_{j=1}^{k} p_{\sigma_{i}, j}\binom{k-1}{j-1} x^{j-1}(1-x)^{k-j}
$$

Sum over all possible true rankings of an exam paper in a bundle

FINDING $\mathbb{P}\left[\mathcal{E}\left(x, \sigma_{i}\right)\right]$

Intermediate problem of finding the probability that the exam x was ranked σ_{i}-th in a bundle.
Procedure:

- Consider all possible true rankings that an exam paper x may have in a bundle,
- Account for x having such a true ranking and in the same time being ranked σ_{i}-th by the grader (noise matrix!),

$$
\begin{aligned}
& \mathbb{P}\left[\mathcal{E}\left(x, \sigma_{i}\right)\right]=\sum_{j=1}^{k} p_{\sigma_{i}, j}\binom{k-1}{j-1} x^{j-1}(1-x)^{k-j} \\
& \text { iving exam } x \text { rank } \sigma_{i} \text { if the true rank is } j \text { (noise matrix) }
\end{aligned}
$$

FINDING $\mathbb{P}\left[\mathcal{E}\left(x, \sigma_{i}\right)\right]$

Intermediate problem of finding the probability that the exam x was ranked σ_{i}-th in a bundle.
Procedure:

- Consider all possible true rankings that an exam paper x may have in a bundle,
- Account for x having such a true ranking and in the same time being ranked σ_{i}-th by the grader (noise matrix!),

$$
\mathbb{P}\left[\mathcal{E}\left(x, \sigma_{i}\right)\right]=\sum_{j=1}^{k} p_{\sigma_{i}, j}\binom{k-1}{j-1} x^{j-1}(1-x)^{k-j},
$$

FINDING $\mathbb{P}\left[\mathcal{E}\left(x, \sigma_{i}\right)\right]$

Intermediate problem of finding the probability that the exam x was ranked σ_{i}-th in a bundle.
Procedure:

- Consider all possible true rankings that an exam paper x may have in a bundle,
- Account for x having such a true ranking and in the same time being ranked σ_{i}-th by the grader (noise matrix!),

$$
\mathbb{P}\left[\mathcal{E}\left(x, \sigma_{i}\right)\right]=\sum_{j=1}^{k} p_{\sigma_{i, j}}\binom{k-1}{j-1} x^{j-1}(1-x)^{k-j}
$$

Number of ways in which papers ahead of \mathbf{x} can be distributed in a bundle.

FINDING $\mathbb{P}\left[\mathcal{E}\left(x, \sigma_{i}\right)\right]$

Intermediate problem of finding the probability that the exam x was ranked $\sigma_{i}{ }^{\text {-th }}$ in a bundle.
Procedure:

- Consider all possible true rankings that an exam paper x may have in a bundle,
- Account for x having such a true ranking and in the same time being ranked σ_{i}-th by the grader (noise matrix!),

$$
\mathbb{P}\left[\mathcal{E}\left(x, \sigma_{i}\right)\right]=\sum_{j=1}^{k} p_{\sigma_{i}, j}\binom{k-1}{j-1} x^{x^{j-1}(1-x)^{k-j}}
$$

Reminder: x is in range $[0,1]$ and the lower x, the better is its true ranking Conclusion: $x^{j-1}(1-x)^{k-j}$ is the probability that there are $j-1$ papers in the bundle ahead of x.

FINDING $\mathbb{P}[x \triangleright \sigma]$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$.
$\mathbb{P}[x \triangleright \sigma]=N(\sigma) \prod_{i=1}^{k} \mathbb{P}\left[\varepsilon\left(x, \sigma_{i}\right)\right]=N(\sigma) \prod_{i=1}^{k} \sum_{j=1}^{k} p_{\sigma_{i}, j}\binom{k-1}{j-1} x^{j-1}(1-x)^{k-j}$
Exchange sum and products operator and denoting by L_{k} set of all k entry vectors $l=\left(l_{1}, \ldots, l_{k}\right)$ with $l_{i} \in\{1, \ldots, k\}$:

$$
\mathbb{P}[x \triangleright \sigma]=N(\sigma) \sum_{l \in L_{k}} \prod_{i=1}^{k} p_{\sigma_{i}, l_{i}}\binom{k-1}{l_{i}-1} x^{l_{i}-1}(1-x)^{k-l_{i}}
$$

FINDING $\mathbb{P}[x \triangleright \sigma]$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$.

$$
\mathbb{P}[x \triangleright \sigma]=N(\sigma) \sum_{l \in L_{k}} \prod_{i=1}^{k} p_{\sigma_{i}, l_{i}}\binom{k-1}{l_{i}-1} x^{l_{i}-1}(1-x)^{k-l_{i}}
$$

Push multiplication to the exponent and denote $\mid l_{1}=\sum_{i=1}^{k} l_{i}$:

$$
\mathbb{P}[x \triangleright \sigma]=N(\sigma) \sum_{l \in L_{k}}\left(\prod_{i=1}^{k} p_{\sigma_{i}, l_{i}}\binom{k-1}{l_{i}-1}\right) x^{|l|_{1}-k}(1-x)^{k^{2}-|l|_{1}}
$$

FINDING $\mathbb{P}[x \triangleright \sigma]$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$.

$$
\begin{array}{r}
\mathbb{P}[x \triangleright \sigma]=N(\sigma) \sum_{l \in L_{k}}\left(\prod_{i=1}^{k} p_{\sigma_{i}, l_{i}}\binom{k-1}{l_{i}-1}\right) x^{|l|_{1}-k}(1-x)^{k^{2}-|l|_{1}} \\
\text { Use }(1-x)^{m}=\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} x^{j} \\
\mathbb{P}[x \triangleright \sigma]=N(\sigma) \sum_{l \in L_{k}}\left(\prod_{i=1}^{k} p_{\sigma_{i}, l_{i}}\binom{k-1}{l_{i}-1}\right) x^{\mid l l_{1}-k} \sum_{j=0}^{k^{2}-|l|_{1}}\binom{k^{2}-|l|_{1}}{j}(-1)^{j} x^{j}
\end{array}
$$

FINDING $\mathbb{P}[x \triangleright \sigma]$

Now problem boils down to finding explicit formula for $\mathbb{P}[x \triangleright \sigma]$, that is a probability that an exam paper x has type $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$.

$$
\mathbb{P}[x \triangleright \sigma]=N(\sigma) \sum_{l \in L_{k}}\left(\prod_{i=1}^{k} p_{\sigma_{i}, l_{i}}\binom{k-1}{l_{i}-1}\right) x^{\mid l l_{1}-k} \sum_{j=0}^{k^{2}-|l|_{1}}\binom{k^{2}-|l|_{1}}{j}(-1)^{j} x^{j}
$$

Order the terms:

$$
\mathbb{P}[x \triangleright \sigma]=N(\sigma) \sum_{l \in L_{k}} \sum_{j=0}^{k^{2}-|l|_{1}}\left(\prod_{i=1}^{k} p_{\sigma_{i}, l_{i}}\binom{k-1}{l_{i}-1}\right)\binom{k^{2}-|l|_{1}}{j}(-1)^{j} x^{\left.|l|\right|_{1}-k+j}
$$

KEY Conclusion: $\mathbb{P}[x \triangleright \sigma]$ is a univariate polynomial of degree $k^{2}-k$

MODELLING WHOLE POPULATION FROM SAMPLE

MODELLING A POPULATION

Table III. Perfomance of the optimal type-ordering aggregation rules for approximations of the Mallows model. The data for Mallows are presented again here for direct comparison.

\# samples	100		1000		Mallows	
setting	theory	$n=10^{4}$	theory	$n=10^{4}$	theory	$n=10^{4}$
all2all	84.95	84.95	85.14	85.15	85.15	85.16
th-10\%	91.82	91.85	92.05	92.04	92.05	92.07
th-50\%	88.21	88.21	88.39	88.38	88.39	88.40
acc-2\%	86.31	86.31	86.51	86.51	86.52	86.52
acc-5\%	88.19	88.20	88.41	88.41	88.42	88.42

EXAMPLE $(k=3)$

Very bad Graders

$$
P=\left[\begin{array}{lll}
0.1 & 0.3 & 0.6 \\
0.3 & 0.4 & 0.3 \\
0.6 & 0.3 & 0.1
\end{array}\right]
$$

REFORMULATE PROBLEM

$$
\max _{\succ} \sum_{\sigma, \sigma^{\prime}: \sigma \succ \sigma^{\prime}} W\left(\sigma, \sigma^{\prime}\right)+\frac{1}{2} \sum_{\sigma} W(\sigma, \sigma)
$$

