Election vs. Selection: How Much Advice is Needed to Find the Largest Node in a Graph?

Avery Miller University of Manitoba avery@averymiller.ca

Andrzej Pelc
Université du Québec en Outaouais
andrzej.pelc@uqo.ca

First presented at SPAA 2016
Presentation - Damien Aymon, 08.05.2018
ETHZ - Seminar in Distributed Computing FS 2018

Application - Shared Resource

Microsoft Docs, Leader Election Pattern, 23.06.2017
https://docs.microsoft.com/en-us/azure/architecture/patterns/leader-election

Application - Shared Resource

Access to shared resource -> need coordinator

Failure resilience -> need new leader

Application - Radiocom

G. Le Lann, Distributed Systems - Towards a Formal Approach Proc. IFIP Congress, 1977, 155-160, North Holland.

Application - Radiocom

Election vs. Selection:
 How Much Advice is Needed to Find the Largest Node in a Graph?

Avery Miller
University of Manitoba
avery@averymiller.ca

Andrzej Pelc
Université du Québec en Outaouais
andrzej.pelc@uqo.ca

Election

Find a leader
Everyone knows its identity

Election

Find a leader

Everyone knows its identity

Election

Find a leader

Everyone knows its identity

Selection

Leader outputs 1

Every other node outputs $\mathbf{0}$

Selection

Leader outputs 1

Every other node outputs $\mathbf{0}$

Selection

Leader outputs 1

Every other node outputs $\mathbf{0}$

Election vs Selection

Synchronous Algorithms

In each round:

- Send messages to neighbours
- Receive messages from neighbours
- Do some computation

Time complexity is the number of rounds

Synchronous Algorithms

In each round:

- Send messages to neighbours
- Receive messages from neighbours
- Do some computation

Time complexity is the number of rounds

Synchronous Algorithms

In each round:

- Send messages to neighbours
- Receive messages from neighbours
- Do some computation

Time complexity is the number of rounds

Synchronous Algorithms

In each round:

- Send messages to neighbours
- Receive messages from neighbours
- Do some computation

Time complexity is the number of rounds

Algorithm with advice

Oracle with full knowledge

Gives same advice to each node

Goal: make computation faster

Algorithm with advice

Oracle with full knowledge

Gives same advice to each node

Goal: make computation faster

Algorithm with advice

Oracle with full knowledge

Gives same advice to each node

Goal: make computation faster

Algorithm with advice

Example : Election without advice

Notations:
$K(r, v)=$ knowledge of v after r rounds
$\Lambda(r, v)$ set of labels induced by $K(r, v)$

Algorithm with advice

Example : Election without advice

Notations:
$K(r, v)=$ knowledge of v after r rounds
$\Lambda(r, v)$ set of labels induced by $K(r, v)$

$\Lambda(0,4)=\{4\}$

Round 0

Algorithm with advice

Example : Election without advice

Notations:
$K(r, v)=$ knowledge of v after r rounds
$\Lambda(r, v)$ set of labels induced by $K(r, v)$
$K(1,4)$
$\Lambda(1,4)=\{4,6\}$

Round 1

Algorithm with advice

Example : Election without advice

Notations:
$K(r, v)=$ knowledge of v after r rounds
$\Lambda(r, v)$ set of labels induced by $K(r, v)$

$\Lambda(2,4)=\{3,4,6\}$

Round 2

Algorithm with advice

Example : Election without advice

Notations:
$K(r, v)=$ knowledge of v after r rounds
$\Lambda(r, v)$ set of labels induced by $K(r, v)$

$\Lambda(3,4)=\{3,4,5,6,12\}$

Algorithm with advice

Example : Election without advice
Notations:
$K(r, v)=$ knowledge of v after r rounds
$\Lambda(r, v)$ set of labels induced by $K(r, v)$

$\Lambda(4,4)=\{1,3,4,5,6,10,12\}$

Algorithm with advice

Example : Election without advice

Algorithm with advice

Example : Election without advice

Task - Measure of Difficulty

Time constraint for the execution

How much advice needed ?

Upper and lower bound the size of advice

Tight Bounds on Advice

Tight bounds are given on the size of advice.

Tight Bounds on Advice

Tight bounds are given on the size of advice.

$$
\Theta(f(x)) \Leftrightarrow \Omega(f(x)) \wedge O(f(x))
$$

Tight Bounds on Advice

Tight bounds are given on the size of advice.
$\Theta(f(x)) \Leftrightarrow \Omega(f(x)) \wedge O(f(x))$

Lower bound l
Find a class of graphs for which a least l advice needed for any algorithm

Upper bound u
Find an algorithm for which at most u advice needed on all graphs

How is it helpful?

Can rule out entire classes of algorithms

How is it helpful?

Can rule out entire classes of algorithms
Given result: Task T needs $\Theta(\log n)$ bits of advice

How is it helpful?

Can rule out entire classes of algorithms

Given result: Task T needs $\Theta(\log n)$ bits of advice
Proposed algorithm: Needs linear upper bound on n as advice.

How is it helpful?

Can rule out entire classes of algorithms
Given result: Task T needs $\Theta(\log n)$ bits of advice
Proposed algorithm: Needs linear upper bound on n as advice.
Contradiction: Advice can be given by $\lceil\log n\rceil$, using $\Theta(\log \log n)$ bits.

Results - Election

Time	Advice
$>$ diam	0
diam	$\Theta(\log$ diam $)$
$<$ diam	$\Theta(\log n)$

Results - Election

Time	Advice
$>$ diam	0
diam	$\Theta(\log$ diam $)$
$<$ diam	$\Theta(\log n)$

Results - Election

Time	Advice
$>$ diam	0
diam	$\Theta(\log$ diam $)$
$<$ diam	$\Theta(\log n)$

Provide the diameter of the graph

Results - Election

Time	Advice
$>$ diam	0
diam	$\Theta(\log$ diam $)$
$<$ diam	$\Theta(\log n)$

No better advice than to give the solution

Results - Election

Results - Selection

Time	Advice
$>$ diam	0
$a \cdot \operatorname{diam}$, $a \in(0,1)$	$\Theta(\log \log \operatorname{diam})$
diam e, $e<1$	$\Theta(\log$ diam $)$

Results - Selection

Time	Advice
$>$ diam	0
$a \cdot \operatorname{diam}$, $a \in(0,1)$	$\Theta(\log \log \operatorname{diam})$
diam e, $e<1$	$\Theta(\log$ diam $)$

Only valid for rings

Results - Selection

Time	Advice
$>$ diam	0
$a \cdot \operatorname{diam}$, $a \in(0,1)$	$\Theta(\log \log$ diam $)$
diam e, $e<1$	$\Theta(\log$ diam $)$

Results - Selection

Time	Advice
$>$ diam	0
$a \cdot \operatorname{diam}$, $a \in(0,1)$	$\Theta(\log \log$ diam $)$
diam e, $e<1$	$\Theta(\log$ diam $)$

We will go through the algorithm for the upper bound

Results - Selection

Time	Advice
$>$ diam	0
$a \cdot \operatorname{diam}$, $a \in(0,1)$	$\Theta(\log \log$ diam $)$
diam e, $e<1$	$\Theta(\log$ diam $)$

For rings $\Theta(\log$ diam $)=$ $\Theta(\log n)$

Results - Selection

Results

Time	Advice
$>$ diam	0
diam	$\Theta(\log$ diam $)$
$<$ diam	$\Theta(\log n)$

Time	Advice
$>$ diam	0
$a \cdot \operatorname{diam}$, $a \in(0,1)$	$\Theta(\log \log$ diam $)$
diam e, $e<1$	$\Theta(\log$ diam $)$

Results

Inter-task jump

Selection - Example

Time constraint: $\mathrm{t}=a \cdot \operatorname{diam}, a \in(0,1)$
Goal : Prove that size of advice is $\mathrm{O}(\log \log \operatorname{diam}(R))$ for any ring R

Simplification: $a=1$, so $t=\operatorname{diam}$

Selection - Example

Algorithm consists of two stages

1. Round-by-round discovery
2. Eliminate resulting nodes from first stage

Advice string split in two parts $A=A_{1} A_{2}$

Selection - Example

Algorithm - Stage 1
$A_{1}=\lfloor\log (\operatorname{diam}(R))\rfloor$
On each node v
Run $r=2^{A_{1}}$ rounds to learn $\Lambda(r, v)$

Selection - Example
Algorithm - Stage 1

$$
A_{1}=\lfloor\log (\operatorname{diam}(R))\rfloor
$$

On each node v
Run $r=2^{A_{1}}$ rounds to learn $\Lambda(r, v)$

Selection - Example

Algorithm - Stage 1
$A_{1}=\lfloor\log (\operatorname{diam}(R))\rfloor$
On each node v
Run $r=2^{A_{1}}$ rounds to learn $\Lambda(r, v)$

Selection - Example

Algorithm - Stage 1

$$
A_{1}=\lfloor\log (\operatorname{diam}(R))\rfloor \quad\lfloor\log (5)\rfloor=2
$$

On each node v

$$
\text { Run } r=2^{A_{1}} \text { rounds to learn } \Lambda(r, v) \quad r=4
$$

Selection - Example

Algorithm - Stage 1

$$
A_{1}=\lfloor\log (\operatorname{diam}(R))\rfloor \quad\lfloor\log (5)\rfloor=2
$$

On each node v

$$
\text { Run } r=2^{A_{1}} \text { rounds to learn } \Lambda(r, v) \quad r=4
$$

Selection - Example

Algorithm - Stage 1

$$
A_{1}=\lfloor\log (\operatorname{diam}(R))\rfloor \quad\lfloor\log (5)\rfloor=2
$$

On each node v

$$
\text { Run } r=2^{A_{1}} \text { rounds to learn } \Lambda(r, v) \quad r=4
$$

Selection - Example

Algorithm - Stage 1
$A_{1}=\lfloor\log (\operatorname{diam}(R))\rfloor$

$$
\lfloor\log (5)\rfloor=2
$$

On each node v

$$
\text { Run } r=2^{A_{1}} \text { rounds to learn } \Lambda(r, v) \quad r=4
$$

Selection - Example

Algorithm - Stage 1
$A_{1}=\lfloor\log (\operatorname{diam}(R))\rfloor$
$\lfloor\log (5)\rfloor=2$
On each node v
Run $r=2^{A_{1}}$ rounds to learn $\Lambda(r, v) \quad r=4$

Selection - Example

Algorithm - Stage 1
$A_{1}=\lfloor\log (\operatorname{diam}(R))\rfloor$

$$
\lfloor\log (5)\rfloor=2
$$

On each node v
Run $r=2^{A_{1}}$ rounds to learn $\Lambda(r, v) \quad r=4$
If $v \neq \max (\Lambda(r, v))$ output 0

Selection - Example

Algorithm - Stage 1
$A_{1}=\lfloor\log (\operatorname{diam}(R))\rfloor$

$$
\lfloor\log (5)\rfloor=2
$$

On each node v

$$
\text { Run } r=2^{A_{1}} \text { rounds to learn } \Lambda(r, v) \quad r=4
$$

$$
\text { If } v \neq \max (\Lambda(r, v)) \text { output } 0
$$

Selection - Example

Algorithm - Stage 1
$A_{1}=\lfloor\log (\operatorname{diam}(R))\rfloor$

$$
\lfloor\log (5)\rfloor=2
$$

On each node v

$$
\text { Run } r=2^{A_{1}} \text { rounds to learn } \Lambda(r, v) \quad r=4
$$

$$
\text { If } v \neq \max (\Lambda(r, v)) \text { output } 0
$$

Selection - Example

Algorithm - Stage 2: Advice construction
$C_{R}=\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{\left|C_{R}\right|-1}\right\}=$ set of resulting nodes where γ_{0} is largest
Goal: eliminate all but γ_{0}

Selection - Example

Algorithm - Stage 2: Advice construction
$C_{R}=\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{\left|C_{R}\right|-1}\right\}=$ set of resulting nodes where γ_{0} is largest
Goal: eliminate all but γ_{0}
Solution: for each $\gamma_{j, j>0}$, find difference with γ_{0} and provide it as advice

Selection - Example

Algorithm - Stage 2: Advice construction
$C_{R}=\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{\left|C_{R}\right|-1}\right\}=$ resulting set of nodes where γ_{0} is largest
Goal: eliminate all but γ_{0}
Solution: for each $\gamma_{j, j>0}$, find difference with γ_{0} and provide it as advice

$$
\begin{aligned}
& \gamma_{0}=100111 \\
& \gamma_{1}=100011
\end{aligned}
$$

Selection - Example

Algorithm - Stage 2: Advice construction
$C_{R}=\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{\left|C_{R}\right|-1}\right\}=$ resulting set of nodes where γ_{0} is largest
Goal: eliminate all but γ_{0}
Solution: for each $\gamma_{j, j>0}$, find difference with γ_{0} and provide it as advice

$$
\begin{aligned}
& \gamma_{0}=100111 \\
& \gamma_{2}=100101
\end{aligned}
$$

Selection - Example

Algorithm - Stage 2: Advice construction
A_{2} set of indices satisfying:
For all $\gamma_{j, j>0}$, there exists $i \in A_{2}$ such that $\gamma_{j}[i]=0$ and $\gamma_{0}[i]=1$
Construction Example

$$
A_{2}=\emptyset
$$

Selection - Example

Algorithm - Stage 2: Advice construction
A_{2} set of indices satisfying:
For all $\gamma_{j, j>0}$, there exists $i \in A_{2}$ such that $\gamma_{j}[i]=0$ and $\gamma_{0}[i]=1$
Construction Example

$$
A_{2}=\emptyset
$$

$$
\begin{aligned}
& \gamma_{0}=100111 \\
& \gamma_{1}=100011
\end{aligned}
$$

Selection - Example

Algorithm - Stage 2: Advice construction
A_{2} set of indices satisfying:
For all $\gamma_{j, j>0}$, there exists $i \in A_{2}$ such that $\gamma_{j}[i]=0$ and $\gamma_{0}[i]=1$
Construction Example

$$
A_{2}=\{3\}
$$

$$
\begin{aligned}
& \gamma_{0}=100111 \\
& \gamma_{1}=100011
\end{aligned}
$$

Selection - Example

Algorithm - Stage 2: Advice construction
A_{2} set of indices satisfying:
For all $\gamma_{j, j>0}$, there exists $i \in A_{2}$ such that $\gamma_{j}[i]=0$ and $\gamma_{0}[i]=1$
Construction Example

$$
A_{2}=\{3\}
$$

$$
\begin{aligned}
& \gamma_{0}=100111 \\
& \gamma_{2}=100101
\end{aligned}
$$

Selection - Example

Algorithm - Stage 2: Advice construction
A_{2} set of indices satisfying:
For all $\gamma_{j, j>0}$, there exists $i \in A_{2}$ such that $\gamma_{j}[i]=0$ and $\gamma_{0}[i]=1$
Construction Example

$$
A_{2}=\{3,4\}
$$

$$
\begin{aligned}
& \gamma_{0}=100111 \\
& \gamma_{2}=100101
\end{aligned}
$$

Selection - Example

Algorithm - Stage 2: Advice construction
A_{2} set of indices satisfying:
For all $\gamma_{j, j>0}$, there exists $i \in A_{2}$ such that $\gamma_{j}[i]=0$ and $\gamma_{0}[i]=1$
Construction Example

$$
A_{2}=\{3,4\}
$$

$$
\begin{aligned}
& \gamma_{0}=100111 \\
& \gamma_{3}=100001
\end{aligned}
$$

Selection - Example

Algorithm - Stage 2: Algorithm

On each node γ in C_{R}
If there exists $\mathrm{i} \in A_{2}$ such that $\gamma[i]=0$
Output 0
Else
Output 1

Selection - Example

Algorithm - Stage 2: Algorithm

On each node γ in C_{R}
If there exists $i \in A_{2}$ such that $\gamma[i]=0$
Output 0
Else

$$
\text { Output } 1
$$

Algorithm at γ_{2}

$$
A_{2}=\{3,4\}
$$

$$
\gamma_{2}=100101
$$

Selection - Example

Algorithm - Stage 2: Algorithm

On each node γ in C_{R}
If there exists $\mathrm{i} \in A_{2}$ such that $\gamma[i]=0$
Output 0
Else

$$
\text { Output } 1
$$

Algorithm at γ_{2}

$$
\begin{aligned}
& A_{2}=\{3,4\} \\
& \qquad \gamma_{2}=100101 \quad \Rightarrow \text { Output 0 }
\end{aligned}
$$

Selection - Example

Algorithm - Recap
$A=A_{1} A_{2}$
$A_{1}=\lfloor\log (\operatorname{diam}(R))\rfloor$
$A_{2}:$ For all $\gamma_{j, j>0}$, there exists $i \in A_{2}$ such that $\gamma_{j}[i]=0$ and $\gamma_{0}[i]=1$
On each node v
Run $r=2^{A_{1}}$ rounds to learn $\Lambda(r, v)$
If $v \neq \max (\Lambda(r, v))$ output 0
On each node γ in C_{R}
If there exists $\mathrm{i} \in A_{2}$ such that $\gamma[i]=0$
Output 0
Else
Output 1

Selection - Example

Algorithm - Size of Advice
$A_{1}=\lfloor\log \operatorname{diam}(R)\rfloor$
Size of A_{1} is $O(\log \log \operatorname{diam}(R))$
$A_{2}=$ is a set of at most $\left|C_{R}\right|$ indices
Size of each index is $\mathrm{O}(\log \log \operatorname{diam}(R))$
$\left|C_{R}\right|$ is a constant
Size of A_{2} is $\mathrm{O}\left(\left|C_{R}\right| \cdot \log \log \operatorname{diam}(R)\right)=\mathrm{O}(\log \log \operatorname{diam}(R))$

Size of advice A is $O(\log \log \operatorname{diam}(R))$
Note that the time constraint is also respected.

Summary

- Election vs Selection
- Algorithm with advice
- Measure of difficulty - size of advice
- Results
- Algorithm overview for selection in time linear in the diameter (upper bound)

Questions?

Related Work

- Message complexity
- Non-unique labels
- Non-labelled graphs
- Election of arbitrary node
- Algorithms with advice for other problems
- Different advice for each node
- Different kind of difficulty measurement.

