Election vs. Selection: How Much Advice is Needed to Find the Largest Node in a Graph?

Avery Miller University of Manitoba avery@averymiller.ca Andrzej Pelc Université du Québec en Outaouais andrzej.pelc@uqo.ca

First presented at SPAA 2016 Presentation - Damien Aymon, 08.05.2018 ETHZ - Seminar in Distributed Computing FS 2018

Application – Shared Resource

Microsoft Docs, Leader Election Pattern, 23.06.2017 https://docs.microsoft.com/en-us/azure/architecture/patterns/leader-election

Application – Shared Resource

Access to shared resource -> need coordinator

Failure resilience -> need new leader

G. Le Lann, **Distributed Systems - Towards a Formal Approach** Proc. IFIP Congress, 1977, 155-160, North Holland.

Election vs. Selection: How Much Advice is Needed to Find the Largest Node in a Graph?

Avery Miller University of Manitoba avery@averymiller.ca Andrzej Pelc^{*} Université du Québec en Outaouais andrzej.pelc@uqo.ca

Election

Find a leader

Everyone knows its identity

Election

Find a leader

Everyone knows its identity

Election

Find a leader

Everyone knows its identity

Selection

Leader outputs 1

Every other node outputs **0**

Selection

Leader outputs 1

Every other node outputs **0**

Selection

Leader outputs 1

Every other node outputs **0**

Election vs Selection

In each **round**:

- Send messages to neighbours
- **Recei**ve messages from neighbours
- Do some computation

In each **round**:

- Send messages to neighbours
- **Recei**ve messages from neighbours
- Do some computation

In each **round**:

- Send messages to neighbours
- **Recei**ve messages from neighbours
- Do some computation

In each **round**:

- Send messages to neighbours
- **Recei**ve messages from neighbours
- Do some computation

Oracle with full knowledge

Gives same **advice** to each node

Goal: make computation faster

Oracle with full knowledge

Gives same **advice** to each node

Goal: make computation faster

Oracle with full knowledge

Gives same **advice** to each node

Goal: make computation faster

Example : Election without advice

Notations:

K(r, v) = knowledge of v after r rounds

 $\Lambda(r, v)$ set of labels induced by K(r, v)

Example : Election without advice

Notations:

Round 0

Example : Election without advice

Notations:

K(r, v) = knowledge of v after r rounds

 $\Lambda(r, v)$ set of labels induced by K(r, v)

 $K(1,4) = \{4,6\}$

 ${\rm Round}\ 1$

Example : Election without advice

Notations:

K(r, v) = knowledge of v after r rounds

 $\Lambda(r, v)$ set of labels induced by K(r, v)

 $\Lambda(2,4) = \{3,4,6\}$

Round 2

Example : Election without advice

Notations:

K(r, v) = knowledge of v after r rounds

 $\Lambda(r, v)$ set of labels induced by K(r, v)

 $\Lambda(3,4) = \{3,4,5,6,12\}$

 \odot

 \bigcirc

Task – Measure of Difficulty

Time constraint for the execution

How much **advice** needed ?

Upper and lower bound the size of advice

Tight Bounds on Advice

Tight bounds are given on the size of advice.

Tight Bounds on Advice

Tight bounds are given on the size of advice.

$$\Theta(f(x)) \iff \Omega(f(x)) \land O(f(x))$$

Tight Bounds on Advice

Tight bounds are given on the size of advice.

$$\Theta(f(x)) \Leftrightarrow \Omega(f(x)) \land O(f(x))$$

Lower bound l

Find a class of graphs for which a least l advice needed for any algorithm

Upper bound u

Find an algorithm for which at most u advice needed on all graphs

Can rule out entire classes of algorithms

Can rule out entire classes of algorithms

Given result: Task T needs $\Theta(\log n)$ bits of advice

Can rule out entire classes of algorithms

Given result: Task T needs $\Theta(\log n)$ bits of advice

Proposed algorithm: Needs linear upper bound on n as advice.

Can rule out entire classes of algorithms

Given result: Task T needs $\Theta(\log n)$ bits of advice

Proposed algorithm: Needs linear upper bound on n as advice.

Contradiction: Advice can be given by $\lceil \log n \rceil$, using $\Theta(\log \log n)$ bits.

Time	Advice	
> diam	0	
diam	Θ(log diam)	
< diam	$\Theta(\log n)$	

Time	Advice	
> diam	0	
diam	Θ(log diam)	
< diam	$\Theta(\log n)$	

Time	Advice	
> diam	0	
diam	Θ(log diam)	
< diam	$\Theta(\log n)$	

Provide the **diameter** of the graph

Time	Advice	
> diam	0	
diam	Θ(log diam)	
< diam	$\Theta(\log n)$	

No better advice than to give the solution

Time	Advice
> diam	0
$a \cdot diam, \\ a \in (0, 1)$	$\Theta(\log \log diam)$
diam ^e , e < 1	Θ(log diam)

Time	Advice
> diam	0
$a \cdot diam, \\ a \in (0, 1)$	$\Theta(\log \log diam)$
diam ^e , e < 1	Θ(log diam)

Only valid for rings

Time	Advice
> diam	0
$a \cdot diam, \\ a \in (0, 1)$	$\Theta(\log \log diam)$
diam ^e , e < 1	Θ(log diam)

Time	Advice	
> diam	0	
$a \cdot diam, \\ a \in (0, 1)$	$\Theta(\log \log diam)$	
diam ^e , e < 1	Θ(log diam)	

We will go through the algorithm for the upper bound

Time	Advice
> diam	0
$a \cdot diam, \\ a \in (0, 1)$	$\Theta(\log \log diam)$
diam ^e , e < 1	Θ(log diam)

For rings $\Theta(\log diam) = \Theta(\log n)$

Time	Advice		
> diam	0		
$a \cdot diam, \\ a \in (0, 1)$	Θ(log log diam)	\langle	Intra-task jumps
diam ^e , e < 1	Θ(log diam)		

Results

Time	Advice	Time	Advice
> diam	0	> diam	0
diam	Θ(log diam)	$a \cdot diam, \\ a \in (0, 1)$	$\Theta(\log \log diam)$
< diam	$\Theta(\log n)$	diam ^e , e < 1	$\Theta(\log diam)$

Time constraint: $t = a \cdot diam$, $a \in (0, 1)$

Goal : Prove that size of advice is $O(\log \log diam(R))$ for any ring R

Simplification: a = 1, so t = diam

Algorithm consists of two stages

- 1. Round-by-round discovery
- 2. Eliminate resulting nodes from first stage

Advice string split in two parts $A = A_1 A_2$

Algorithm - Stage 1

 $A_1 = \lfloor \log(diam(R)) \rfloor$

Algorithm - Stage 1

 $A_1 = \lfloor \log(diam(R)) \rfloor$

Algorithm - Stage 1

 $A_1 = \lfloor \log(diam(R)) \rfloor$

On each node vRun $r = 2^{A_1}$ rounds to learn $\Lambda(r, v)$

Algorithm - Stage 1

$$A_1 = \lfloor \log(diam(R)) \rfloor$$

 $\lfloor \log(5) \rfloor = 2$

Algorithm - Stage 1

$$A_1 = \lfloor \log(diam(R)) \rfloor$$

 $\lfloor \log(5) \rfloor = 2$

Algorithm - Stage 1

$$A_1 = \lfloor \log(diam(R)) \rfloor$$

 $\lfloor \log(5) \rfloor = 2$

Algorithm - Stage 1

$$A_1 = \lfloor \log(diam(R)) \rfloor$$

 $\lfloor \log(5) \rfloor = 2$

On each node v

Run $r = 2^{A_1}$ rounds to learn $\Lambda(r, v)$ r = 4

Algorithm - Stage 1

$$A_1 = \lfloor \log(diam(R)) \rfloor$$

 $\lfloor \log(5) \rfloor = 2$

Algorithm - Stage 1

 $A_1 = \lfloor \log(diam(R)) \rfloor$

 $\lfloor \log(5) \rfloor = 2$

On each node vRun $r = 2^{A_1}$ rounds to learn $\Lambda(r, v)$ r = 4If $v \neq \max(\Lambda(r, v))$ output 0

Algorithm - Stage 1

 $A_1 = \lfloor \log(diam(R)) \rfloor$

 $\lfloor \log(5) \rfloor = 2$

On each node vRun $r = 2^{A_1}$ rounds to learn $\Lambda(r, v)$ r = 4If $v \neq \max(\Lambda(r, v))$ output 0

Algorithm - Stage 1

 $A_1 = \lfloor \log(diam(R)) \rfloor$

 $\lfloor \log(5) \rfloor = 2$

On each node vRun $r = 2^{A_1}$ rounds to learn $\Lambda(r, v)$ r = 4If $v \neq \max(\Lambda(r, v))$ output 0

Algorithm - Stage 2: Advice construction

 $C_R = \{\gamma_0, \gamma_1, \dots, \gamma_{|C_R|-1}\} = \text{set of resulting nodes where } \gamma_0 \text{ is largest}$

Goal: eliminate all but γ_0

Algorithm - Stage 2: Advice construction

 $C_R = \{\gamma_0, \gamma_1, \dots, \gamma_{|C_R|-1}\} = \text{set of resulting nodes where } \gamma_0 \text{ is largest}$

Goal: eliminate all but γ_0

Solution: for each $\gamma_{j,j>0}$, find difference with γ_0 and provide it as advice

Algorithm - Stage 2: Advice construction

 $C_R = \{\gamma_0, \gamma_1, \dots, \gamma_{|C_R|-1}\} = \text{resulting set of nodes where } \gamma_0 \text{ is largest}$

Goal: eliminate all but γ_0

Solution: for each $\gamma_{j,j>0}$, find difference with γ_0 and provide it as advice

 $\gamma_0 = 100111$ $\gamma_1 = 100011$

Algorithm - Stage 2: Advice construction

 $C_R = \{\gamma_0, \gamma_1, \dots, \gamma_{|C_R|-1}\} = \text{resulting set of nodes where } \gamma_0 \text{ is largest}$

Goal: eliminate all but γ_0

Solution: for each $\gamma_{j,j>0}$, find difference with γ_0 and provide it as advice

 $\gamma_0 = 100111$ $\gamma_2 = 100101$

Algorithm - Stage 2: Advice construction

 A_2 set of indices satisfying:

For all $\gamma_{j,j>0}$, there exists $i \in A_2$ such that $\gamma_j[i] = 0$ and $\gamma_0[i] = 1$

Construction Example

 $A_2 = \emptyset$

Algorithm - Stage 2: Advice construction

 A_2 set of indices satisfying:

For all $\gamma_{j,j>0}$, there exists $i \in A_2$ such that $\gamma_j[i] = 0$ and $\gamma_0[i] = 1$

Construction Example

 $A_2 = \emptyset$ $\gamma_0 = 100111$ $\gamma_1 = 100011$

Algorithm - Stage 2: Advice construction

 A_2 set of indices satisfying:

For all $\gamma_{j,j>0}$, there exists $i \in A_2$ such that $\gamma_j[i] = 0$ and $\gamma_0[i] = 1$

Construction Example

 $A_2 = \{3\}$ $\gamma_0 = 100111$ $\gamma_1 = 100011$

Algorithm - Stage 2: Advice construction

 A_2 set of indices satisfying:

For all $\gamma_{j,j>0}$, there exists $i \in A_2$ such that $\gamma_j[i] = 0$ and $\gamma_0[i] = 1$

Construction Example

 $A_2 = \{3\}$ $\gamma_0 = 100111$ $\gamma_2 = 100101$

Algorithm - Stage 2: Advice construction

 A_2 set of indices satisfying:

For all $\gamma_{j,j>0}$, there exists $i \in A_2$ such that $\gamma_j[i] = 0$ and $\gamma_0[i] = 1$

Construction Example

 $A_2 = \{3, 4\}$ $\gamma_0 = 100111$ $\gamma_2 = 100101$

$$v_2 = 100101$$

Algorithm - Stage 2: Advice construction

 A_2 set of indices satisfying:

For all $\gamma_{j,j>0}$, there exists $i \in A_2$ such that $\gamma_j[i] = 0$ and $\gamma_0[i] = 1$

Construction Example

 $A_2 = \{3, 4\}$ $\gamma_0 = 100111$ $\gamma_3 = 100001$

$$V_3 = 100001$$

Algorithm - Stage 2: Algorithm

```
On each node \gamma in C_R
If there exists i \in A_2 such that \gamma[i] = 0
Output 0
Else
Output 1
```

Algorithm - Stage 2: Algorithm

```
On each node \gamma in C_R
If there exists i \in A_2 such that \gamma[i] = 0
Output 0
Else
Output 1
```

Algorithm at γ_2

 $A_2 = \{3, 4\}$

$$\gamma_2 = 100101$$

Algorithm - Stage 2: Algorithm

```
On each node \gamma in C_R
If there exists i \in A_2 such that \gamma[i] = 0
Output 0
Else
Output 1
```

Algorithm at γ_2

 $A_2 = \{3, 4\}$

$$\gamma_2 = 100101$$

$$\uparrow$$
=> Output 0

Algorithm - Recap

 $A = A_1 A_2$

 $\begin{array}{l} A_1 = \left\lfloor \log(diam(R)) \right\rfloor \\ A_2 : \text{For all } \gamma_{j,j>0} \text{, there exists } i \in A_2 \text{ such that } \gamma_j[i] = 0 \text{ and } \gamma_0[i] = 1 \end{array}$

```
On each node v

Run r = 2^{A_1} rounds to learn \Lambda(r, v)

If v \neq \max(\Lambda(r, v)) output 0

On each node \gamma in C_R

If there exists i \in A_2 such that \gamma[i] = 0

Output 0

Else
```

Output 1

Algorithm - Size of Advice

 $A_{1} = \lfloor \log diam(R) \rfloor$ Size of A_{1} is $O(\log \log diam(R))$

 A_2 = is a set of at most $|C_R|$ indices

Size of each index is $O(\log \log diam(R))$ $|C_R|$ is a constant

Size of A_2 is $O(|C_R| \cdot \log \log diam(R)) = O(\log \log diam(R))$

Size of advice A is $O(\log \log diam(R))$

Note that the time constraint is also respected.

Summary

- Election vs Selection
- Algorithm with advice
- Measure of difficulty size of advice
- Results
- Algorithm overview for selection in time linear in the diameter (upper bound)

Questions ?

Related Work

- Message complexity
- Non-unique labels
- Non-labelled graphs
- Election of arbitrary node
- Algorithms with advice for other problems
- Different advice for each node
- Different kind of difficulty measurement.