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https://docs.microsoft.com/en-us/azure/architecture/patterns/leader-election

Application – Shared Resource



Application – Shared Resource
Access to shared resource -> need coordinator

Failure resilience -> need new leader



G. Le Lann, Distributed Systems - Towards a Formal Approach
Proc. IFIP Congress, 1977, 155-160, North Holland.
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Election
Find a leader

Everyone knows its identity
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Selection
Leader outputs 1

Every other node outputs 0
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Leader outputs 1
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Leader outputs 1

Every other node outputs 0



Election vs Selection
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In each round:
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• Receive messages from neighbours

• Do some computation

Time complexity is the number of rounds
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Goal: make computation faster
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Oracle with full knowledge
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Example : Election without advice

Notations:

𝐾 𝑟, 𝑣 = knowledge of 𝑣 after 𝑟
rounds

Λ(𝑟, 𝑣) set of labels induced by
𝐾 𝑟, 𝑣
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Example : Election without advice

Notations:

𝐾 𝑟, 𝑣 = knowledge of 𝑣 after 𝑟
rounds

Λ(𝑟, 𝑣) set of labels induced by
𝐾(𝑟, 𝑣)

𝐾(0, 4)

Λ 0, 4 = {4}

Round 0
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Example : Election without advice

Notations:

𝐾 𝑟, 𝑣 = knowledge of 𝑣 after 𝑟
rounds

Λ(𝑟, 𝑣) set of labels induced by
𝐾(𝑟, 𝑣)

𝐾(1, 4)

Λ 1, 4 = {4, 6}

Round 1
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Example : Election without advice

Notations:

𝐾 𝑟, 𝑣 = knowledge of 𝑣 after 𝑟
rounds

Λ(𝑟, 𝑣) set of labels induced by
𝐾(𝑟, 𝑣)

𝐾(2, 4)

Λ 2, 4 = {3, 4, 6}

Round 2
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Example : Election without advice

Notations:

𝐾 𝑟, 𝑣 = knowledge of 𝑣 after 𝑟
rounds

Λ(𝑟, 𝑣) set of labels induced by
𝐾(𝑟, 𝑣)

𝐾(3, 4)

Λ 3, 4 = {3, 4, 5, 6, 12}

Round 3
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Example : Election without advice

Notations:

𝐾 𝑟, 𝑣 = knowledge of 𝑣 after 𝑟
rounds

Λ(𝑟, 𝑣) set of labels induced by
𝐾(𝑟, 𝑣)

𝐾(4, 4)

Λ 4, 4 = {1, 3, 4, 5, 6, 10, 12}

Round 4
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Example : Election without advice

𝐾(4, 4)

Λ 4, 4 = {1, 3, 4, 5, 6, 10, 12}

Requires another round
to terminate!

Round 4
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Example : Election without advice

𝐾(4, 4)

Λ 4, 4 = {1, 3, 4, 5, 6, 10, 12}

Requires another round
to terminate!

What if we give some advice?

Round 4



Task – Measure of Difficulty

Time constraint for the execution

How much advice needed ? 

Upper and lower bound the size of advice
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Tight Bounds on Advice

Tight bounds are given on the size of advice.

Θ 𝑓 𝑥 ⇔ Ω 𝑓 𝑥 ∧ Ο 𝑓 𝑥

Lower bound 𝑙
Find a class of graphs for which a least 𝑙 advice needed for any algorithm

Upper bound 𝑢
Find an algorithm for which at most 𝑢 advice needed on all graphs
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How is it helpful?

Can rule out entire classes of algorithms

Given result: Task 𝑇 needs Θ(log 𝑛) bits of advice

Proposed algorithm: Needs linear upper bound on 𝑛 as advice.

Contradiction: Advice can be given by log 𝑛 , using Θ(log log 𝑛) bits.



Results - Election

Time Advice

> 𝑑𝑖𝑎𝑚 0

𝑑𝑖𝑎𝑚 Θ(log𝑑𝑖𝑎𝑚)

< 𝑑𝑖𝑎𝑚 Θ(log 𝑛)
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Time Advice

> 𝑑𝑖𝑎𝑚 0

𝑑𝑖𝑎𝑚 Θ(log𝑑𝑖𝑎𝑚)

< 𝑑𝑖𝑎𝑚 Θ(log 𝑛)

Provide the diameter of the
graph



Results - Election

Time Advice

> 𝑑𝑖𝑎𝑚 0

𝑑𝑖𝑎𝑚 Θ(log𝑑𝑖𝑎𝑚)

< 𝑑𝑖𝑎𝑚 Θ(log 𝑛)
No better advice than to 
give the solution



Results - Election

Time Advice

> 𝑑𝑖𝑎𝑚 0

𝑑𝑖𝑎𝑚 Θ(log𝑑𝑖𝑎𝑚)

< 𝑑𝑖𝑎𝑚 Θ(log 𝑛)

Intra-task jumps



Results - Selection

Time Advice

> 𝑑𝑖𝑎𝑚 0

𝑎 ⋅ 𝑑𝑖𝑎𝑚,
𝑎 ∈ (0, 1)

Θ(log log 𝑑𝑖𝑎𝑚)

𝑑𝑖𝑎𝑚𝑒 ,
𝑒 < 1

Θ(log𝑑𝑖𝑎𝑚)



Results - Selection

Time Advice

> 𝑑𝑖𝑎𝑚 0

𝑎 ⋅ 𝑑𝑖𝑎𝑚,
𝑎 ∈ (0, 1)

Θ(log log 𝑑𝑖𝑎𝑚)

𝑑𝑖𝑎𝑚𝑒 ,
𝑒 < 1

Θ(log𝑑𝑖𝑎𝑚)

Only valid for rings
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Results - Selection

Time Advice

> 𝑑𝑖𝑎𝑚 0

𝑎 ⋅ 𝑑𝑖𝑎𝑚,
𝑎 ∈ (0, 1)

Θ(log log 𝑑𝑖𝑎𝑚)

𝑑𝑖𝑎𝑚𝑒 ,
𝑒 < 1

Θ(log𝑑𝑖𝑎𝑚)

We will go through the
algorithm for the upper bound



Results - Selection

Time Advice

> 𝑑𝑖𝑎𝑚 0

𝑎 ⋅ 𝑑𝑖𝑎𝑚,
𝑎 ∈ (0, 1)

Θ(log log 𝑑𝑖𝑎𝑚)

𝑑𝑖𝑎𝑚𝑒 ,
𝑒 < 1

Θ(log𝑑𝑖𝑎𝑚)
For rings Θ log𝑑𝑖𝑎𝑚 =
Θ(log 𝑛)
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Time Advice

> 𝑑𝑖𝑎𝑚 0

𝑎 ⋅ 𝑑𝑖𝑎𝑚,
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Results

Time Advice

> 𝑑𝑖𝑎𝑚 0

𝑎 ⋅ 𝑑𝑖𝑎𝑚,
𝑎 ∈ (0, 1)

Θ(log log 𝑑𝑖𝑎𝑚)

𝑑𝑖𝑎𝑚𝑒 ,
𝑒 < 1
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Time Advice
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Results

Time Advice

> 𝑑𝑖𝑎𝑚 0

𝑎 ⋅ 𝑑𝑖𝑎𝑚,
𝑎 ∈ (0, 1)

Θ(log log 𝑑𝑖𝑎𝑚)

𝑑𝑖𝑎𝑚𝑒 ,
𝑒 < 1

Θ(log𝑑𝑖𝑎𝑚)

Time Advice

> 𝑑𝑖𝑎𝑚 0

𝑑𝑖𝑎𝑚 Θ(log𝑑𝑖𝑎𝑚)

< 𝑑𝑖𝑎𝑚 Θ(log 𝑛)

Inter-task jump



Selection - Example

Time constraint: t = 𝑎 ⋅ 𝑑𝑖𝑎𝑚 , 𝑎 ∈ (0, 1)

Goal : Prove that size of advice is Ο(log log 𝑑𝑖𝑎𝑚(𝑅)) for any 
ring 𝑅

Simplification: 𝑎 = 1 , so  𝑡 = 𝑑𝑖𝑎𝑚



Selection - Example

Algorithm consists of two stages

1. Round-by-round discovery
2. Eliminate resulting nodes from first stage

Advice string split in two parts 𝐴 = 𝐴1𝐴2



Selection – Example
Algorithm - Stage 1

𝐴1 = log(𝑑𝑖𝑎𝑚 𝑅 )

On each node 𝑣
Run 𝑟 = 2𝐴1 rounds to learn Λ(𝑟, 𝑣)
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Selection – Example
Algorithm - Stage 1

𝐴1 = log(𝑑𝑖𝑎𝑚 𝑅 ) log(5) = 2

On each node 𝑣
Run 𝑟 = 2𝐴1 rounds to learn Λ(𝑟, 𝑣) 𝑟 = 4
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Algorithm - Stage 1

𝐴1 = log(𝑑𝑖𝑎𝑚 𝑅 ) log(5) = 2

On each node 𝑣
Run 𝑟 = 2𝐴1 rounds to learn Λ(𝑟, 𝑣) 𝑟 = 4

Round 1
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Algorithm - Stage 1

𝐴1 = log(𝑑𝑖𝑎𝑚 𝑅 ) log(5) = 2

On each node 𝑣
Run 𝑟 = 2𝐴1 rounds to learn Λ(𝑟, 𝑣) 𝑟 = 4

Round 2
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Algorithm - Stage 1

𝐴1 = log(𝑑𝑖𝑎𝑚 𝑅 ) log(5) = 2

On each node 𝑣
Run 𝑟 = 2𝐴1 rounds to learn Λ(𝑟, 𝑣) 𝑟 = 4

Round 3
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Algorithm - Stage 1

𝐴1 = log(𝑑𝑖𝑎𝑚 𝑅 ) log(5) = 2

On each node 𝑣
Run 𝑟 = 2𝐴1 rounds to learn Λ(𝑟, 𝑣) 𝑟 = 4

Round 4
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Algorithm - Stage 1

𝐴1 = log(𝑑𝑖𝑎𝑚 𝑅 ) log(5) = 2

On each node 𝑣
Run 𝑟 = 2𝐴1 rounds to learn Λ(𝑟, 𝑣) 𝑟 = 4
If 𝑣 ≠ max(Λ(𝑟, 𝑣)) output 0

Round 4
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Algorithm - Stage 1

𝐴1 = log(𝑑𝑖𝑎𝑚 𝑅 ) log(5) = 2

On each node 𝑣
Run 𝑟 = 2𝐴1 rounds to learn Λ(𝑟, 𝑣) 𝑟 = 4
If 𝑣 ≠ max(Λ(𝑟, 𝑣)) output 0

Round 4
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Algorithm - Stage 1

𝐴1 = log(𝑑𝑖𝑎𝑚 𝑅 ) log(5) = 2

On each node 𝑣
Run 𝑟 = 2𝐴1 rounds to learn Λ(𝑟, 𝑣) 𝑟 = 4
If 𝑣 ≠ max(Λ(𝑟, 𝑣)) output 0

Round 4

0



Selection – Example
Algorithm - Stage 2: Advice construction

𝐶𝑅 = 𝛾0, 𝛾1, … , 𝛾 𝐶𝑅 −1 = set of resulting nodes where 𝛾0 is largest

Goal: eliminate all but 𝛾0
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Algorithm - Stage 2: Advice construction

𝐶𝑅 = 𝛾0, 𝛾1, … , 𝛾 𝐶𝑅 −1 = resulting set of nodes where 𝛾0 is largest

Goal: eliminate all but 𝛾0

Solution: for each 𝛾𝑗,𝑗>0 , find difference with 𝛾0 and provide it as advice

𝛾0 = 100111

𝛾1 = 100011



Selection – Example
Algorithm - Stage 2: Advice construction

𝐶𝑅 = 𝛾0, 𝛾1, … , 𝛾 𝐶𝑅 −1 = resulting set of nodes where 𝛾0 is largest

Goal: eliminate all but 𝛾0

Solution: for each 𝛾𝑗,𝑗>0 , find difference with 𝛾0 and provide it as advice

𝛾0 = 100111

𝛾2 = 100101



Selection – Example
Algorithm - Stage 2: Advice construction

𝐴2 set of indices satisfying:

For all 𝛾𝑗,𝑗>0, there exists 𝑖 ∈ 𝐴2 such that 𝛾𝑗 𝑖 = 0 and 𝛾0 𝑖 = 1

Construction Example
𝐴2 = ∅
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𝐴2 = ∅

𝛾0 = 100111
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Selection – Example
Algorithm - Stage 2: Advice construction

𝐴2 set of indices satisfying:

For all 𝛾𝑗,𝑗>0, there exists 𝑖 ∈ 𝐴2 such that 𝛾𝑗 𝑖 = 0 and 𝛾0 𝑖 = 1

Construction Example
𝐴2 = {3}

𝛾0 = 100111

𝛾1 = 100011



Selection – Example
Algorithm - Stage 2: Advice construction

𝐴2 set of indices satisfying:

For all 𝛾𝑗,𝑗>0, there exists 𝑖 ∈ 𝐴2 such that 𝛾𝑗 𝑖 = 0 and 𝛾0 𝑖 = 1

Construction Example
𝐴2 = {3}

𝛾0 = 100111

𝛾2 = 100101



Selection – Example
Algorithm - Stage 2: Advice construction

𝐴2 set of indices satisfying:

For all 𝛾𝑗,𝑗>0, there exists 𝑖 ∈ 𝐴2 such that 𝛾𝑗 𝑖 = 0 and 𝛾0 𝑖 = 1

Construction Example
𝐴2 = {3, 4}

𝛾0 = 100111

𝛾2 = 100101



Selection – Example
Algorithm - Stage 2: Advice construction

𝐴2 set of indices satisfying:

For all 𝛾𝑗,𝑗>0, there exists 𝑖 ∈ 𝐴2 such that 𝛾𝑗 𝑖 = 0 and 𝛾0 𝑖 = 1

Construction Example
𝐴2 = {3, 4}

𝛾0 = 100111

𝛾3 = 100001



Selection – Example
Algorithm - Stage 2: Algorithm

On each node 𝛾 in CR
If there exists i ∈ 𝐴2 such that 𝛾[𝑖] = 0

Output 0
Else

Output 1



Selection – Example
Algorithm - Stage 2: Algorithm

On each node 𝛾 in CR
If there exists i ∈ 𝐴2 such that 𝛾[𝑖] = 0

Output 0
Else

Output 1

Algorithm at 𝜸𝟐

𝐴2 = {3, 4}

𝛾2 = 100101



Selection – Example
Algorithm - Stage 2: Algorithm

On each node 𝛾 in CR
If there exists i ∈ 𝐴2 such that 𝛾[𝑖] = 0

Output 0
Else

Output 1

Algorithm at 𝜸𝟐

𝐴2 = {3, 4}

𝛾2 = 100101

=> Output 0



Selection – Example
Algorithm - Recap

𝐴 = 𝐴1𝐴2

𝐴1 = log(𝑑𝑖𝑎𝑚 𝑅 )
𝐴2 : For all 𝛾𝑗,𝑗>0, there exists 𝑖 ∈ 𝐴2 such that 𝛾𝑗 𝑖 = 0 and 𝛾0 𝑖 = 1

On each node 𝑣
Run 𝑟 = 2𝐴1 rounds to learn Λ(𝑟, 𝑣)
If 𝑣 ≠ max(Λ(𝑟, 𝑣)) output 0

On each node 𝛾 in CR
If there exists i ∈ 𝐴2 such that 𝛾[𝑖] = 0

Output 0
Else

Output 1



Selection – Example
Algorithm - Size of Advice

𝐴1 = log𝑑𝑖𝑎𝑚 𝑅

Size of 𝐴1 is Ο log log 𝑑𝑖𝑎𝑚 𝑅

𝐴2 = is a set of at most |𝐶𝑅| indices

Size of each index is Ο log log 𝑑𝑖𝑎𝑚 𝑅

|𝐶𝑅| is a constant

Size of 𝐴2 is Ο |𝐶𝑅| ⋅ log log 𝑑𝑖𝑎𝑚 𝑅 = Ο log log 𝑑𝑖𝑎𝑚 𝑅

Size of advice 𝐴 is Ο log log 𝑑𝑖𝑎𝑚 𝑅

Note that the time constraint is also respected.



Summary

• Election vs Selection

• Algorithm with advice

• Measure of difficulty – size of advice

• Results

• Algorithm overview for selection in time linear in the diameter (upper 
bound)



Questions ?



Related Work
• Message complexity

• Non-unique labels

• Non-labelled graphs

• Election of arbitrary node

• Algorithms with advice for other problems

• Different advice for each node

• Different kind of difficulty measurement.


