Exercise 6

Lecturer: Mohsen Ghaffari

1 Lower Bound for Locally-Minimal Coloring

For a graph $G=(V, E)$, a coloring $\phi: V \rightarrow\{1,2, \ldots, Q\}$ is called locally-minimal if it is a proper coloring, meaning that no two adjacent vertices v and u have $\phi(v)=\phi(u)$, and moreover, for each node v colored with color $q=\phi(v) \in\{1,2, \ldots, Q\}$, all colors 1 to $q-1$ are used in the neighborhood of v. That is, for each $i \in\{1, \ldots, q-1\}$, there exists a neighbor u of v such that $\phi(u)=i$.

Exercise

(1a) In the $4^{t h}$ lecture, we saw a $O\left(\Delta \log \Delta+\log ^{*} n\right)$-round algorithm for computing a $(\Delta+1)$-vertexcoloring in any n-node graph with maximum degree Δ. Use this algorithm as a black box to compute a locally-minimal coloring in $O\left(\Delta \log \Delta+\log ^{*} n\right)$ rounds, in an n-node graph with maximum degree Δ.

Compute a $(\Delta+1)$-coloring, which will be used as a schedule-color. Process the colors of the schedulecolor one by one, in $\Delta+1$ iterations, each time picking a locally-minimal color for all nodes with schedule-color $i \in\{1,2, \ldots, \Delta+1\}$.

In the remainder of this exercise, we prove a lower bound of $\Omega(\log n / \log \log n)$ on the round complexity of computing a locally-minimal coloring, for some graphs. We note that these graphs have maximum degree $\Delta=\Omega(\log n)$ and hence, this lower bound poses no contradiction with (1a).

For the lower bound, we will use a classic graph-theoretic result of Erdős [Erd59]. Recall that the girth of a graph is the length of its shortest cycle, and the chromatic number of a graph is the smallest number of colors required in any proper coloring of the graph.

Theorem 1 (Erdős [Erd59]) For any sufficiently large n, there exists an n-node graph G_{n}^{*} with girth $g\left(G_{n}^{*}\right) \geq \frac{\log n}{4 \log \log n}$ and chromatic number $\chi\left(G_{n}^{*}\right) \geq \frac{\log n}{4 \log \log n}$.

Exercise

(1b) Prove that in any locally-minimal coloring $\phi: V \rightarrow\{1,2, \ldots, Q\}$ of a tree $T=(V, E)$ with diameter d - i.e., where the distance between any two nodes is at most d - no node v can receive a color $\phi(v)>d+1$.

Suppose for the sake of contradiction that a node v_{0} that receives a color $k \geq d+2$. Then, v_{0} must have a neighbor v_{1} that has color $k-1$. Similarly, v_{1} must have a neighbor v_{2} that has color $k-2$. Continuing this process, we create a simple path $v_{0}, v_{1}, v_{2}, \ldots$ of length $k-1$ whose vertices have colors $k, k-1, k-2, \ldots$, respectively. In a tree, any simple path between two vertices is a shortest path between them. Hence, the tree has two nodes at distance $k-1 \geq d+1$, which is a contradiction.
(1c) Suppose towards contradiction that there exists a deterministic algorithm \mathcal{A} that computes a locally-minimal coloring of any n-node graph in at most $\frac{\log n}{8 \log \log n}-1$ rounds. Prove that when we run \mathcal{A} on the graph G_{n}^{*}, it produces a (locally-minimal) coloring with at most $Q=\frac{\log n}{4 \log \log n}-1$ colors. For this, you should use part (1b) and the fact that G_{n}^{*} has girth $g\left(G_{n}^{*}\right) \geq \frac{\log n}{4 \log \log n}$.

Consider running \mathcal{A} on G_{n}^{*}. We claim that no node $v \in G_{n}^{*}$ can receive a color $k \geq \frac{\log n}{4 \log \log n}$. The reason is as follows. Now imagine running running \mathcal{A} on the subgraph G_{v} of G_{n}^{*} induced by nodes within distance $\frac{\log n}{8 \log \log n}-1$ of v. The algorithm \mathcal{A} must assign the same color k to v, as when \mathcal{A} is run on G_{n}^{*} (why?). However, G_{v} is a tree with diameter at most $\frac{\log n}{4 \log \log n}-2$ (why?). Hence, by the property proven in (1b), in any valid locally-minimal coloring, the highest color that node v can receive is at most $Q=\frac{\log n}{4 \log \log n}-2+1$.
(1d) Conclude that any locally-minimal coloring algorithm needs at least $\frac{\log n}{8 \log \log n}$ rounds on some n node graph.

By (1c), if \mathcal{A} always runs in at most $\frac{\log n}{8 \log \log n}-1$ rounds, it produces a coloring of G_{n}^{*} where each node is colored with a color in $1,2, \ldots, Q$ for $Q=\frac{\log n}{4 \log \log n}-1$. This is in contradiction with G_{n}^{*} having chromatic number $\chi\left(G_{n}^{*}\right) \geq \frac{\log n}{4 \log \log n}$. Having arrived at the conclusion by assuming that \mathcal{A} always runs in at most $\frac{\log n}{8 \log \log n}-1$ rounds in any n-node graph, we conclude that algorithm \mathcal{A} needs at least $\frac{\log n}{8 \log \log n}$ rounds on some n-node graph.

References

[Erd59] Paul Erdős. Graph theory and probability. Canada J. Math, 11:34G38, 1959.

