Principles of Distributed Computing

Exercise 13

Lecturer: Mohsen Ghaffari

1 Random Edge Identifiers

Consider an n-node graph $G=(V, E)$ and suppose that for each edge $e \in E$, we define an $10 \log n$-bit identifier I_{e} for e by picking each bit at random.

Exercises

(1a) Prove that with high probability, these are unique edge-identifiers. That is, with probability at least $1-1 / n$, for each two edges $e, e^{\prime} \in E$ such that $e \neq e^{\prime}$, we have $I_{e} \neq I_{e^{\prime}}$.
Let $e, e^{\prime} \in E$ and let $\mathcal{E}_{e, e^{\prime}}$ be the (bad) event where e and e^{\prime} are assigned the same identifier. By taking the union bound over $\bigcup_{e, e^{\prime} \in E} \mathcal{E}_{e, e^{\prime}}$, we get that an upper bound of $n^{4} \cdot 2^{-10 \log n} \leq n^{-6}$ on the probability that any two edges have the same identifier.
(1b) Consider a set $E^{\prime} \subset E$ of edges with $\left|E^{\prime}\right| \geq 2$. Prove that with probability at least $1-1 / n$, there is no edge $e \in E$ such that $\oplus_{e^{\prime} \in E^{\prime}} I_{e^{\prime}}=I_{e}$. That is, with high probability, the bitwise XOR of the identifiers of any non-singleton edge-set is distinguishable from each edge identifier.
In this exercise, a little care has to be taken, since the probability of $\oplus_{e^{\prime} \in E^{\prime}} I_{e^{\prime}}=I_{e}$ is not (necessarily) independent of I_{e} in case $e \in E^{\prime}$. However, it can be the case that $\oplus_{e^{\prime} \in E^{\prime}} I_{e^{\prime}}=I_{e}$, only if $\oplus_{e^{\prime} \in E^{\prime} \backslash\{e\}} I_{e^{\prime}}=\underline{\mathbf{0}}$ or $\oplus_{e^{\prime} \in E^{\prime} \backslash\{e\}} I_{e^{\prime}}=I_{e}$, where $\underline{\mathbf{0}}$ stands for the zero vector. Notice that if $e \in E^{\prime}$, then $\oplus_{e^{\prime} \in E^{\prime}} I_{e^{\prime}}=\underline{\mathbf{0}} \oplus I_{e}=I_{e}$. Now, let $\mathcal{E}_{e, E^{\prime}}$ be the (bad) event that $\oplus_{e^{\prime} \in E^{\prime}} I_{e^{\prime}}=I_{e}$ if $e \notin E^{\prime}$ and $\mathcal{E}_{e, E^{\prime}}^{*}$ the (bad) even that $\oplus_{e^{\prime} \in E^{\prime} \backslash\{e\}} I_{e^{\prime}}=\underline{\mathbf{0}}$ for the case of $e \in E^{\prime}$. Similarly to (1a), we can use union bound over E^{\prime} and all edges to get an upper bound of $2 n^{2} \cdot 2^{-10 \log n} \leq n^{-7}$.

2 Graph Sketching for Connectivity

Consider an arbitrary n-node graph $G=(V, E)$, where each node in V knows its own edges. Moreover, we assume that the nodes in V have access to a desirably long string shared randomness. Each node should send a packet with size B-bits to the referee, who does not know the graph, so that the referee can determine whether the graph G is connected or not, with high probability. In the class, we saw an algorithm which solves this problem with packet size $B=O\left(\log ^{4} n\right)$. We now improve the bound to $B=O\left(\log ^{3} n\right)$.

Exercises

(2a) Suppose that for each phase of Boruvka's algorithm, instead of having $O(\log n)$ sketches for each node - where each sketch is made of $O\left(\log ^{2} n\right)$ bits, as described in the class we have just one sketch per node. Show that still, for each connected component, we can get one outgoing edge with probability at least $1 / 40$. The proof follows closely the steps in Lemma 1 in the lecture notes. Consider some connected component A, let $B=V \backslash A$ and let k be the number of edges between A and B. For some estimate \tilde{k} it holds that $\tilde{k} / 2 \leq k \leq 2 \tilde{k}$. It is known that $1-x \geq 4^{-x}$, when $0 \leq x \leq 1 / 2$. In the phase of Boruvka's algorithm, where estimate \tilde{k} is made, the probability of choosing exactly one edge between A and B is at least

$$
\frac{\tilde{k}}{2} \cdot \frac{1}{\tilde{k}}\left(1-\frac{1}{k}\right)^{2 \tilde{k}} \geq \frac{\tilde{k}}{2} \cdot \frac{1}{\tilde{k}}\left(4^{\frac{1}{k}}\right)^{2 \tilde{k}} \geq \frac{1}{40} .
$$

(2b) Show that $O(\log n)$ phases of the new Boruvka-style algorithm, where per phase we get an outgoing edge from each component with probability at least $1 / 40$, suffice to determine the connected components, with high probability. In every phase of the algorithm, we remove at least $1 / 160$ components in expectation. Setting the constant in the \mathcal{O} notation large enough, we can use calculations similar to the ones from the previous exercises (Exercise 12) to obtain the result.

3 Graph Sketching for Testing Bipartiteness

Consider a setting similar to the above problem, where each node v in an arbitrary n-node graph $G=(V, E)$ knows only its own edges. These nodes have access to shared randomness.

Exercise

(3a) Devise an algorithm where each node sends $O\left(\log ^{3} n\right)$ bits to the referee and then the referee can decide whether the given graph $G=(V, E)$ is bipartite or not.

HINT: Think about transforming G into a new graph H such that the number of connected components of H indicates whether G is bipartite or not.

Consider the following graph construction. We replace every node $v \in V$ with two nodes, $v_{\text {in }}$ and $v_{\text {out }}$ and connect $v_{\text {in }}$ to $u_{\text {out }}$ for every $\{v, u\} \in E$. Recall now, that a bipartite graph has no odd cycles. Furthermore, if there are only even cycles in the graph, any path from node $v_{\text {in }}$ leads back to $v_{\text {in }}$. This follows from the observation that any path has an even amount of steps and every second node on the path is going to be an "in" node. Conversely, a path from $v_{\text {in }}$ to $v_{\text {out }}$ can be found by following a path starting from $v_{\text {in }}$ going around an odd cycle back to $v_{\text {out }}$. Due to the odd amount of steps in this path, the end must be an "out" node. Therefore, we can test bipartiteness by validating that for all $v \in V, v_{\text {in }}$ is not connected to $v_{\text {out }}$.

