
Principles of Distributed Computing 05/23, 2018

Exercise 13

Lecturer: Mohsen Ghaffari

1 Random Edge Identifiers

Consider an n-node graph G = (V,E) and suppose that for each edge e ∈ E, we define an
10 log n-bit identifier Ie for e by picking each bit at random.

Exercises

(1a) Prove that with high probability, these are unique edge-identifiers. That is, with proba-
bility at least 1− 1/n, for each two edges e, e′ ∈ E such that e 6= e′, we have Ie 6= Ie′ .

Let e, e′ ∈ E and let Ee,e′ be the (bad) event where e and e′ are assigned the same identifier. By
taking the union bound over

⋃
e,e′∈E Ee,e′ , we get that an upper bound of n4 ·2−10 logn ≤ n−6

on the probability that any two edges have the same identifier.

(1b) Consider a set E′ ⊂ E of edges with |E′| ≥ 2. Prove that with probability at least
1 − 1/n, there is no edge e ∈ E such that ⊕e′∈E′Ie′ = Ie. That is, with high probability,
the bitwise XOR of the identifiers of any non-singleton edge-set is distinguishable from
each edge identifier.

In this exercise, a little care has to be taken, since the probability of ⊕e′∈E′Ie′ = Ie is not
(necessarily) independent of Ie in case e ∈ E′. However, it can be the case that ⊕e′∈E′Ie′ = Ie,
only if ⊕e′∈E′\{e}Ie′ = 0 or ⊕e′∈E′\{e}Ie′ = Ie, where 0 stands for the zero vector. Notice
that if e ∈ E′, then ⊕e′∈E′Ie′ = 0 ⊕ Ie = Ie. Now, let Ee,E′ be the (bad) event that
⊕e′∈E′Ie′ = Ie if e 6∈ E′ and E∗e,E′ the (bad) even that ⊕e′∈E′\{e}Ie′ = 0 for the case of
e ∈ E′. Similarly to (1a), we can use union bound over E′ and all edges to get an upper
bound of 2n2 · 2−10 logn ≤ n−7.

2 Graph Sketching for Connectivity

Consider an arbitrary n-node graph G = (V,E), where each node in V knows its own edges.
Moreover, we assume that the nodes in V have access to a desirably long string shared ran-
domness. Each node should send a packet with size B-bits to the referee, who does not know
the graph, so that the referee can determine whether the graph G is connected or not, with
high probability. In the class, we saw an algorithm which solves this problem with packet size
B = O(log4 n). We now improve the bound to B = O(log3 n).

Exercises

(2a) Suppose that for each phase of Boruvka’s algorithm, instead of having O(log n) sketches
for each node — where each sketch is made of O(log2 n) bits, as described in the class —
we have just one sketch per node. Show that still, for each connected component, we can
get one outgoing edge with probability at least 1/40. The proof follows closely the steps in
Lemma 1 in the lecture notes. Consider some connected component A, let B = V \A and let
k be the number of edges between A and B. For some estimate k̃ it holds that k̃/2 ≤ k ≤ 2k̃.
It is known that 1− x ≥ 4−x, when 0 ≤ x ≤ 1/2. In the phase of Boruvka’s algorithm, where
estimate k̃ is made, the probability of choosing exactly one edge between A and B is at least

k̃

2
· 1

k̃

(
1− 1

k

)2k̃

≥ k̃

2
· 1

k̃

(
4

1
k

)2k̃
≥ 1

40
.

1

(2b) Show that O(log n) phases of the new Boruvka-style algorithm, where per phase we get an
outgoing edge from each component with probability at least 1/40, suffice to determine the
connected components, with high probability. In every phase of the algorithm, we remove at
least 1/160 components in expectation. Setting the constant in the O notation large enough,
we can use calculations similar to the ones from the previous exercises (Exercise 12) to obtain
the result.

3 Graph Sketching for Testing Bipartiteness

Consider a setting similar to the above problem, where each node v in an arbitrary n-node
graph G = (V,E) knows only its own edges. These nodes have access to shared randomness.

Exercise

(3a) Devise an algorithm where each node sends O(log3 n) bits to the referee and then the
referee can decide whether the given graph G = (V,E) is bipartite or not.

HINT: Think about transforming G into a new graph H such that the number of connected
components of H indicates whether G is bipartite or not.

Consider the following graph construction. We replace every node v ∈ V with two nodes, vin

and vout and connect vin to uout for every {v, u} ∈ E. Recall now, that a bipartite graph has
no odd cycles. Furthermore, if there are only even cycles in the graph, any path from node
vin leads back to vin. This follows from the observation that any path has an even amount
of steps and every second node on the path is going to be an “in” node. Conversely, a path
from vin to vout can be found by following a path starting from vin going around an odd cycle
back to vout. Due to the odd amount of steps in this path, the end must be an “out” node.
Therefore, we can test bipartiteness by validating that for all v ∈ V , vin is not connected to
vout.

2

