Exercise 9

Lecturer: Mohsen Ghaffari

Network Decompositions

Exercise 1: Explain how given a $(\mathcal{C}, \mathcal{D})$ network decomposition of graph G, a maximal independent set can be computed in $O(\mathcal{CD})$ rounds.

Exercise 2: We here see that the $(O(\log n), O(\log n))$ network decomposition that we discussed in the class has the nearly best possible parameters. In particular, it is known that there are *n*-node graphs that have girth¹ $\Omega(\log n/\log \log n)$ and chromatic number $\Omega(\log n)[AS04, Erd59]$. Use this fact to argue that on these graphs, an $(o(\log n), o(\log n/\log \log n))$ network decomposition does not exist.

Exercise 3: Given an *n*-node undirected graph G = (V, E), we define a d(n)-diameter ordering of G to be a one-to-one labeling $f : V \to \{1, 2, ..., n\}$ of vertices such that for any path $P = v_1, v_2, ..., v_p$ on which the labels $f(v_i)$ are monotonically increasing, any two nodes $v_i, v_j \in P$ have $dist_G(v_i, v_j) \leq d(n)$.

Use the existence of $(O(\log n), O(\log n))$ network decompositions, proved in the class, to argue that each *n*-node graph has an $O(\log^2 n)$ -diameter ordering.

References

[AS04] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2004.

[Erd59] Paul Erdős. Graph theory and probability. Canada J. Math, 11:34G38, 1959.

 $^{^1\}mathrm{Recall}$ that the girth of a graph is the length of its shortest cycle.