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The exam lasts 120 minutes, and there is a total of 120 points. The maximal number of points
for each question is indicated in parentheses. Your answers must be in English. Be sure to always
justify (prove) your answers. Algorithms can be specified in high-level pseudocode or as a verbal
description. You do not need to give every last detail, but the main aspects need to be there.
Big-O notation is acceptable when giving algorithmic complexities. Please write legibly. If we
cannot read your answers, we cannot grade them.

Please write down your name and Legi number (your student ID) in the following fields.

Name Legi-Nr.

Exercise Achieved Points Maximal Points

1 - Multiple Choice 12

2 - Arrow and Ivy 12

3 - Sorting Networks 14

4 - Very Small Radius 26

5 - Global Computations 16

6 - Special Coloring 20

7 - Combinatorics of Radio Transmissions 20

Total 120
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1 Multiple Choice (12 points)

Evaluate each of the following statements in terms of correctness. Indicate whether a statement is
true or false by ticking the corresponding box. Each correct answer gives one point. Each wrong
answer and each unanswered question gives 0 points.

Statement true false

Any rooted binary tree with n nodes can be 1-colored in time O(n). 2 2

Any rooted binary tree with n nodes can be 2-colored in time O(log n). 2 2

Any rooted binary tree with n nodes can be 3-colored in time O(log∗ n). 2 2

Any rooted binary tree with n nodes can be 4-colored in time O(1). 2 2

The flooding algorithm can be used to determine if a graph is a tree. 2 2

The Gallager-Humblet-Spira algorithm can be modified to compute a span-
ning tree of maximum weight by defining a blue edge to be the maximum
weight outgoing edge.

2 2

In Luby’s Maximal Independent Set (MIS) algorithm, in each round each
node is removed with probability at least 1/10.

2 2

Any planar graph with n nodes can be 7-colored in time O(log∗ n). 2 2

In any graph with maximum degree at most 5, any maximal independent
set has size at least 1/5 of the maximum independent set.

2 2

Suppose that Alice knows 5 message each with 100-bits, Bob knows 4 of
these messages, and Alice doesn’t know which ones are known to Bob. Alice
needs to send at least 200 bits to Bob so that he also knows all the messages.

2 2

Any labeling scheme for distance in cycles needs to use labels of size at least
Ω(log2 n).

2 2

There exists at least one task on unweighted simple graphs such that any
labeling scheme needs to use labels of size at least Ω(n3).

2 2
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2 Arrow and Ivy (12 points)

In this task we want to compare the two main algorithms for shared objects, Arrow and Ivy.
Figure 1 depicts a precomputed spanning tree of a complete graph G. The nodes v1, v2 and v3 want
to access the object which is stored at the node w. Assume that the requests are filed sequentially,
i.e. a node files a request after the previous node has already received the object.

w

v3

v2

v1

Figure 1: A precomputed spanning tree of G

A) [4] Give the worst-case ordering of the requests v1, v2, v3 if you apply Arrow.

B) [4] Give the best-case ordering of the requests if you apply Ivy.

C) [4] Your friend claims that on average the Arrow algorithm is strictly better than the Ivy
algorithm for G with this precomputed spanning tree and any sequential request sequence.
Is your friend correct?
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3 Sorting Networks (14 points)

A) [4] Consider a correct sorting network. Show that for each pair of adjacent wires i, i + 1,
the network contains a comparator that compares wires i and i + 1.

B) [10] For each integer n ≥ 2 determine whether there exists a correct sorting network of
width n that contains exactly one comparator for each pair of adjacent wires. (There is
no restriction on the number of comparators for non-adjacent wires.) If the answer is yes,
provide a construction of a sorting network as described. If the answer is no, show that a
sorting network as described cannot exist.
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4 Very Small Radius (26 points)

In the lecture, we studied the diameter of a graph. A very related notion is the radius of a
graph. Throughout this exam question, we assume that all considered graphs are connected.

The radius r(u) of a node u in a graph G is the maximum of the distances from u to all other
nodes, i.e., r(u) = maxv∈G(dist(u, v)). The radius r(G) of a graph G is the minimum of the radii
of all nodes in G, i.e., r(G) = minu∈G(r(u)).

We want to study the problem of determining whether a graph has radius 1 or not.

A) [4] Radoslav claims that if the radius of a graph is 1, then its diameter is always 2. Diana
claims that if the diameter of a graph is 2, then its radius is always 1. Who is right, who is
wrong?

B) [22] Assume that the nodes do not know n, i.e. the total number of nodes in the graph.
Design a synchronous deterministic distributed algorithm that determines if the input graph
has radius 1 or not. Each node has a unique O(log n)-bit identifier. In each round each node
can send a message that has O(log n) bits over each incident edge.

You can obtain up to 5 points if your algorithm has the following properties:

1) If the radius is 1, then all nodes output “YES”.

2) If the radius is not 1, then at least one node outputs “NO”.

You can obtain up to 5 additional points if the runtime of your algorithm is constant.

You can obtain up to 12 additional points if the runtime of your algorithm is constant
and the algorithm has the following properties:

1) If the radius is 1, then all nodes have to output “YES”.

2) If the radius is not 1, then all nodes have to output “NO”.
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5 Global Computations (16 points)

Model: The network is abstracted as an n-node undirected graph G = (V,E), with diameter D.
Each node has a unique Θ(log n)-bit ID. Initially, each node only knows its own edges, as well as
the value of n. We consider the CONGEST model where per round each node can send O(log n)
bits to each of its neighbors.

Problem: Suppose that each node v ∈ V receives an input value xv ∈ {1, 2, . . . , n10}. The

objective is for all nodes to learn the average of the values of the k = d
√
n0.4e largest inputs.

Suppose that the diameter is D = d
√
n0.6e. Devise a fast algorithm for the problem. Provide a

correctness argument for your algorithm and analyze its round complexity.

A correct algorithm receives 6 points. Proving the algorithm’s correctness receives another 5
points, and obtaining a good round complexity (with analysis) receives the last 5 points.
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6 Special Coloring (20 points)

Model: The network is abstracted as an n-node undirected graph G = (V,E). Initially, each
node only knows its own edges, as well as the values of n and the maximum degree ∆. We consider
the CONGEST model where per round each node can send O(log n) bits to each of its neighbors.

Problem: Each node v must choose a color value cv ∈ {∆3/2,∆3/2 + 1, . . . , 2∆3/2}. Each edge
e = {v, u} is annotated with a conflict description (ae, be) for some values ae ∈ {10∆, 10∆ +
1, . . . , 20∆} and be ∈ {0, 1, . . . , ae − 1}; we say that the coloring is invalid and has a conflict on
edge e if we have cv ≡ be + cu (mod ae). The conflict description values (ae, be) are known to
both endpoints v and u of the edge e. Notice that the coloring is invalid if there is a conflict on
any edge.

Devise a fast randomized distributed algorithm that computes a valid coloring, with high prob-
ability. The algorithm should terminate within your claimed round complexity and the computed
coloring must be valid with probability at least 1−1/n. Analyze your algorithm’s round complexity
and prove its correctness.

A correct algorithm receives 8 points. Proving the algorithm’s correctness receives another 4
points, and obtaining a good round complexity (with analysis) receives the last 8 points.
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7 Combinatorics of Radio Transmissions (20 points)

Model: We assume the radio networks model, which works as follows: The network is abstracted
as an n-node undirected graph G = (V,E). Each node has a unique Θ(log n)-bit ID. Initially, each
node knows only the values of n and ∆, and its own identifier. Per round, each node either
transmits a message or listens. A node receives a message only if it is listening and exactly one
of its neighbors is transmitting a message, and in that case, the node receives the message of
that single transmitting neighbor. If a node is not listening, or two or more of its neighbors are
transmitting, then the node does not receive anything.

Problem: Suppose that each node v has a message mv, which should be delivered to all of its
neighbors. Devise a short and deterministic schedule for transmissions so that at the end, each
node u receives the messages of all of its neighbors. The schedule describes for each node v what
it should do in each round — i.e., whether it should transmit its message mv or it should listen
— as a function of n, ∆, and the node’s identifier IDv. The schedule must be independent of
G and should work for any n-node graph.You should also argue about the schedule’s correctness,
and analyze its length as a function of n and ∆.

A correct algorithm receives 8 points. Arguing about the algorithm’s correctness receives
another 4 points, and obtaining a good schedule length receives the last 8 points.

Hint: Think about cover-free families, from lecture 5.
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