
Chapter 13

Security & Cryptography

Every day people order and pay online – but is it secure?

13.1 Transport Layer Security

Remarks:

• Let’s assume that Alice and Bob want to communicate with each other
over the internet, but they are afraid of a potential eavesdropper Eve
who might be able to intercept any communication between Alice and
Bob.

• Alice and Bob don’t want Eve to be able to read their messages.
Therefore, they encrypt their messages using a bulk encryption algo-
rithm (see Section 13.2).

• For the encryption algorithm, they need to agree on a secret key using
a key exchange protocol (see Section 13.3).

• When Alice receives a message, how can she be sure that the message
hasn’t been modified on the way from Bob to her? Alice and Bob
use a message authentication algorithm (see Section 13.4) to ensure
integrity of the communication.

• Let’s assume that Alice hasn’t met Bob in person before. How can
she be sure that she is really communicating with Bob and not with
Eve? She would ask Bob to authenticate himself (see Section 13.5).

• The Transport Layer Security (TLS) protocol is a standardized pro-
tocol which offers all of these features.

Protocol 13.1 (Transport Layer Security, TLS). TLS is a network protocol
in which a client and a server exchange information in order to communicate
in a secure way. Common features include a bulk encryption algorithm, a key
exchange protocol, a message authentication algorithm, and lastly, the authen-
tication of the server to the client.
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Remarks:

• TLS is the successor of Secure Sockets Layer (SSL). However, some-
times in practice the term SSL includes (the newer) TLS as well.

• HTTPS (Hypertext Transfer Protocol Secure) is not a protocol on its
own, but rather denotes the usage of HTTP via TLS or SSL.

• SSH (Secure Shell), even though close in name to SSL, is something
different: It is a protocol to allow a client to remotely access a server,
e.g., for a command-line interface.

13.2 Secret Sharing & Bulk Encryption

“Three may keep a secret, if two of them are dead.” – Benjamin Franklin

Definition 13.2 (Perfect Secrecy). An encryption algorithm has perfect secrecy,
if the encrypted message reveals no information to an attacker, except for the
possible maximum length of the message.

Definition 13.3 (Threshold Secret Sharing). Let t, n ∈ N with 1 ≤ t ≤ n. An
algorithm that distributes a secret among n participants such that t participants
need to collaborate to recover the secret is called a (t,n)-threshold secret sharing
scheme.

Algorithm 13.4 (n, n)-Threshold Secret Sharing

Input: A secret k, encoded in binary representation of length l(k).

Secret distribution

1: Generate n−1 random binary numbers ki of length l(k) and distribute them
among n− 1 participants

2: Give participant n the value kn as the result of XOR of k and k1, . . . , kn−1,
i.e., kn = k ⊕ k1 ⊕ k2 ⊕ · · · ⊕ kn−1

Secret recovery

1: Collect all n values k1, . . . , kn and obtain k = k1 ⊕ k2 ⊕ · · · ⊕ kn−1 ⊕ kn

Theorem 13.5. Algorithm 13.4 has perfect secrecy even if n − 1 participants
collaborate.

Proof. The theorem holds as applying the XOR operation ⊕ to a random bit-
string and k results in a random bitstring.

Remarks:

• How can we achieve a (t, n)-threshold secret sharing scheme with per-
fect secrecy?

• At this point, let us introduce the relevant notation for this chapter.
We will use k for keys, m for messages, p for primes, g for primitive
roots, and c for ciphertext (encrypted messages). Generally speaking,
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an encryption algorithm encrypts a plain message m by applying a
key k, resulting in ciphertext c.

Algorithm 13.6 (t, n)-Threshold Secret Sharing

Input: A secret k, represented as a real number.

Secret distribution

1: Generate t− 1 random a1, . . . , at−1 ∈ R
2: Obtain a polynomial f of degree t− 1 with f(x) = k+a1x+ · · ·+at−1xt−1

3: Generate n distinct x1, . . . , xn ∈ R \ {0}
4: Distribute (x1, f(x1)) to participant P1, . . . , (xn, f(xn)) to Pn

Secret recovery

1: Collect t pairs (xi, f(xi)) from at least t participants
2: Use Lagrange’s interpolation formula to obtain f(0) = k

Remarks:

• With at most t− 1 pairs (xi, f(xi)), there are infinitely many possible
polynomials with different values for f(0).

• There are many other (t, n)-threshold secret sharing schemes, e.g.,
with intersecting hyperplanes.

• Note that in practice, a finite field of prime order instead of real num-
bers is used.

• How can two parties communicate securely and privately?

Algorithm 13.7 One-Time Pad

Input: A message m known to Alice, and a symmetric key k (as a random
bitstring) of length l(k), known by both Alice and Bob.

Encryption

1: Alice sends c = m⊕ k to Bob

Decryption

1: Bob obtains m by m = c⊕ k

Corollary 13.8. Algorithm 13.7 has perfect secrecy.

Remarks:

• In crypto, it’s always Alice and Bob, with a possible attacker Eve.

• Algorithm 13.7 only works if the message m has the same length as
the key k.

• How can we encrypt messages of arbitrary length?
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Definition 13.9 (Bulk Encryption Algorithm). A bulk encryption algorithm
can securely encrypt a message of any size.

Definition 13.10 (Electronic Code Book, ECB). Given a method to encrypt
a block of x bits, ECB encrypts a message of length rx by splitting the message
into r blocks of length x, encrypting each block separately.

Remarks:

• Do we now have a secure method to easily encrypt a large message, if
we can encrypt small blocks, each using the same one-time pad?

• Suppose you have two message blocks m1,m2 of the same length,
encrypted with k, resulting in c1, c2. However, you can obtain m1 ⊕
m2 = c1 ⊕ c2, giving you information about m1 and m2.

Definition 13.11 (Cipher Block Chaining, CBC). Given a method f to encrypt
a block of x bits, CBC encrypts a message of length rx by splitting the message
into r blocks m1,m2, . . . ,mr, each of length x, encrypting (the plaintext of) each
block XORed with the previous encrypted block, i.e., ci = f(mi ⊕ ci−1). The
first block c0 is initialized randomly.

Remarks:

• Are we secure now? Using the same technique as in the last remark,
you can again get, e.g., m4 ⊕m5.

• CBC is still one of the standard techniques though when encrypting
blocks successively, as more advanced algorithms are not susceptible
to this simple attack for one-time pads. An example would be the
advanced encryption standard (AES). Using AES with CBC is an
example of a bulk encryption algorithm. The operation of AES is
beyond the scope of this short chapter however.

• Note that Algorithm 13.7 has one big disadvantage – Alice and Bob
need to agree on a large random number first! While this is feasible
for, e.g., secret agents, it is quite impractical for everyday usage.

13.3 Key Exchange

How to agree on a common secret key in public, if you never met before?

Definition 13.12 (Primitive Root). Let p ∈ N be a prime. g ∈ N is a primitive
root of p if the following holds: For every h ∈ N, with 1 ≤ h < p, there is a
k ∈ N s.t. gk = h mod p.

Example 13.13. g = 2 is a primitive root of p = 5, because 21 = 2 mod 5,
22 = 4 mod 5, 23 = 3 mod 5, and 24 = 1 mod 5. There exists one more
primitive root of 5.
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Algorithm 13.14 Diffie-Hellman Key Exchange

Input: Publicly known prime p and a primitive root g of p.
Result: Alice and Bob agree on a common secret key.

1: Alice picks a secret key kA ∈ {1, 2, . . . , p− 1} and sends A = gkA mod p to
Bob.

2: Bob picks a secret key kB ∈ {1, 2, . . . , p− 1} and sends B = gkB mod p to
Alice.

3: Alice calculates K = BkA mod p
4: Bob calculates K = AkB mod p

Example 13.15 (Algorithm 13.14 with p = 5 and g = 2). Let’s assume that
Alice picks kA = 2 and Bob picks kB = 3. Thus, Bob receives A = 22 mod 5 =
4 and Alice receives B = 23 mod 5 = 3. Then, Bob calculates 43 mod 5 = 4,
and Alice calculates 32 mod 5 = 4. Hence, Alice and Bob have agreed on the
common secret key of 4.

Theorem 13.16. In Algorithm 13.14, Alice and Bob agree on the same key K.

Proof. Everything mod p, we have

K = BkA =
(
gkB
)kA

= gkBkA = gkAkB =
(
gkA
)kB

= AkB = K mod p.

Remarks:

• There are sophisticated methods to quickly find primitive roots, but
they are beyond the material covered in this chapter.

• How secure is Algorithm 13.14?

Definition 13.17 (Discrete Logarithm Problem). Let p ∈ N be a prime, and
let g, a ∈ N with 1 ≤ g, a < p. The discrete logarithm problem is defined as
finding an x ∈ N with gx = a mod p.

Remarks:

• Intuitively, the best approach to calculate the common secret key of
Algorithm 13.14 from the publicly known p, g, gkA , gkB is to solve the
discrete logarithm problem. This is also the best known attack.

• However, for some classes of primes there are better attacks, which is
why one often resorts to so-called safe primes p, where p′ = (p− 1)/2
is also a prime.

• How to find big enough primes though? Deterministic methods are
still too slow in practice. Thus, let’s go probabilistic with the following
primality test.
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Algorithm 13.18 Probabilistic Primality Testing

Input: An odd number p ∈ N.
Result: Is p a prime?

1: Let j, r ∈ N and j odd with p− 1 = 2rj
2: Select x ∈ N uniformly at random, 1 ≤ x < p
3: Set x0 = xj mod p
4: if x0 = 1 or x0 = p− 1 then
5: Output “p is probably prime” and stop
6: end if
7: for i = 1, . . . r − 1 do
8: Set xi = x2i−1 mod p
9: if xi = p− 1 then

10: Output “p is probably prime” and stop
11: end if
12: end for
13: Output “p is not prime”

Lemma 13.19. Algorithm 13.18 is correct with probability 75% if it outputs “p
is probably prime”, and 100% correct if it outputs “p is not prime”.

Corollary 13.20. The runtime of Algorithm 13.18 is O(r) ∈ O(log p)

Remarks:

• The proof for the probabilistic correctness of the primality test in
Algorithm 13.18 goes beyond the material covered in this lecture.

• Algorithm 13.18 is a Monte Carlo algorithm as its (fast) runtime is
deterministic, but the output can be wrong with bounded probability.
However, running the algorithm again on the same p, but with dif-
ferent x, produces an independent result, allowing to bound the error
probability by 1

4r in r runs.

• A simple method to find big primes is thus as follows: Pick a big
random number p, with p being odd. Run Algorithm 13.18

until p is prime with the desired probability of 1−ε. If p is not prime,
pick another p. According to the prime number theorem, the average
distance between two primes of size at most n is just lnn, i.e., there
is a good chance to find a big prime.

• While it is easy to find big primes, the problem of factorization is
believed to be hard: I.e., given some integer x, find the prime factors
of x. Many cryptographic protocols rely on the (perceived) hardness
of the factorization problem, most famously RSA.

Definition 13.21 (Man in the Middle Attack). A man in the middle attack is
defined as an attacker Eve deciphering or changing the messages between Alice
and Bob, while Alice and Bob believe they are communicating directly with each
other.
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Theorem 13.22. The Diffie-Hellman Key Exchange from Algorithm 13.14 is
vulnerable to a man in the middle attack.

Proof. Assume that Eve can intercept and relay all messages between Alice and
Bob. That alone does not make it a man in the middle attack, Eve needs to be
able to decipher or change messages without Alice or Bob noticing. However,
Eve can emulate Alice’s and Bob’s behavior to each other, by picking her own
k′A, k′B , and then agreeing on common keys gkAk

′
B , gkBk

′
A with Alice and Bob,

respectively. Thus, Eve can relay all messages between Alice and Bob while
deciphering and (possibly) changing them, while Alice and Bob believe they are
securely communicating with each other.

Remarks:

• It is a bit like concurrently playing chess with two grandmasters: If
you play white and black respectively, you can essentially let them
play against each other by relaying their moves.

• How do we fix this? One idea is to personally meet in private first,
exchange a common secret key kA,B , and then use this key for secure
communication. Now a man in the middle cannot change the key.

Definition 13.23 (Forward Secrecy). A sequence of secured communication
rounds has the property of forward secrecy, if discovering the secret key(s) of a
single communication round does not reveal the content of past communication
rounds.

Remarks:

• So Alice and Bob cannot use the same secret key multiple times.

Algorithm 13.24 Diffie-Hellman Key Exchange with Forward Secrecy

Input: Alice’s and Bob’s common secret key kA,B , and furthermore a prime p
with a primitive root g for p.
Result: A Diffie-Hellman key exchange not vulnerable to a man in the middle
attack, and with forward secrecy.

1: Bob picks a random number kB ∈ {1, 2, . . . , p− 1} and sends Alice(
gkB mod p

)
encrypted with kA,B as cB as a challenge

2: Alice picks a random number kA ∈ {1, 2, . . . , p− 1} and sends
(
gkA mod p

)

encrypted with kA,B as cA to Bob as a challenge
3: Alice and Bob decrypt the respective messages, and Alice sends gkB + 1

encrypted with kA,B to Bob as a response (and Bob as well with gkA + 1)
4: If decryption yields gkA +1 for Alice, and gkB +1 for Bob, respectively, they

accept the round key gkAkB mod p

Lemma 13.25. Algorithm 13.24 has the property of forward secrecy and is not
vulnerable to a man in the middle attack, if encryption with kA,B is secure.
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Proof. For a man in the middle attack, Eve needs to be able to decrypt and
encrypt with kA,B to convince Alice and Bob that they directly communicated
with each other, which is a contradiction to the security assumption.

Regarding forward secrecy, if the attacker Eve gathers the secret key gkAkB

of a communication round, she can decrypt the messages of this communication
round.

Even if Eve gains access to kA,B , she cannot gain access to the keys generated
in past communication rounds.

Remarks:

• Observe that forward secrecy only applies to communication rounds
in the past. If Eve gains access to kA,B , she can perform man in the
middle attacks in future communication rounds.

• However, we have a new inconvenience: Alice and Bob need to agree
on a secret key kA,B beforehand. Furthermore, with n participants,
everyone needs n− 1 different keys.

13.4 Message Authentication & Passwords

“I’ve been imitated so well I’ve heard people copy my mistakes.” – Jimi Hendrix

Definition 13.26 (Replay Attack). In a replay attack a previously valid mes-
sage from Alice to Bob is sent again from an eavesdropper Eve to Bob.

Remarks:

• An easy way to prevent replay attacks is to include time stamps in
messages. Bob can detect a replay attack, if the time stamp is too
old or multiple messages with the same time stamp arrive. Another
idea is to use nonces (numbers only used once), with the sender and
receiver keeping track of the nonces used so far.

• Another issue is that an attacker could change an encrypted message
without knowing the content

Definition 13.27 (Malleability). If ciphertext c can be changed to c′ such that
the receiver decrypts it into a different message m′ without noticing, the encryp-
tion algorithm is malleable.

Remarks:

• Thus, we need a way to ensure that the messages cannot be changed
by an attacker. A natural solution are hash functions. However the
hash functions described in Chapter 8 are not secure.

Definition 13.28 (One-Way Hash Function). A hash function h : U → S is
called one-way, if for a given z ∈ S it is computationally hard to find an element
x ∈ U with h(x) = z.

Definition 13.29 (Collision Resistant Hash Function). A hash function h :
U → S is called collision resistant, if it is computationally hard to find elements
x 6= y, x, y ∈ U , with h(x) = h(y) ∈ S.
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Remarks:

• It can be shown that a collision resistant hash function is also a one-
way hash function.

Theorem 13.30 (Example for a Collision Resistant Hash Function). Let p =
2q + 1 be a safe prime, with primitive roots g1 6= g2 of p. The hash function
h : {0, . . . , q − 1} × {0, . . . , q − 1} → Z \ {0} with h(x1, x2) = gx1

1 gx2
2 mod p is

a collision resistant hash function.

Remarks:

• For a small example, let us pick p = 5 with primitive roots g1 = 2
and g2 = 3. We choose x1 = 3 and x2 = 4, obtaining the hash
h(3, 4) = 2334 mod 5 = 3 mod 5.

• Popular hash functions used in cryptography include the Secure Hash
Algorithm (SHA) and the Message-Digest Algorithm (MD).

• It can be shown that finding a collision for the hash function described
in Theorem 13.30 is equivalent to solving the discrete logarithm prob-
lem for logg1 g2. Thus, the hash function is a collision resistant hash
function, as we assume the discrete logarithm problem to be compu-
tationally hard.

• One might think that using a collision resistant hash function is good
enough to store passwords for a service. E.g., store the hash of each
password, and then compare it to the input of the user. Even if the
hashes are leaked, an attacker Eve cannot recover the passwords – or
can she?

• In practice, many users use short passwords, trading security for con-
venience. Eve can sample the hashes of common passwords such as
“password”, revealing the passwords of all users using these simple
passwords. To counter this attack, one uses a technique called salt-
ing : The service adds a random bitstring (the salt) to each password
before storing the hash (or, less secure, but simpler, the username).
Even if the salt is known for each user, Eve needs to attack the hash
of each user individually.

• To make life for Eve even harder, it is good practice to use hash
functions that provably need a lot of computation and memory to
execute. However, there is still a trade off as the real user wants to
log in fast as well.

• Many web services already offer secure two-factor authentication (e.g.,
via mobile phones) instead of just passwords or challenge-response sys-
tems. However, there is a trade-off between security and convenience.

• Are we resistant against malleability now, if we include a hash of
the encrypted message? No: An attacker changing the message can
change the hash as well, as the hash function is not assumed to be
secret. How do we prevent the hash from being modified without
being noticed? The answer are HMACs:
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Definition 13.31 (Message Authentication Code, MAC). A message authen-
tication code is a bitstring that verifies that a message comes from the desired
sender and was not changed until reaching the receiver.

Definition 13.32 (Hash-Based Message Authentication Code, HMAC). A hash-
based message authentication code is a MAC that uses a collision resistant hash
function in combination with a secret key.

Algorithm 13.33 Hash-Based Message Authentication Code Generation

Input: An encrypted message c, to be sent from Alice to Bob, the publicly
known hash function h from Theorem 13.30, and a secret key 1 ≤ k ≤ c known
to Alice and Bob.
Result: An HMAC for c, checkable by Bob.

1: Alice computes hA = h(k, h(k, c)), and sends c, hA to Bob
2: Bob computes hB = h(k, h(k, c)), and checks if hA = hB

Remarks:

• In practice, if k > c, then k will be hashed to have a smaller size.
Also, the key will be padded for extra security.

• If an attacker wants to change the message, he needs to change the
HMAC too. To change the HMAC, he needs to know the secret key k

• Algorithm 13.33 can be also used with any other collision resistant
hash function.

13.5 Public Key Cryptography

“Love all, trust a few.” – William Shakespeare

Definition 13.34 (Public Key Cryptography). A public key cryptography sys-
tem uses two keys: A public key kp, to be disseminated to everyone, and a secret
(private) key ks, only known to the owner. A message encrypted with the secret
key can be decrypted with the corresponding public key. Analogously, a message
encrypted with the public key can be decrypted with the corresponding secret key.

Remarks:

• Popular public key cryptosystems include RSA and elliptic curve cryp-
tography.

• With public key cryptography, we have reduced the number of keys –
everyone just needs a secret and a public key.

• A conceptual way to think of public key cryptography is as follows:
The secret key is a physical (secret) key that opens a specific type
of padlock, and this type of padlock is freely available. The public
key is a physical key too, freely available, but it opens only a (secret)
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specific type of padlock. If Alice wants to send Bob an encrypted
message, she applies his public padlock to the message container, and
only Bob can open it. Similarly, if Alice wants to authenticate her
message to Bob, she locks the container with her secret padlock, and
only Alice’s public key can unlock it. Lastly, if Alice wants to ensure
both encryption and authentication, she applies both her own secret
padlock and Bob’s public padlock to the message container.

• We will now extend the Diffie-Hellman algorithm to public key cryp-
tography, resulting in Algorithms 13.35 and 13.36.

• Recall the Diffie-Hellman Key Exchange algorithm (Algorithm 13.14).
There, Alice picked a secret number kA and computed a number A
which she sent to Bob. We use the exact same idea in Algorithm 13.35
to generate a pair of a secret key and a public key which we call ks
and kp, respectively.

Algorithm 13.35 Elgamal Key Generation

Input: Publicly known prime p and a primitive root g of p.
Result: Alice generates a public and a secret key

1: Alice randomly chooses ks ∈ {1, 2, . . . , p− 1} as her secret key
2: Alice calculates kp = gks mod p as her public key

Remarks:

• Alice can publish p, g, kp, but must keep ks to her own.

• We will explain public key encryption, before covering authentication.

• Recall how Bob calculated a key K from A and kB in the Diffie-
Hellman algorithm. In the context of public key encryption, when
Bob wants to send an encrypted message to Alice, he calculates K
from Alice’s public key kp and a secret random number x which he
chooses himself.

• Bob then generates the number c1 = (gx mod p) and sends it to Alice,
which she will later use to calculate K. Additionally, Bob sends c2,
which is his message m, encrypted using the key K.

• Once Alice has calculated K from c1 and her secret key ks, she can
use K to reconstruct Bob’s message m from c2.

Theorem 13.37 (Fermat’s little theorem). Let p be a prime number. Then,
for any a ∈ N holds: ap = a mod p. If a is not divisible by p, then ap−1 = 1
mod p.

Theorem 13.38. Algorithm 13.36 is correct.
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Algorithm 13.36 Elgamal Public Key Encryption and Decryption

Input: Alice and Bob know p, g, kp, Alice knows ks.
Result: Bob sends Alice an encrypted message, which she can decrypt.

1: Bob picks a message m ∈ {1, 2, . . . , p− 1} and a random number x ∈
{1, 2, . . . , p− 1} and calculates K = (kp)

x
mod p.

2: Bob sends c1 = (gx mod p) and c2 = (K ·m mod p) to Alice

3: Alice first calculates K = (c1)
ks mod p

4: Alice then obtains m = c2 ·Kp−2 mod p

Proof. We refer to the proof of Theorem 13.16 for the fact that Alice and Bob
have calculated the same value for K.

It remains to show that Alice can restore the message m:

c2 ·Kp−2 = (K ·m) ·Kp−2 mod p

= m ·Kp−1 mod p

= m mod p (using Theorem 13.37)

Remarks:

• Note that the Elgamal encryption in Algorithm 13.36 on its own is
malleable: An attacker can relay c1 = (gx mod p) as z · c1, resulting
in a valid decryption of zm. In practice, techniques such as HMACs
from the previous section should be used.

• Still, we can now send someone an encrypted message using public
key cryptography, but what about authentication?

• Again, we first need some number theoretic preliminaries.

Definition 13.39 (Greatest Common Divisor, gcd). The greatest common divi-
sor (gcd) of two integers i1, i2 is the largest integer that divides i1 and i2 without
a remainder.

Theorem 13.40. Let p be a prime and i be an integer with gcd(i, p) = 1. Let
a1, a2 ∈ N. If a1 = a2 mod (p− 1), then ia1 = ia2 mod p.

Remarks:

• A multiplicative inverse modulo p (in this algorithm: x−1 mod p),
can be calculated using, e.g., the extended Euclidean algorithm.

Lemma 13.42. Algorithm 13.41 is correct.

Proof. With d = (m− aks)x−1 mod (p− 1), it follows that:

dx = m− aks mod (p− 1)⇒ m = dx+ aks mod (p− 1).

Using Theorem 13.40, we now obtain gdx+aks = gm mod p. Hence,

kapa
d mod p =

(
gks
)a

(gx)
d

= gaksgdx mod p = gm mod p.
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Algorithm 13.41 Elgamal Authentication

Input: Alice and Bob know p, g, kp, Alice knows ks.
Result: Alice signs a message m ∈ {1, 2, . . . , p− 1}, which Bob authenticates.

1: Alice picks a random x ∈ {1, 2, . . . , p− 1}, with gcd(x, p− 1) = 1
2: Alice calculates a = gx mod p and b = x−1 mod (p− 1)
3: Alice calculates d = (m− aks)b mod (p− 1)
4: Alice sends the message m and the signature (a, d) to Bob
5: Bob checks if 1 ≤ a ≤ p− 1, else he rejects
6: Bob accepts Alice’s signature for m if kapa

d = gm mod p

Remarks:

• The security of the Elgamal public key cryptography again depends
on the hardness of the discrete logarithm problem.

• We can now authenticate a message using public key cryptography,
e.g., we can check that the public key of Alice corresponds to Alice’s
secret key.

• However, we are back still at our old problem: How do I know that
Alice’s public key really belongs to Alice? Maybe Eve pretended to
be Alice? To use a famous saying by Peter Steiner: “On the Internet,
nobody knows you’re a dog”.

• What can we do, unless we personally meet with everyone to exchange
our public keys? The answer lies in trusting a few, in order to trust
many: Let’s say that you don’t know Alice, but both Alice and you
know Doris. If you trust Doris, then Doris can verify Alice’s public
key for you. In the future, you can ask Alice to vouch for her friends
as well, etc.

• Trust is not limited to real persons though, especially since Alice and
Doris are represented by their keys. Take a website like PayPal for
example. How do you know that you give them your credit card infor-
mation, and not some infamous Nigerian princess Eve? You probably
don’t know anybody who personally knows PayPal...

Definition 13.43 (Web of Trust). Let G = (V,E) be a graph, where an edge
between two nodes u, v represents trust between u, v. For any two nodes u,w,
we say u trusts w if there is a path from u to w in G.

Remarks:

• Hence, if you want someone to authenticate themselves, you need to
find a path in the Web of Trust to them.

• In practice, the Web of Trust is a bit more sophisticated, as you can
assign various levels of trust – and you might only trust someone in
short distance.
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• The whole situation is a bit of a chicken and egg dilemma though. In
the beginning, you don’t trust anyone, and nobody trusts you. You
may want to find some well-connected nodes and gain their trust. This
is the motivation for certificate authorities.

Definition 13.44 (Certificate Authority, CA). A certificate authority is a node
in a web of trust that is trusted by many other nodes.

Remarks:

• A main distinction between a CA (or nodes in general) and your real-
life friends is that trust is not necessarily mutual, edges in the web of
trust can also be directed. As such a node u might trust v, but v does
not necessarily need to trust u.

• You will find trust for some certificate authorities pre-installed on your
system/browser, known as root certificates. When you want to know
if you can trust a node, the node can supply you with a path (chain
of trust) from the CA. More specifically, you will be supplied with
signatures which you can check (as you trust the CA).

• Again, one can implement various levels of trust, e.g., you might only
trust short paths.

• Moreover, a CA might get compromised. This leads to the idea of
key revocation, where one can check if a key for a signature has been
compromised – the corresponding certificate can be generated by any-
one holding the respective secret key. Another idea is to also generate
expiration dates for keys.

• A totally different problem is that your own set of root certificates
might be compromised, e.g., if malicious software adds new root cer-
tificates to one’s device.

Chapter Notes

The concept of one-way functions is surprisingly old. In 1874, William Stanley
Jevons wrote: “Can the reader say what two numbers multiplied together will
produce the number 8616460799? I think it unlikely that anyone but myself will
ever know.” [9]. To spill the beans: 89681 · 96079.

The Diffie-Hellman Key Exchange was published in the seminal paper [6],
parallel unpublished work also existed from Ellis et al. at the British intelli-
gence service GCHQ. For some works showing the hardness of breaking the
Diffie-Hellman key exchange, we refer to, e.g., [5], [11], [18]. For some more
recommendations on how to choose the parameters of the Diffie-Hellman key
exchange see RFC 3526 at http://tools.ietf.org/html/rfc3526. The cur-
rently fastest algorithms to solve the discrete logarithm problem still have non-
practical runtime, e.g., [1]. The idea of challenging the other party to return
an encrypted version of one’s random number incremented by one in Algorithm
13.24 is taken from the Kerberos protocol. The Elgamal cryptosystem was
published by Elgamal in 1984 [8], some years after RSA [15].
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The first deterministic polynomial primality test, by Agrawal, Kayal, and
Saxena, was published in [10], with an improved runtime of Õ(log6 p) available
at https://math.dartmouth.edu/~carlp/aks041411.pdf. The Miller-Rabin
primality test is from Rabin [14] and Miller [12]. For an introduction to number
theory, we recommend, e.g., [16].

The idea for the web of trust was proposed by Zimmermann in 1992. For
certificate chains and key revocation, we refer to RFC 5280 at http://tools.

ietf.org/html/rfc5280.

The Chaum-van-Heijst-Pfitzmann hash function described in Theorem 13.30
was published in [4] by Chaum et al., for the reduction to the discrete loga-
rithm problem see, e.g., [19]. Although the runtime of the Chaum-van-Heijst-
Pfitzmann hash function is too high in practice, it is chosen in this chap-
ter as it is easier to understand compared to other related work. The sub-
sequently described HMAC Algorithm 13.33 is from RFC 2104 at https://

tools.ietf.org/html/rfc2104, with further security updates in RFC 6151,
cf. https://tools.ietf.org/html/rfc6151.

The secret sharing variant discussed in this chapter is from Shamir [17],
Blakley developed similar work in parallel in 1979 [3], and also discussed its
relation to one-time pads [2].

While CBC seems superior to ECB, there is one downside: Decryption of
ECB can be parallelized, but the decryption of CBC has to be sequential. The
in this context mentioned AES encryption is a symmetric key algorithm, based
on the Rijndael cipher of Daemen and Rijmen. Details of the Advanced Encryp-
tion Standard can be found in http://csrc.nist.gov/publications/fips/

fips197/fips-197.pdf. AES, with a key length of 128, 192, or 256 bits, re-
placed DES (Data Encryption Standard), as its key length of just 56 was no
longer secure enough against brute-force attacks.

For a general overview of the topic of computer security, we recommend [13]
and [7]. Lastly, as a very general recommendation, we urge you not to implement
your own cryptosystem unless you really know what you are doing – there is
just too much that can easily be missed.

This chapter was written in collaboration with Klaus-Tycho Förster.
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