
Chapter 8

Dictionaries & Hashing

You manage a library and want to be able to quickly tell whether you carry a
given book or not. We need the capability to insert, delete, and search books.

Definition 8.1 (Dictionary). A dictionary is a data structure that manages
a set of objects. Each object is uniquely identified by its key. The relevant
operations are

• search: find an object with a given key

• insert: put an object into the set

• delete: remove an object from the set

Remarks:

• There are alternative names for dictionary, e.g. key-value store, asso-
ciative array, map, or just set.

• If the dictionary only offers search, it is called static; if it also offers
insert and delete, it is dynamic.

• For our purposes, we will ignore that we actually have a set of ob-
jects, each of which is identified by a unique key, and just talk about
the set of keys. With regard to the library example, books are glob-
ally uniquely identified by a key called ISBN. Whenever we say we
insert/delete/search a key, we can just drag the key’s object along via
encapsulation.

• The classic data structure for dictionaries is a binary search tree.

8.1 Search Trees

Definition 8.2 (Binary search tree). A binary search tree is a rooted tree
(Definition 2.7), where each node stores a key. Additionally, each node may
have a pointer to a left and/or a right child tree. For all nodes, if existing, the
nodes in the left child tree store smaller keys, and those in the right child tree
store larger keys.

94

8.2. HASHING 95

Algorithm 8.3 Search Tree: Search

Input : key k, root r of search tree
Output: k if it is in the tree, else ⊥

1: If r contains key k, return k
2: If k is smaller than the key of r, set r to left child and recurse
3: If k is larger than the key of r, set r to right child and recurse
4: Return ⊥

Remarks:

• The symbol ⊥ (“bottom”) signifies null or undefined.

• The cost of searching in a binary search tree is proportional to the
depth of the key, which is the distance (Definition 2.15) between the
node with the key and the root.

• There are search trees called splay trees that keep frequently searched
keys close to the root. There may be keys with linear depth in a splay
tree, but on average the cost of a search is logarithmic in the number
of keys.

• Using balanced search trees, we can maintain a dictionary with worst-
case logarithmic depth for all keys, and thus worst-case logarithmic
cost per insert/delete/search operation.

• Is there a way to build a dictionary with less than logarithmic cost
and with keys that cannot be ordered?

8.2 Hashing

Definition 8.4 (Universe, Key Set, Hash Table, Buckets). We consider a uni-
verse U containing all possible keys. We want to maintain a subset of this
universe, the key set N ⊆ U with |N | =: n, where |N | � |U |. We will use a
hash table M , i.e. an array M with buckets M [0],M [1], . . . ,M [m− 1].

Remarks:

• The standard library of almost every widely used programming lan-
guage provides hash tables, sometimes by another name. In C++,
they are called unordered map, in Python dict, in Java HashMap.

• The translation from virtual memory to physical memory uses a piece
of hardware called translation lookaside buffer (TLB), which is a hard-
ware implementation of a hash table. It has a fixed size and acts like
a cache for frequently looked up virtual addresses.

• Compilers make use of hash tables to manage the symbol table.

Definition 8.5 (Hash Function). Given a universe U and a hash table M , a
hash function is a function h : U →M . Given some key k ∈ U , we call h(k)
the hash of k.

96 CHAPTER 8. DICTIONARIES & HASHING

Remarks:

• A hash function should be efficiently computable, e.g. h(k) = k mod
m for a key k ∈ N.

• If we use ISBN mod m as our library hash function, can we insert/de-
lete/search books in constant time?!

• What if two keys k 6= l have h(k) = h(l)?

Definition 8.6 (Collision). Given a hash function h : U → M , two distinct
keys k, l ∈ U produce a collision if h(k) = h(l).

Remarks:

• There are competing objectives we want to optimize for with regard
to the size of a hash table. On the one hand, we want to make the
hash table small since we want to save memory. On the other hand,
small tables will have more collisions. How likely is it to get a collision
for a given n and m?

Theorem 8.7 (Birthday Problem). If we throw a fair m-sided dice n ≤ m
times, let D be the event that all throws show different numbers. Then D satisfies

Pr[D] ≤ exp

(
−n(n− 1)

2m

)
.

Proof. We have that

Pr[D] =
m

m
· m− 1

m
· . . . · m− (n− 1)

m
=
n−1∏

i=0

m− i
m

=
n−1∏

i=0

(
1− i

m

)
= exp

(
n−1∑

i=0

ln

(
1− i

m

))

We can use that ln(1 + x) ≤ x for all x > −1 and the monotonicity of ex:

Pr[D] = exp

(
n−1∑

i=0

ln

(
1− i

m

))
≤ exp

(
n−1∑

i=0

− i

m

)
= exp

(
−n(n− 1)

2m

)

Remarks:

• Theorem 8.7 is called the “birthday problem” since traditionally, peo-
ple use birthdays for illustration: In order to have a chance of at least
50% that two people in a group share a birthday, we only need 23
people.

• If we insert more than roughly n ≈ √m keys into a hash table, the
probability of a collision approaches 1 quickly. In other words, unless
we are willing to use at least m ≈ n2 space for our hash table, we will
need a good strategy for resolving collisions.

8.2. HASHING 97

• Theorem 8.7 assumes totally random hash functions — for non-random
distributions of hashes, we might have more collisions. In particular,
if we fix a hash function, then we can always end up with a key set N
that suffers from many collisions. E.g., if many books have an ISBN

that ends in 000, then ISBN mod 1,000 is a terrible hash function.

• Maybe we can use modulo, but with a different m? In particular,
we might apply a simple function to the ISBN first to introduce some
randomness, then use a moderately large prime number for m since
primes are less likely to cause collisions?

• However, for any hash function there are bad key sets.

• On the other hand, for every key set there are good hash functions!
How do we efficiently pick a good hash function, i.e. one that is likely
to distribute hashes evenly?

Definition 8.8 (Universal Family). Let H ⊆ {h : U →M} be a family of hash
functions from U to M . If for all pairs of distinct keys k 6= l ∈ U , the probability
of a collision is Pr[h(k) = h(l)] ≤ 1

m when we choose h ∈ H uniformly, then H
is called a universal family (of hash functions).

Remarks:

• This means: if we choose a hash function from a universal family, we
can expect the hashes to be distributed well, regardless of the key set.

• We cannot just pick a random function from U to M because there
are |M ||U | many, so we need |U | log |M | bits to encode such a random
function. That is even more bits than keys in our huge universe U .

Theorem 8.9 (Universal Hashing). Let m be prime and r ∈ N. Let U =
[b]r+1 where [b] = {0, . . . , b − 1} and let M = [m] with b ≤ m. For a key
k = (k0, . . . , kr) ∈ U and coefficient tuple a = (a0, . . . , ar) ∈ [m]r+1, define

ha(k0, . . . , kr) =

r∑

i=0

ai · ki mod m.

Then H := {ha : a ∈ [m]r+1} is a universal family of hash functions.

Proof. For prime m and δ ∈ {1, . . . ,m− 1}, any linear function fδ : [m]→ [m]

fδ(x) := x · δ mod m

is a bijection. This means that all x ∈ [m] have different images under fδ, and
every element of [m] is the image of some x ∈ [m].

Let (k0, . . . , kr) = k 6= l = (l0, . . . , lr) ∈ U , and consider

ha(k) = ha(l)⇔
r∑

i=0

ai · ki ≡
r∑

i=0

ai · li mod m

⇔ 0 ≡
r∑

i=0

ai · (li − ki) mod m

⇔ 0 ≡
∑

ki 6=li
ai · (li − ki) mod m

98 CHAPTER 8. DICTIONARIES & HASHING

The terms where ki = li are 0 and so we can ignore them. Now define δi := li−ki
and we get

0 ≡
∑

ki 6=li
ai · δi mod m

Let S := {i ∈ [m] : δi 6= 0} 6= ∅ be the set of the indices of the non-vanishing
terms. There are m|S| possibilities to choose the factors {aj : j ∈ S}. If we
choose the first |S| − 1 factors, then due to the expression being linear, we have
exactly 1 choice left for the last aj to satisfy the equation. Altogether, we have
m|S|−1 choices for all aj to satisfy the equation, and so our chance of picking

an a that produces a collision is m|S|−1

m|S| = 1
m .

Remarks:

• Theorem 8.9 gives us a general method for picking hash functions from
a universal family in an efficient manner. We simply choose a prime
number m and uniformly at random some factors a0, . . . , ar. Thus,
we can represent our hash function as the tuple (m, a0, . . . , ar).

• In practice, hash tables perform really well, and if we detect that we
had bad luck in choosing our hash function, we just choose a new one
and rebuild our table with the new function — this is called rehashing.

• In Java, creating an int as the hash of an Object is the job of the
JVM. In OpenJDK for example, the first time hashCode() is called on
an Object, the JVM creates a random number as its hash and stores
it with the Object.

• Hash functions are usually defined on classes, not by the hashing struc-
tures themselves. For classes in the Java standard library that have
fields (e.g., Strings have a char[] as a field), hashCode() is imple-
mented such that the hash is derived from the fields that are con-
sidered when deciding whether one instance equals() another. This
is called the contract between hashcode() and equals(): if two in-
stances of the same class are equal, then they have to have the same
hash. On the other hand, two objects with the same hash need not
be equal.

• In Theorem 8.9 we assume that U = [m]r+1. In applications, we often
want to find hashes for keys that are not numbers, and keys of different
“sizes”, e.g. Strings of different lengths.

• The Java standard library uses a fixed version of a weaker form of this
type of hashing for String. Instead of choosing (a0, . . . , ar) ∈ [m]r+1,
Java fixes a value a0 ∈ int and uses (a00, a

1
0, .., a

r
0) instead, where r is

the number of characters in the String. In Java, a0 = 31 was chosen
since it produced comparatively few collisions on English language test
data. Also, this hash function can be represented as a single value a0,
regardless of how long the strings we want to hash are, and it will
also work to manage Strings with different lengths in the same hash
table.

8.3. STATIC HASHING 99

8.3 Static Hashing

How can we state the tradeoff between space and collisions more precisely?

Definition 8.10 (Number of Collisions). Given a hash function h : U → M
and a key set N ⊆ U , define the number of collisions that h produces on N as

C(h,N) := |{{k, l} ⊆ N : k 6= l, h(k) = h(l)}|.

Lemma 8.11 (Space vs. Collisions). Let b be an upper bound on the number
of collisions we want a hash function hb to produce on a given key set N of size
|N | = n. If we sample from a universal family, we can find an hb that satisfies

C(hb, N) < b and uses a hash table of size m = dn(n−1)b e by sampling a constant
number of times in expectation.

Proof. There are
(
n
2

)
pairs of distinct keys in N , and each of those produces a

collision with probability at most 1/m since h is chosen from a universal family.
Together, using the linearity of expectation we get

E[C(h,N)] ≤
(
n

2

)
· 1

m
=
n(n− 1)

2m
.

The Markov inequality states that for any random variable X that only takes
on non-negative integer values, we have Pr[X ≥ k · E[X]] ≤ 1

k . Hence,

Pr[C(h,N) ≥ 2 · E[C(h,N)]] ≤ 1

2

and so

Pr[C(h,N) < 2 · E[C(h,N)]] ≥ 1

2

If we choose m such that 2 · E[C(h,N)] ≤ b, then we only need to sample 2
hash functions in expectation. Solving for m, we get

2 · E[C(h,N)] ≤ b⇐ n(n− 1)

m
≤ b⇔ n(n− 1)

b
≤ m.

Remarks:

• According to Lemma 8.11, if we want no collisions, we set b = 1 and

choose m = dn(n−1)1 e = n(n− 1).

• Similarly, if we can tolerate n collisions, we find that a hash table of
size m = n− 1 suffices.

• Algorithm 8.12 defines perfect static hashing, which applies the result
of Lemma 8.11.

100 CHAPTER 8. DICTIONARIES & HASHING

Algorithm 8.12 Perfect Static Hashing

Input : fixed set of keys N
Output : Primary hash table M and secondary hash tables Mi

Function: Ni := {k ∈ N : h(k) = i}
Function: ni := |Ni|

1: M := hash table with n buckets
2: repeat
3: h := hash function N →M (sampled from universal family)
4: until C(h,N) < n
5: for i ∈M do
6: Mi := hash table with 2

(
ni

2

)
= ni(ni − 1) buckets

7: repeat
8: hi := hash function Ni →Mi (sampled from universal family)
9: until C(hi, Ni) < 1

10: end for
11: return (M,h, (Mi)i∈[m], (hi)i∈[m])

Remarks:

• In a first stage (Lines 1 to 4), we find a hash function h with at most
n collisions in linear space according to Lemma 8.11.

• In a second stage (Lines 5 to 10), we find a hash function hi per bucket
i without collisions by using an amount of space that is quadratic in
the number of keys in the bucket ni as per Lemma 8.11.

Theorem 8.13 (Perfect Static Hashing). When Algorithm 8.12 returns, the
size of M and all Mi together is less than 3n.

Proof. Due to Line 1, the size of M is exactly n.

The number of collisions produced by the keys in bucket i is
(
ni

2

)
since any

two of them produce one. We know that 2
(
ni

2

)
= ni(ni − 1). As two keys in

different buckets cannot produce a collision, we can sum the number of collisions
per bucket over all buckets to get the number of all collisions, and so

m−1∑

i=0

ni(ni − 1) =
m−1∑

i=0

2

(
ni
2

)
= 2

m−1∑

i=0

(
ni
2

)
= 2C(h,N) < 2n.

We used that C(h,N) < n due to Line 4. Because of the choice of the size
of Mi in Line 6, all buckets Mi together use less than 2n space. In total, M and
all Mi together have a size of less than n+ 2n = 3n.

Remarks:

• Note one caveat: Lines 3 and 8 of Algorithm 8.12 require sampling
from a universal family. Theorem 8.9 gives us universal families for
hash tables with a prime number of buckets. For non-prime hash table
sizes m, there are constructions for families of hashes where any two
keys have a chance of ≤ 2

m when sampling a hash function from the
family uniformly. To account for this higher chance of collision, we

8.4. COLLISIONS 101

need to increase the hash table size by a factor of 2 (compare the proof
of Lemma 8.11).

• We now have a hashing algorithm that can be built in linear space
and expected linear time, and offers worst-case constant time search
for a static set N .

• But what about a dynamic dictionary?

8.4 Collisions

Definition 8.14 (Hashing with Chaining). In hashing with chaining, every
bucket M [i] stores a pointer to a secondary data structure that manages all keys
k with h(k) = i. Insertion, search, and deletion of k are all relegated to those
data structures. In the simplest implementation, we can use linked lists.

Remarks:

• Algorithm 8.12 is an instance of hashing with chaining with the Mi

being the secondary data structures managing the buckets.

• The Java standard library uses hashing with chaining to resolve colli-
sions.

• From Java 7 to Java 8, the standard library changed from HashMap

always using a linked list for a bucket to using a linked list as long as
the bucket contains less than a certain number of keys, and building
a search tree once the bucket reaches that number.

• More concretely: HashMap applies its own hash function to the hash
supplied by the keys (remember, each class defines hashCode(), ei-
ther by overriding it or by inheriting it from Object) to determine
each key’s bucket. For the ordering within the trees, there are two
possibilities: the class implements Comparable or it does not.

• If the class of the keys implements Comparable, then the natural or-
dering of the keys is used.

• If the keys are not Comparable, then the tree uses the values re-
turned by System.identityHashCode(Object x) to order keys; this
method returns the same value that the default implementation of
Object.hashCode() returns. This means that if your class is not
Comparable and does not override hashCode(), then System.identi-

tyHashCode(Object x) is equal for all keys within a given tree; this
makes the trees degenerate to lists.

Definition 8.15 (Load Factor). The fraction n
m =: α is called the load factor

of the hash table.

102 CHAPTER 8. DICTIONARIES & HASHING

Remarks:

• The performance of all three operations (insert/delete/search) de-
pends on the load factor for all collision resolution strategies discussed
in this section.

• Hashing with chaining allows for a load factor α > 1 since the size
of the table is the number of secondary data structures; performance
deteriorates with growing α.

• If we use linked lists as secondary structures and use a hash function
chosen from a universal family, the cost for an unsuccessful search is
1+α in expectation, while that for a successul search is roughly 1+ α

2
in expectation.

• If we use one of the strategies of this section and α grows too large, we
should rehash with a bigger m in order to maintain expected constant
time cost. In the Java standard library, if a hash table surpasses a
load factor of 0.75, it is rehashed into a hash table with twice the size
of the old one.

Definition 8.16 (Hashing with Probing). In hashing with probing, keys are
stored directly in the hash table. Algorithm 8.17 defines how to search for a key
in hashing with probing. Line 5 is a successful search, and Lines 7 and 11
are the two cases of an unsuccessful search. The sequence (hi(k) mod m)i≥0
is called the probing sequence of k, and each step of the iteration is a probe.

Algorithm 8.17 Hashing with Probing: Search

Input : key k to search for
Output : key k if found, else ⊥
Function: parametrized hash function hi

1: i := 0
2: while i < m do
3: j := hi(k) mod m
4: if M [j] = k then
5: return M [j]
6: else if M [j] = ⊥ then
7: return ⊥
8: end if
9: i := i+ 1

10: end while
11: return ⊥

Remarks:

• To insert a key, we adapt Algorithm 8.17: with an unsuccessful search
in Line 7 we insert in the empty bucket. Therefore, the cost of an
insert is roughly the cost of an unsuccessful search. An unsuccessful
search in Line 11 triggers a rehash.

8.5. WORST CASE GUARANTEES 103

• Table 8.18 describes three different types of hashing with probing, each
together with the approximate time that a successful or unsuccessful
search takes in expectation. More generally, linear probing uses some
linear function hi(k) = h(k)+ci for some c 6= 0, and quadratic probing
uses some quadratic function hi(k) = h(k) + ci + di2 with d 6= 0. As
long as we guarantee that hi(k) is integer for all i ∈ [m], the constants
c and d can be rational.

Type hi(k) ≈ cost successful ≈ cost unsuccessful

Linear probing h(k) + i 1
2

(
1 + 1

(1−α)2
)

1
2

(
1 + 1

1−α

)

Quadratic probing h(k) + i2 1
1−α + ln 1

1−α − α 1 + ln 1
1−α − α

2

Double hashing h1(k) + i · h2(k) 1
1−α

1
α ln

(
1

1−α

)

Table 8.18: Different types of hashing with probing together with the expected
number of probes per search. α is the load factor of the table, and for hashing
with probing, it has to satisfy α < 1 since we cannot store more keys in the
table than it has buckets. Each of h, h1, h2 is a hash function drawn from a
universal family.

Remarks:

• The main reason for the differences in access times is clustering.

• Linear probing suffers from primary clustering : from some point on,
the probing sequences of any two keys will become identical.

• Quadratic probing does not suffer from primary clustering, but it is
subject to secondary clustering : if two keys have the same hash, then
their probing sequences will still be identical.

• The form of quadratic probing defined in Table 8.18 has one additional
issue: the probing sequence of a key does not necessarily cover the
whole table. Assume the size of the table is m = 7 and h(k) = 0, then
the probing sequence of k is (0, 1, 4, 2, 2, 4, 1) — buckets 3, 5, 6 do not
appear.

• Double hashing does not suffer from either version of clustering. One
can show that if the hash functions h1 and h2 used in double hashing
are independently drawn from a universal family, then double hashing
performs as well as an idealized hash function that assigns hashes
uniformly at random.

8.5 Worst Case Guarantees

So far, the cost of all operations for dynamic key sets has been given in expected
time cost. There are algorithms that allow us to do better and give us worst
case guarantees on some of the operations. Two widely known possibilities to
achieve this are called dynamic perfect hashing and cuckoo hashing.

104 CHAPTER 8. DICTIONARIES & HASHING

Algorithm 8.19 Cuckoo Hashing: Insert

Input : key k ∈ U we want to insert; counter limit specifying the
maximum number of tries

Data Structures: arrays M1,M2 of equal size
Functions : hash functions h1 : U →M1, h2 : U →M2; chosen indepen-

dently and uniformly at random from universal families
1: if M1[h1(k)] = k or M2[h2(k)] = k then
2: return
3: end if
4: t := 1
5: while t ≤ limit do
6: swap k with M1[h1(k)]
7: if k = ⊥ then
8: return
9: end if

10: swap k with M2[h2(k)]
11: if k = ⊥ then
12: return
13: end if
14: t := t+ 1
15: end while
16: rehash()
17: CuckooHashingInsert(k, limit)

Remarks:

• To adapt perfect static hashing to a dynamic setting where we can
also handle inserts and deletions, all we have to do is choose the size
of Mi twice as large as in Algorithm 8.12, and rehash appropriately:
Whenever C(hi, Ni) > 0 for some bucket i, we rehash that bucket
until there are no collisions. Once some bucket reaches n2i ≈ |Mi| due
to insertions, we rehash the entire table. This leaves us with expected
constant time insert and delete, and worst case constant time search.
To keep the table linear-sized, we rehash everything after every m
updates (inserts or deletes).

• Another option is cuckoo hashing, which is described in Algorithm 8.19.
The idea behind cuckoo hashing is to use the “power of two choices”,
which can be roughly described as: if you can choose between two
resources and use the one that is less busy, you gain efficiency.

• The counter limit used in Algorithm 8.19 has to be chosen carefully
to guarantee the expected insert cost is constant. Specifically, one can
show that we get this guranatee if we choose limit ≈ logm.

• Search and delete only need to checkM1[h1(k)] andM2[h2(k)] to figure
out whether a given key k is in the table, and so those operations are
worst case constant time.

• Cuckoo hashing gets its name from cuckoo birds: they lay their eggs

BIBLIOGRAPHY 105

into the nests of other birds, and once the cuckoo chicks hatch, they
push the other eggs/chicks out of the nest.

Chapter Notes

Dictionaries based on search trees are useful for providing additional operations
such as nearest neighbor queries or range queries, where we want to find all
keys in a certain range. Binary search trees were first published by three in-
dependent groups in 1960 and 1962 (for references, see Knuth [9]). The first
instance of a self-balancing search tree that guarantees logarithmic cost for in-
sert/search/delete is the AVL-tree, named so after its inventors Adelson-Velski
and Landis [1]. For multidimensional keys, e.g. geometric data or images, there
are specialized tree structures such as kd-trees [2] or BK-trees [3].

Hashing has a long history and was initially used and validated based on
empirical results. One of the first publications was Peterson’s 1957 article [11]
where he defined an idealized version of probing and empirically analyzed linear
probing. Universal hashing was introduced two decades later by Carter and
Wegman in 1979 [4]. Perfect static hashing was invented in 1984 by Fredman
et al. [7] and is sometimes also referred to as FKS hashing after its inventors.
Its dynamization by Dietzfelbinger et al. took another decade until 1994 [6]. A
comprehensive study on perfect hashing by Czech et al. was compiled in 1997
[5]. Cuckoo hashing is a comparatively recent algorithm; it was introduced by
Pagh and Rodler in 2001 [10].

There have been a number of other developments regarding hashing since the
late 1970s; for an overview, see Knuth [9], in particular the section on History
at the end of chapter 6.4. For a neat visualization of hashing with probing, see
[8] online.

The power of two choices paradigm has found widespread application and
analysis in load balancing scenarios. It was initially studied from the perspective
of a balls-into-bins game where we want to minimize the maximum number of
balls in any bin, and to do this we can pick two random bins and put the next
ball into the least full of the two bins. Richa et al. [12] compiled an excellent
survey on the earliest sources and numerous applications of this paradigm.

This chapter was written in collaboration with Georg Bachmeier.

Bibliography

[1] M Adelson-Velskii and Evgenii Mikhailovich Landis. An Algorithm for the
Organization of Information. Doklady Akademii Nauk USSR, 146(2):263–
266, 1962.

[2] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[3] W. A. Burkhard and R. M. Keller. Some approaches to best-match file
searching. Commun. ACM, 16(4):230–236, 1973.

[4] J.Lawrence Carter and Mark N. Wegman. Universal classes of hash func-
tions. Journal of Computer and System Sciences, 18(2):143 – 154, 1979.

106 CHAPTER 8. DICTIONARIES & HASHING

[5] Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. Perfect hash-
ing. Theoretical Computer Science, 182(1 - 2):1 – 143, 1997.

[6] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic perfect
hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738–761, 1994.

[7] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse
table with 0(1) worst case access time. J. ACM, 31(3):538–544, 1984.

[8] David Galles. Closed hashing. https://www.cs.usfca.edu/~galles/

visualization/ClosedHash.html. Accessed: 2017-03-29.

[9] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd
Ed.) Sorting and Searching. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1998.

[10] Rasmus Pagh and Flemming Friche Rodler. Algorithms — ESA 2001:
9th Annual European Symposium Århus, Denmark, August 28–31, 2001
Proceedings, chapter Cuckoo Hashing, pages 121–133. Springer Berlin Hei-
delberg, 2001.

[11] W. W. Peterson. Addressing for random-access storage. IBM J. Res. Dev.,
1(2):130–146, 1957.

[12] Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two
random choices: A survey of techniques and results. Combinatorial Opti-
mization, 9:255–304, 2001.

