
Chapter 7

Databases & SQL

What is the movie with the largest cast? How many directors have directed
more than ten movies? The internet movie database (www.imdb.com) contains
the answer to such questions, but writing a new program that evaluates the data
in a specific way for every such question is laborious. Relational databases can
store large amounts of structured data and answer possibly complex questions
about it.

7.1 Relational Databases

Definition 7.1 (Table, Row, Column, Database). A table consists of rows,
so that each row (data record) contains the same fields, i.e., kinds of entries.
When the rows of a table are written line by line, the fields form the columns
of the table. Each column is referred to by a descriptive name, and is associated
with the type of the respective field, e.g., integer, floating point, string, or a date.
A database is a collection of tables.

Remarks:

• In the database context, tables are also called relations, because the
entries in each row are related to each other, namely by belonging to
the same row.

movies
title director year
12 Angry Men Sidney Lumet 1957
Raiders of the Lost Ark Steven Spielberg 1981
War of the Worlds Steven Spielberg 2005
Manos: The Hands of Fate Harold P. Warren 1966

...

Figure 7.2: A database containing a single table called “movies” storing the
title, director, and year of release for each movie.

76

www.imdb.com

7.2. SQL BASICS 77

Remarks:

• Databases as we study them are accessed using the so-called structured
query language (SQL). Thus they are referred to as SQL or relational
databases.

• There are also databases for storing other data, e.g., key-value pairs
(Chapter 8), graphs (Chapter 2), or whole documents. Such databases
are sometimes called NoSQL databases.

• Some people pronounce SQL letter-by-letter, while others prefer to
say “sequel”, which stems from a predecessor with that name.

• MySQL and PostgreSQL are two popular open source SQL databases.

• MongoDB, CouchDB and Redis are popular open source NoSQL data-
bases.

• Like http servers, SQL databases typically run as a daemon process
on some server. Client applications connect to the server and authen-
ticate themselves via username and password.

• Multiple users accessing the same database may result in concurrency
issues. Some form of concurrency control is necessary!

• Other databases are tailored to single-user processing. They relieve
developers from the burden of implementing efficient data structures
for relational data. SQLite is one such example, and is used, e.g., in
Firefox, Chrome, Android, Adobe Lightroom, and Windows 10.

• How can we store the data from Figure 7.2 using a SQL database?

7.2 SQL Basics

Remarks:

• All SQL statements end with a semicolon. The SQL language is case
insensitive, but by convention keywords are often typed in upper case.

• The SQL specification is over 600 pages long. To add insult to injury
there are lots of vendor specific “SQL dialects”, i.e., modifications and
extensions.

• However, the basic set of commands for creating, manipulating, and
querying tables are largely the same across database implementations.
The same is true for the basic data types.

Definition 7.3 (SQL Data Types). SQL defines the following types of columns.
• CHARACTER(m) and CHARACTER VARYING(m) for fixed and vari-

able length strings of (maximum) length m,
• BIT(m) and BIT VARYING(m) for fixed and variable length bit strings

of (maximum) length m,
• NUMERIC, DECIMAL, INTEGER, and SMALLINT for fixed point and

integer numbers,

78 CHAPTER 7. DATABASES & SQL

• FLOAT, REAL, and DOUBLE PRECISION for floating point numbers,
• DATE, TIME, and TIMESTAMP for points in time, or
• INTERVAL for ranges of time.

Remarks:

• The range of each type includes the special value NULL. Note that
NULL is different from the string ’NULL’, the empty string, and from
the number 0 (zero). NULL indicates that the row has no value for
the corresponding field.

• For the CHARACTER VARYING type, some database systems sup-
port strings of arbitrary length.

• Many databases implement more types, e.g., geographic coordinates,
IP addresses, geometric objects, or large integers.

Listing 7.4 Creating the database moviedb containing a table movies.

1: CREATE DATABASE moviedb;
2: USE moviedb;
3: CREATE TABLE movies (

title CHARACTER VARYING(200) NOT NULL,
director CHARACTER VARYING(200) DEFAULT ’Steven Spielberg’,
year INTEGER

);

CREATE DATABASE database-name;
Additional parameters allow to set database-specific options, e.g., user-
based permissions, or default character sets for text strings. How a database
is opened depends on the implementation. Listing 7.4 shows how to do it
in MySQL.

CREATE TABLE table-name (field-name type, field-name type, . . .);
To enforce that all rows have a value for a particular field, one can add
NOT NULL to the type when creating the table. Fields have a default
value, which is NULL if not specified by adding DEFAULT value to the
type description.

Remarks:

• There are also GUI and web-based client applications (that execute
locally or on an http-server, respectively) and offer access to the
database in a more intuitive manner than the classic command line
tools. Examples for web-based interfaces are phpPgAdmin and php-
MyAdmin for PostgreSQL and MySQL, respectively.

• Such tools are especially helpful for creating the databases and tables.
They also feature importing data from various formats, e.g., CSV files,
instead of using SQL statements to populate the tables.

7.2. SQL BASICS 79

Listing 7.5 Populating the movies table with data.

4: INSERT INTO movies
(title, director, year) VALUES
(’12 Angry Men’, ’Sidney Lumet’, 1957),
(’Raiders of the Lost Ark’, DEFAULT, 1981),
(’War of the Worlds’, DEFAULT, 2005),
...
(’Manos: The Hand of Fate’, ’Harold P. Warren’, 1966)

;

INSERT INTO table-name (field-name, . . .) VALUES (value, . . .);
Values must be listed in the same order as the corresponding field names.
When a field name (and thus its value) is omitted the field’s default value is
assumed. When the list of field names is omitted the field’s values must be
listed in the same order that was used when creating the table. To insert
more than one row in one statement, multiple rows may be separated by
a comma.

Listing 7.6 Querying the movies table.

5: SELECT * FROM movies;
6: SELECT * FROM movies WHERE director = ’Steven Spielberg’;
7: SELECT title FROM movies WHERE year BETWEEN 1990 AND 1999;
8: SELECT * FROM movies WHERE title IS NULL OR director IS NULL;
9: SELECT title, director FROM movies WHERE title LIKE ’%the%’;

SELECT field-name, . . . FROM table-name WHERE condition;
Lists all specified fields of all rows in the table that fulfill the condition.
The special field * lists all fields. The WHERE condition may be omitted
to list the whole table. A condition can include comparisons (<,>,=, <>)
between fields constants. The special value NULL can be tested with IS
NULL. Conditions can be joined using parenthesis and logic operators like
AND, OR, and NOT. Strings can be matched with patterns using field-
name LIKE pattern . In the pattern, an underscore () matches a single
character, whereas % matches arbitrarily many.

Listing 7.7 Aggregation with SQL.

10: SELECT MIN(year) FROM movies;
11: SELECT AVG(year) FROM movies WHERE director=’Sidney Lumet’;
12: SELECT COUNT(*) FROM movies;
13: SELECT COUNT(DISTINCT director) FROM movies;

SELECT aggregate, . . . ;
Functions for aggregation include AVG to compute the average of a certain
field, MIN and MAX for the minimum and maximum value, SUM for the
sum of a field, and COUNT to count the number of occurrences. In an
aggregation, the keyword DISTINCT indicates that only distinct values
should be considered.

80 CHAPTER 7. DATABASES & SQL

Remarks:

• Query 12 in Listing 7.7 returns the number of entries in the table,
whereas query 13 returns the number of different movie directors.

Listing 7.8 Grouping and sorting.

14: SELECT director, COUNT(title) FROM movies GROUP BY director;
15: SELECT director, COUNT(title) FROM movies GROUP BY director

HAVING COUNT(title)>10;
16: SELECT year, director, COUNT(title) FROM movies

GROUP BY director, year
ORDER BY year DESC, director ASC;

SELECT field-name |aggregate, . . . GROUP BY field-name,. . . ;
Aggregations may be partitioned using the group-by clause. Similar to
before, the query result can only include aggregates and fields by which
the result is partitioned.

Since WHERE clauses are applied before GROUP BY the result of aggre-
gations cannot appear in them. When the result should be conditioned
on the result of an aggregation, a HAVING clause can be used.

Remarks:

• Query 14 in Listing 7.8 reports how many movies of each director are
in the database, and query 16 breaks the same down by year.

SELECT . . . ORDER BY field-name,. . . ;
After each field-name, the keyword ASC or DESC can be used to deter-
mine ascending or descending sorting order, respectively.

Listing 7.9 Updating and removing rows.

17: UPDATE movies SET title = ’Star Wars Episode IV: A New Hope’
WHERE title = ’Star Wars’;

18: DELETE FROM movies WHERE title = ’ ’;

UPDATE table SET field-name = value,. . . WHERE condition;
Updates the specified fields in all rows fulfilling the condition.

DELETE FROM table-name WHERE condition;
Removes all rows fulfilling the condition from the table.

7.3 Modeling

The way our example table from Figure 7.2 is designed results in lots of dupli-
cate data—the director’s name is stored anew for each row, and two directors
with the same name cannot be distinguished. The situation worsens when we
want to store the cast of each movie. Clearly the way we modeled our data
can be improved. Entity-Relationship (ER) diagrams are a tool to find good
representations for data.

7.3. MODELING 81

Definition 7.10 (ER Diagram). Rectangles denote entities (tables), and dia-
monds with edges to entities indicate relations between those entities. On such
an edge, the number 1 or the letter n denotes whether the corresponding entity
takes part once or arbitrarily many times in the relation. Entities and rela-
tions can have attributes (columns) with a name, drawn as ellipses. Italicised
attributes are key attributes which must be unique for each such entity.

directors

id name

movies

id title year

directing

1 n

actors

id name

cast

character

n n

Figure 7.11: Model for a movie database. Movies and directors are in a 1-
to-n relation: Each movie is directed by 1 director, and a director may work
on many movies. Movies and actors are in a n-to-n relation, which has an
additional attribute: An actor may appear in many movies, and each appearance
is associated with a character in that movie, played by that actor.

Remarks:

• It is standard practice to assign a so-called key attribute, often named
id, to every entity.

• What do ER diagrams have to do with SQL? Primarily, ER diagrams
are for conceptually modeling the kind of data and relations one wishes
to store. They can be translated into databases, but not in a unique
way.

• A close relative of the ER diagram is the Unified Modeling Language
(UML). UML is used to represent the tables of a database (or classes
of object oriented software) accurately, with detailed information, e.g.
fields.

• Each entity corresponds to a table with the corresponding attributes
as columns. An n-to-n relation is represented by a table with columns
for each attribute, and a column for the key attribute of each entity
in the relation.

82 CHAPTER 7. DATABASES & SQL

actor
id name
1 Harrison Ford
2 Tom Cruise

...

cast
actor id character movie id

1 Indy 2
2 Ray Ferrier 3

...

Figure 7.12: The actor table and a table capturing the cast relation.

Remarks:

• The same scheme can be used for 1-to-1 and 1-to-n relations. However,
one may also include the relation in the table storing the entity on the
1-side.

directors
id name
1 Sidney Lumet
2 Steven Spielberg
3 Harold P. Warren

...

movies
id title year director id
1 12 Angry Men 1957 1
2 Raiders of the Lost Ark 1981 2
3 War of the Worlds 2005 2
4 Manos: The Hands of Fate 1966 3

...

Figure 7.13: The movie and director tables using the new database layout. The
director table simply maps ids to director names. Since the directing relationship
is 1-to-n, it can be represented by adding a column to the movies table that
stores the director for each movie.

Remarks:

• Similarly, a 1-to-1 relation can be turned into an attribute of one of
the entities.

• Tables dedicated to capturing relations are often called join tables.

7.4 Joins

How can we access the data, which is now scattered across multiple tables?

Listing 7.14 Example query that returns the table depicted in Figure 7.15.

1: SELECT movie.title, director.name AS director, movie.year FROM movie
INNER JOIN director ON movie.director id = director.id;

SELECT . . .
FROM left-table INNER JOIN right-table ON condition;
Returns all rows that can be formed from a row in the left-table and a
row in the right-table that satisfy the specified condition.

7.4. JOINS 83

movie.title director movie.year
12 Angry Men Sidney Lumet 1957
Raiders of the Lost Ark Steven Spielberg 1981
War of the Worlds Steven Spielberg 2005
Manos: The Hands of Fate Harold P. Warren 1966

...

Figure 7.15: The result returned by the query in Listing 7.14.

Remarks:

• In a query, one can create aliases for field and table names using the
AS keyword, see Listing 7.14.

• The result of a JOIN clause can be ordered, fields can be aggregated
and grouped, and conditions can be added using WHERE clauses.

• For example, we can combine joins and aggregations to answer our
initial question of which movie has the largest cast.

Listing 7.16 Finding the 10 movies with the largest cast.

SELECT movie.title, COUNT(*) AS cast size
FROM cast INNER JOIN movie ON cast.movie id = movie.id
GROUP BY movie.id ORDER BY cast size DESC LIMIT 10;

Remarks:

• The query from Listing 7.16 uses a LIMIT clause to return only the
ten first entries of the sorted results.

• An INNER JOIN where the condition is TRUE returns the Cartesian
product of both tables. This special case can also be obtained with
the CROSS JOIN clause.

• An inner join will only return those rows of one table that have a
matching row (that satisfies the condition) in the other table. For
example, in Listing 7.14, a director with id 5 would not appear in the
result if there are no movies which have director id=5.

• If you want unmatched rows to appear in the result, you need to use
an OUTER JOIN.

Listing 7.17 Example query that returns the table depicted in Figure 7.18.

3: SELECT movie.title, director.name AS director, movie.year FROM movie
RIGHT OUTER JOIN director ON movie.director id = director.id;

84 CHAPTER 7. DATABASES & SQL

movie.title director movie.year
12 Angry Men Sidney Lumet 1957
Raiders of the Lost Ark Steven Spielberg 1981
War of the Worlds Steven Spielberg 2005
Manos: The Hands of Fate Harold P. Warren 1966
NULL Jon Doe NULL

...

Figure 7.18: The result returned by the query in Algorithm 7.17. The right outer
join includes all rows from the inner join (see Figure 7.15) and, additionally, all
entries from the directors table for which there is no matching entry in the
movies table. In our example, “director” Jon Doe has not directed any movies,
hence the movie title and year column are filled with NULL values.

SELECT . . .
FROM left-table LEFT|RIGHT|FULL OUTER JOIN right-table
ON condition;
Returns all rows from the inner join. In addition, a LEFT or RIGHT
OUTER JOIN also returns all rows from the left or right table that have no
matching row on the opposite table, respectively. The fields in unmatched
rows that cannot be filled from the other table are filled with NULL values.
A FULL OUTER JOIN returns both of the above.

Remarks:

• A LEFT OUTER JOIN in Listing 7.17 would include the movies with
no director instead of the directors who have not directed any movie.

• Queries may use more than one JOIN clause.

Listing 7.19 Finding all movies that Harrison Ford did not appear in.

4: SELECT movie.title
FROM actor INNER JOIN cast
ON cast.actor id = actor.id AND actor.name = ’Harrison Ford’
RIGHT OUTER JOIN movie ON cast.movie id = movie.id
WHERE cast.actor id IS NULL;

Remarks:

• The conditions for the first join in Listing 7.19 ensure that only movies
with Harrison Ford are taken into account for the second OUTER
JOIN. That second join in turn delivers all movies that cannot be
matched, yielding a NULL entry for the actor id for movies without
Harrison Ford.

7.5 Keys & Constraints

What is stopping us from inserting a row in the cast table that contains an
actor id or a movie id that does not exist? Or from creating a director with a
duplicate id?

7.6. INDEXING 85

Definition 7.20 (Key). In a table, a column (or set of columns) is a unique
key if the corresponding values uniquely identify the rows within the table. The
primary key of a table is a designated unique key. A foreign key is a column
(or set of columns) that references the primary key of another table.

Remarks:

• SQL databases can automatically enforce these constraints. For exam-
ple, a row containing a foreign key can only be inserted if it references
an existing primary key. Vice versa, a row may only be removed if its
primary key is not referenced by any foreign key.

Listing 7.21 Adding constraints to the database.

1: ALTER TABLE movies ADD CONSTRAINT UNIQUE (actor id, charac-
ter, movie id);

2: ALTER TABLE director ADD PRIMARY KEY id;
3: ALTER TABLE movies

ADD FOREIGN KEY (director id) REFERENCES director;

ALTER TABLE table
ADD CONSTRAINT UNIQUE (field-name,. . .);
The values held by the specified fields must be unique among all rows.

ALTER TABLE table ADD PRIMARY KEY (field-name,. . .);
Sets the specified fields as the primary key for the table. Doing so also
ensures that no duplicate entry is present when inserting or updating data.

ALTER TABLE left-table ADD FOREIGN KEY (field-name,. . .)
REFERENCES right-table;
Ensures that the values in the specified fields in the left table are the
primary key of a row in the right table.

Remarks:

• Constraints for new tables can also be set using CREATE TABLE.

• Other ALTER TABLE queries add different constraints (e.g., checking
that an integer field contains only certain values), remove constraints,
and change the name, type or default value of fields.

• To ensure that checking constraints and searching for data is fast,
databases rely on index data structures.

7.6 Indexing

Definition 7.22 (Index). In the database context, an index is a data structure
that speeds up searching for rows with specific values.

86 CHAPTER 7. DATABASES & SQL

Remarks:

• Without an index data structure, rows with a specific value can only
be found by scanning through the whole table.

• In Chapter 8 you will learn how hash tables can retrieve the row
associated with a key quickly. Many databases implement hash tables
as one possible index data structure.

Listing 7.23 Adding a hash table index to our database.

1: CREATE INDEX directorid ON director USING HASH (id);

Remarks:

• The director associated with a movie is now found quickly when per-
forming a join.

• Some database implementations automatically create index data struc-
tures to speed up queries that involve frequently used fields.

• Index data structures have a name—“directorid” in Listing 7.23. This
is for referencing it later, e.g., if one decides to delete the index.

• Hash tables scatter the data across the storage (volatile or persistent),
and it is likely that every access incurs overhead. Many database
queries require scanning through ranges of the data sequentially. For
example, when searching the movies from 2000–2005. Thus, accessing
supposedly closeby rows requires accessing items at many different
places.

• B+ trees are a data structure designed to minimize the amount of I/O
operations for both searching and scanning.

Listing 7.24 Adding a B+ tree index to our database.

1: CREATE INDEX movieyear ON movies USING BTREE (year);

Definition 7.25 (B+ Tree). A B+ Tree of order b is a rooted search tree
mapping keys to rows. B+ trees are balanced, i.e., all leaf nodes are at the
same depth.

Every non-leaf node has between bb/2c and b children. A non-leaf node v
with k children contains exactly k − 1 keys, in sorted order. The ith key of
a non-leaf node v is identical to the smallest key in the subtree rooted at v’s
(i+ 1)st child.

Leaf nodes contain all keys inserted into the tree, together with a pointer
which points to the row associated with that key. Every leaf has pointers to at
least b(b− 1)/2c and at most b− 1 table rows. Additionally, every leaf w has a
pointer which points to its next sibling w′.

7.6. INDEXING 87

14

3 5

1 2

E
n
try

1

E
n
try

2

3 4

E
n
try

3

E
n
try

4

5 6

E
n
try

5

E
n
try

6

15

14

E
n
try

1
4

15 28 30
E

n
try

1
5

E
n
try

28

E
n
try

3
0

Figure 7.26: Example B+ tree of order b = 4.

Remarks:

• The root node is a special case—it may have as little as 2 children if
it is not a leaf. If it is a leaf, it may have only one pointer to a table
row.

• The order b is sometimes called branching factor. To reduce the num-
ber of necessary I/O operations, b is chosen so that all data necessary
to store a node is the size of (at least) one block on the disk/one cache
line.

• Finding the row for some key k in a B+ tree works similar to a binary
search tree.

• When inserting a key k, we have to check if the leaf v that should
contain k is already full (i.e. already contains b−1 keys). In that case
v, and possibly predecessors of v that contain too many keys, need to
be split.

Algorithm 7.27 B+SplitUp(v, k)

1: Given a B+ tree, a key k, and a node v
2: Create a new node v′

3: Distribute k and the keys in v among v and v′ s.t. v′ gets the larger keys
and both nodes are half filled

4: Let k′ be the smallest key in v′

5: Let p be v’s parent
6: if p is full then
7: SplitUp(p, k′)
8: end if
9: Insert k′ with child v′ at node p

88 CHAPTER 7. DATABASES & SQL

Remarks:

• If the root node is split into two nodes v, v′, then a new root r con-
taining key k and v and v′ as children is created, and the recursion
stops.

• Inserting a key k is now performed by first making room using B+SplitUp
if necessary, and then inserting k at the leaf.

Algorithm 7.28 B+Insert(k, r)

1: Given a B+ tree, a key k, and a row r
2: Perform a search for k to find the leaf v at which k must be inserted
3: if v contains b− 1 keys then
4: B+SplitUp(v, k)
5: Replace child of key k with row r in node v
6: else
7: Insert key k with row r into node v
8: end if

Remarks:

• Vice versa, when deleting a key, nodes with too few keys need to be
filled up or removed from the tree.

Algorithm 7.29 B+MergeUp(v)

1: Given a node v containing less than (b− 1)/2 keys
2: Let l and r be the left and right sibling of v
3: if l contains more than (b− 1)/2 keys then
4: Move largest key x from v’s left sibling to v
5: Update key in parent corresponding to v to x
6: else if r has more than (b− 1)/2 keys then
7: Let x and y be the smallest and second-smallest key in r, respectively
8: Move smallest key x from r to v
9: Update key in parent corresponding to r to y

10: else
11: Merge all keys of v and one of v’s siblings (use the node that is further to

the left to store the keys)
12: Remove the now empty node and its corrpesponding key from v’s parent
13: if v’s parent contains less than (b− 1)/2 keys then
14: B+MergeUp(p)
15: end if
16: end if

Remarks:

• If v does not have a left or right sibling, the corresponding if -statement
is ignored.

7.7. TRANSACTIONS 89

• The properties of B+ trees ensure that every node has at least one
sibling. Thus, the merge operation (Lines 11–15) always has two nodes
to work with.

• If no keys can be “borrowed” from a sibling, the merge may propagate
until the last two children of the root node are merged into one node.
In that case the root node is replaced by the merged node, decreasing
the height of the tree by 1.

Algorithm 7.30 B+Delete(k)

1: Given a B+ tree and a key k
2: Perform a search for k to find the leaf v containing k
3: Remove k from v
4: if v contains less than (b− 1)/2 keys then
5: B+MergeUp(v)
6: end if

Remarks:

• The height of a B+ tree is changed only when inserting a new or
removing an old root node. Therefore, all leaf nodes are always at the
same depth, thus ensuring the balanced property.

• A B+ tree containing n keys has height at most O(logb n).

• It may happen that many nodes contain as little as b/2 keys, wasting
memory and I/O operations. B* trees ensure that nodes contain at
least 2

3b keys by cleverly “trading” entries with neighboring nodes
when they contain too many or too few keys.

7.7 Transactions

Definition 7.31 (Transaction). A database transaction is a sequence of state-
ments that is executed atomically.

Remarks:

• Why would we need transactions? Consider a bank managing cus-
tomer’s accounts using a database system. Alice wants to calculate
the liquid assets, and Bob wants to make a money transfer:

Listing 7.32 Concurrency issues in databases.

Alice’s statement:
1: SELECT SUM(balance) FROM accounts;

Bob’s statements:
2: UPDATE accounts SET balance=balance−100 WHERE customer=’Bob’;
3: UPDATE accounts SET balance=balance+100 WHERE customer=’Jim’;

90 CHAPTER 7. DATABASES & SQL

Remarks:

• Assuming that the database uses multiple threads or processes to pro-
cess queries, Alice’s query may be CHF 100 short.

• To execute the queries atomically, both Alice and Bob can use trans-
actions.

BEGIN TRANSACTION; statement1; . . . ; END TRANSACTION;
Executes the statements atomically.

Remarks:

• One way to implement transactions is to keep track of all fields read
from and written to (the read- and write-set, respectively). Then,
before a transaction ends, the database system checks whether an-
other transaction wrote to any value in the read-set. If the read-set
is unchanged, the write-set can be applied atomically, e.g., by using a
global lock.

• SQL offers different so-called isolation levels. The isolation level de-
fines when writes of one transaction become visible to others. The
above technique implements the repeatable reads level, ensuring that
read values were committed before and are not written by another
transaction.

• Consider some transaction A that selects all years between 1999 and
2004. What happens if another transaction B concurrently inserts an
entry for the year 2000? In the repeatable reads isolation level, A may
not see B’s data if B’s insert is scheduled after A read all other entries
for the year 2000, and A would still be allowed to finish. Repeatable
reads do not ensure atomicity . . .

• The highest isolation level is called serializable. This level ensures that
the transactions behave “as if they were executed in some sequential
order”, possibly at the cost of low concurrency.

7.8 Programming with Databases

How do you write an application that relies on a SQL database to store data?
Should you construct the necessary SQL statements by manipulating strings,
send them to the SQL server, and then parse the result?

Remarks:

• Writing such a SQL client is one possibility, but this is error-prone:
The compiler used for the application will not be able to detect errors
made in the SQL statements. Moreover, the declarative SQL most
likely does not mix well with the programming language chosen for
the application.

• One way to mitigate these issues in object oriented programming lan-
guages is object/relational mapping.

7.8. PROGRAMMING WITH DATABASES 91

Definition 7.33 (Object/Relational Mapping). Object/Relational Mapping
(ORM) is a design pattern used in object oriented programming to store objects
in and retrieve them from relational (SQL) databases.

Remarks:

• In the simplest case, an ORM simply maps a class to a table. An ob-
ject then corresponds to a row, and the object’s attributes correspond
to the row’s fields.

• The ORM takes care of storing and retrieving object in the database
and performs type conversions where necessary. It provides object ori-
ented abstractions for database queries involving WHERE and other
clauses. ORMs also remove boilerplate code, i.e., setting up the SQL
connection, error handling, data conversion, etc.

• This way no—or only very little—SQL code “leaks” into the object-
oriented program.

• Popular ORMs include SQLAlchemy for Python, ActiveRecord for
Ruby, Hibernate for Java, and the Entity Framework for .NET.

Listing 7.34 Using Hibernate for Java to change the personal information of
an existing director.

1: Director director = session.load(Director.class,new Long(3464377));
2: // director: id = 3464377, name = ”Larry Wachowski”, gender = ”m”
3: director.setName(’Lana Wachowski’);
4: director.setGender(’f’);
5: commit();

Remarks:

• The ORM needs to know how it should translate between objects
and rows. For that, many ORM implementations allow to specify the
database layout using object oriented methods.

• Many ORM mappers also support creating the database using the
object oriented specification. This ensures that the database and what
the ORM expects are kept in sync.

• What if you need to add or remove a column without deleting and
re-creating the database? There are so-called migration tools that
facilitate this process.

• Some concepts from object oriented programming are difficult to model
with database concepts, and vice versa. The problems arising from
combining these two paradigms are called the Object-relational impe-
dance mismatch.

92 CHAPTER 7. DATABASES & SQL

Chapter Notes

In 1970, Edgar F. Codd proposed the relationad database model [5] while work-
ing at IBM research. Later in the 70s, another group at IBM developed SQL’s
predecessor SEQUEL (Structured English QUEry Language) [3]. After being
renamed SQL due to trademark issues, it was standardized by the ISO in 1987
and later revised [7]. Other companies started developing relational databases,
and nowadays there are many SQL databases implementing different feature
sets to choose from.

Around the same time, ER diagrams were conceived as a modeling tool [2, 4].
The Unified Modeling Language (UML), first standardized by the ISO in 1995
[8] and revised in 2012, also includes diagrams that model databases.

B Trees were invented in 1970 [1] for use in file systems. Many variants
were studied, among them B* Trees [9], in which at most 1/3 of the memory
is unused instead of 1/2 for B Trees. People soon realized that (also for file
systems) scanning subsequent rows is an important operation. B+ Trees require
at most one I/O operation to find the next element, cf. [9, 6].

Techniques from database systems can also be found in other areas of com-
puter science. Transactions as a parallel programming model have been adotped
for other programming languages under the term transactional memory. Ideas
developed to ensure that database transactions appear atomic w.r.t. writing
data to disk were adopted by general purpose file systems under the name jour-
naling.

This chapter was written in collaboration with Jochen Seidel.

Bibliography

[1] R. Bayer and E. McCreight. Organization and maintenance of large or-
dered indices. In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control, SIGFIDET ’70, 1970.

[2] A. P. G. Brown. Modelling a real world system and designing a schema
to represent it. In IFIP TC-2 Special Working Conference on Data Base
Description, 1975.

[3] Donald D. Chamberlin and Raymond F. Boyce. Sequel: A structured en-
glish query language. In Proceedings of the 1974 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and Control, SIGFIDET
’74. ACM, 1974.

[4] Peter Pin-Shan Chen. The entity-relationship model—toward a uni-
fied view of data. ACM Trans. Database Syst., 1976.

[5] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 1970.

[6] Douglas Comer. The ubiquitous B-Tree. ACM Comput. Surv., 1979.

[7] International Organization for Standardization. Information technology –
Database languages – SQL – part 1: Framework (SQL/Framework), 2011.
ISO/IEC 9075-1.

BIBLIOGRAPHY 93

[8] International Organization for Standardization. Information technology –
Object Management Group Unified Modeling Language (OMG UML) – Part
1: Infrastructure, 2012. ISO/IEC 19505-1.

[9] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc., 1973.

