Concurrent Data Structures

by

Roger Wattenhofer

Overview

e Concurrent Linked List

Fine-grained synchronization
Optimistic synchronization
Lazy synchronization
Lock-free synchronization

e Hashing

Fine-grained locking
Recursive split ordering

Handling Multiple Threads

e Adding threads should not lower the throughput

— Contention effects can mostly be fixed by queue locks
e Adding threads should increase throughput

— Not possible if the code is inherently sequential
— Surprising things are parallelizable!

e How can we guarantee consistency if there are many threads?

Coarse-Grained Synchronization

e Each method locks the object
— Avoid contention using queue locks
— Mostly easy to reason about

— This is the standard Java model (synchronized blocks and methods)

e Problem: Sequential bottleneck
— Threads “stand in line”
— Adding more threads does not improve throughput
— We even struggle to keep it from getting worse...

e So why do we even use a multiprocessor?
— Well, some applications are inherently parallel...
— We focus on exploiting non-trivial parallelism

Exploiting Parallelism

e We will now talk about four “patterns”
— Bag of tricks ...
— Methods that work more than once ...

e The goal of these patterns are
— Allow concurrent access
— If there are more threads, the throughput increases!

Pattern #1: Fine-Grained Synchronization

e Instead of using a single lock split the concurrent object into
independently-synchronized components

e Methods conflict when they access
— The same component
— At the same time

Pattern #2: Optimistic Synchronization

e Assume that nobody else wants to access your part of the concurrent
object

e Search for the specific part that you want to lock without locking any
other part on the way

e Ifyoufindit, try to lock it and perform your operations
— If you don’t get the lock, start over!

e Advantage

— Usually cheaper than always assuming that there may be a conflict due to a
concurrent access

Pattern #3: Lazy Synchronization

e Postpone hard work!

e Removing components is tricky
— Either remove the object physically
— Or logically: Only mark component to be deleted

Pattern #4: Lock-Free Synchronization

e Don’t use locks at all!
— Use compareAndSet() & other RMW operations!

e Advantages

— No scheduler assumptions/support

e Disadvantages
— Complex
— Sometimes high overhead

lllustration of Patterns

e Inthe following, we will illustrate these patterns using a list-based set
— Common application
— Building block for other apps

e Asetis acollection of items
— No duplicates

e The operations that we want to allow on the set are
— add (x) puts X into the set
— remove (X) takes X out of the set
— contains (X) testsif X is in the set

The List-Based Set

e We assume that there are sentinel nodes at the beginning (head) and end
(tail) of the linked list

(L=l (I35

e Add node b:

(T3—(CI3x— {31
b| =

e Remove node b:

(T3—>(E] ¢ o[F=—>{c]

Coarse-Grained Locking

e Asimple solution is to lock the entire list for each operation
— E.g., by locking the head

e Simple and clearly correct!
e Works poorly with contention...

Fine-Grained Locking

e Split object (list) into pieces (nodes)
— Each piece (each node in the list) has its own lock
— Methods that work on disjoint pieces need not exclude each other

e Hand-over-hand locking: Use two locks when traversing the list
— Why two locks?

Problem with One Lock

e Assume that we want to delete node c

e We lock node b and set its next pointer to the node after c

e Another thread may concurrently delete node b by setting the next
pointer from node a to node ¢

Hooray, I'm

6 not deleted!

Insight

e |[fanodeislocked, noone can delete the node’s successor

e |[fathread locks
— the node to be deleted
— and also its predecessor

e then it worksl!

e That’s why we (have to) use two locks!

Hand-Over-Hand Locking: Removing Nodes

e Assume that two threads want to remove the nodes b and c
e One thread acquires the lock to the sentinel, the other has to wait

(L=l 3= I53—{1]

Remove
node c!

Uk

Remove
node b!

Hand-Over-Hand Locking: Removing Nodes

e The same thread that acquired the sentinel lock can then lock the next
node

(L=l (13—

Remove
node c!

Uk

Remove
node b!

Hand-Over-Hand Locking: Removing Nodes

e Before locking node b, the sentinel lock is released
e The other thread can now acquire the sentinel lock

(L=l 13—{1]

Remove
node c!

Uk

Remove
node b!

Hand-Over-Hand Locking: Removing Nodes

e Before locking node c, the lock of node a is released
e The other thread can now lock node a

(L=l 3=EI3—>(I3—>{1]

Remove
node c!

Uk

Remove
node b!

Hand-Over-Hand Locking: Removing Nodes

e Node c can now be removed
e Afterwards, the two locks are released

@@%CD

Remove
node c!

Uk

Remove
node b!

Hand-Over-Hand Locking: Removing Nodes

e The other thread can now lock node b and remove it

Remove
node b!

List Node

public class Node { ltem of interest
public T item;
pubTic int key;— Usually a hash code

bTic Node next;L.
} P Reference to next node

Remove Method

public boolean remove(Item item) {
int key = 1tem.hashCode();
Node pred, curr;

try { { Start at the head and lock it

(pred = this.head;
pred.lock();)
Curr = pred nexti——" Lock the current node

curr.lock();

J

R e Traverse the list and
) remove the item

On the

H(finally { next slide!
curr.unlock(); Make sure that the
_ pred.unlock(); locks are released

Remove Method

while (curr.key <= key) {[———— Search key range
if (item == curr.item) {

pred.next = curr.next;J If item found,

return true, remove the node
J

pred.unTock(Q; \\
pred = curr; Unlock pred and

curr = curr.next; lock the next node
curr.lock();

I
return false;—— Return false if the element is not present

Why does this work?

e Toremove node e

— Node e must be locked

— Node e’s predecessor must be locked
e Therefore, if you lock a node

— It can’t be removed

— And neither can its successor

e Toaddnodee
— Must lock predecessor
— Must lock successor
e Neither can be deleted
— Is the successor lock actually required?

Drawbacks

e Hand-over-hand locking is sometimes better than coarse-grained locking
— Threads can traverse in parallel
— Sometimes, it’s worse!

e However, it’s certainly not ideal

— Inefficient because many locks must be acquired and released

e How can we do better?

Optimistic Synchronization

e Traverse the list without locking!

(L=l I35~

Add Found the

node c! position!

Optimistic Synchronization: Traverse without Locking

e Once the nodes are found, try to lock them What could
e Check that everything is ok go wrong...”?

(L=l 3>~

Add Lock them!
node c!

Is everything ok?

Optimistic Synchronization: What Could Go Wrong?

e Another thread may lock nodes a and b and remove b before node c is
added -2 If the pointer from node b is set to node ¢, then node c is not
added to the list!

Add Remove b!

< o

Optimistic Synchronization: Validation #1

e How can this be fixed?

e After locking node b and node d, traverse the list again to verify that b is
still reachable

(L=l 3=~ 1]

Add

node c! Node b can still

be reached!

Optimistic Synchronization: What Else Could Go Wrong?

e Another thread may lock nodes b and d and add a node b’ before node c
is added > By adding node c, the addition of node b’ is undone!

Add

Add b’!

o

Optimistic Synchronization: Validation #2

e How can this be fixed?

e After locking node b and node d, also check that node b still points to
node d!

(=I5~

Add

node c! The pointer is

still correct...

Optimistic Synchronization: Validation

private boolean validate(Node pred,Node curr) {
Node node = head;
while (node.key <= pred.key) {

[1-1c (node —= pred)]> If pred is reached,
return pred.next == curr; test if the

node = node.next; i
1 successor is curr

y s Predecessor not reachable

Optimistic Synchronization: Remove

private boolean remove(Item 1tem) {

int key = item.hashCode();

while (true) {1
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key)

[1f (item == curr. 1tem)]7 Stop if we find the item
break;

pred = curr;
curr = curr.next;

}

Retry on synchronization
conflict

Optimistic Synchronization: Remove

Tl Lock both nod
pred.Tock(); Curr.1ock();J;’ ock both nodes
if (validate(pred,curr)) {r———— Check for

if Ccurr.item == item) { synchronization conflicts
pred.next = curr.next;

return true; Remove node if

else
: returg false; target found

}
¥
(1 finally {
pred.unlock();
curr.unlock();

Always unlock the nodes
S

Optimistic Synchronization

e Why is this correct?

— If nodes b and c are both locked, node b still accessible, and node c still the
successor of node b, then neither b nor c will be deleted by another thread

— This means that it’s ok to delete node c!

e Why is it good to use optimistic synchronization?
— Limited hot-spots: no contention on traversals
— Fewer lock acquisitions and releases

e Whenis it good to use optimistic synchronization?

— When the cost of scanning twice without locks is less than the cost of
scanning once with locks

e (Can we do better?
— It would be better to traverse the list only once...

Lazy Synchronization

e Key insight
— Removing nodes causes trouble
— Do it “lazily”

e How can we remove nodes “lazily”?
— First perform a logical delete: Mark current node as removed (new!)

— ([13> —(l 3>

— Then perform a physical delete: Redirect predecessor’s next (as before)

Lazy Synchronization

e All Methods

— Scan through locked and marked nodes
— Removing a node doesn’t slow down other method calls...

e Note that we must still lock pred and curr nodes!

e How does validation work?
— Check that neither pred nor curr are marked
— Check that pred points to curr

Lazy Synchronization

e Traverse the list and then try to lock the two nodes
e Validate!

e Then, mark node c and change the predecessor’s next pointer

Remove Check that b and ¢
node c! are not marked and
that b points to ¢

Lazy Synchronization: Validation

private boolean validate(Node pred,Node curr) {

return

lpred.marked && !curr.marked

pred.next == curr;

\/‘

Predecessor still

points to current

&&

Nodes are not
logically removed

Lazy Synchronization: Remove

public boolean remove(Item item) {
int key = i1tem.hashCode();
while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;

}

This is the same as before!

Lazy Synchronization: Remove

try {

pred.lock(); curr.lock();
if (validate(pred,curr)) {
[f (curr.item == jtem) {

Check for
synchronization conflicts

curr.marked = true;
pred.next = curr.next;
return true;

} else { If the target is found,
return false; mark the node and
} remove it
}
} finally {

pred.unlock();
curr.unlock();

¥
}
¥

Lazy Synchronization: Contains

public boolean contains(Item i1tem) {
int key = item.hashCode();
Node curr = this.head;

(while (curr.key < key) {_ Traverse without locking
curr = curr.next: (nodes may have been
S removed)

return curr.item == i1tem && !curr.marked;

\/

Is the element present and not marked?

Evaluation

e Good
— The list is traversed only once without locking
— Note that contains() doesn’t lock at all!

— This is nice because typically contains() is called much more often than add()
or remove()

— Uncontended calls don’t re-traverse
e Bad

— Contended add() and remove() calls do re-traverse
— Traffic jam if one thread delays

e Trafficjam?

— If one thread gets the lock and experiences a cache miss/page fault, every
other thread that needs the lock is stuck!

— We need to trust the scheduler....

Lock-Free Data Structures

e |f we want to guarantee that some thread will
eventually complete a method call, even if other
threads may halt at malicious times, then the
implementation cannot use locks!

e Next logical step: Eliminate locking entirely!
e Obviously, we must use some sort of RMW method
e Let’s use CompareAndSet() (CAS)!

Remove Using CAS

e First, remove the node logically (i.e., mark it)
e Then, use CAS to change the next pointer
e Does this work...?

Remove
node c!

Remove Using CAS: Problem

e Unfortunately, this doesn’t work!

e Another node d may be added before node c is physically removed
e Asaresult, node d is not added to the list...

Solution

e Mark bit and next pointer are “CASed together”

e This atomic operation ensures that no node can cause a conflict by adding
(or removing) a node at the same position in the list

R 4 %

Remove

" has been
@ Q removed!

Solution

e Such an operation is called an atomic markable reference
— Atomically update the mark bit and redirect the predecessor’s next pointer

e |nJava, there’s an AtomicMarkableReference class
— In the package Java.util.concurrent.atomic package

Updated atomically

oS I EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE NN EEEE N NN NN EEEEEEEENEESEENEENEENEEEEEEEEEEESN ..
* *

ann®

Reference

49

Changing State

[private Object ref; The reference to the next
private boolean mark; Object and the mark bit

public synchronized boolean compareAndSet(
Object expectedRef, Object updaterRef,
boolean expectedMark, boolean updatemark) {

if (ref == expectedRef & & mark == expectedmark) {

ref = updateref; ‘\\\\\\\\///’
mark = updateMark;
} If the reference and the mark are as
} expected, update them atomically

Removing a Node

e |ftwo threads want to delete the nodes b and ¢, both b and c are marked
e The CAS of the red thread fails because node b is marked!

e (If node b is not marked, then b is removed first and there is no conflict)

R va remove
node bl node c!

Traversing the List

e (Question: What do you do when you find a “logically” deleted node in
your path when you’re traversing the list?

52

Lock-Free Traversal

e |falogically deleted node is encountered, CAS the predecessor’s next
field and proceed (repeat as needed)

(DG g CT3-+(T

CAS!

Performance

e The throughput of the presented techniques has been measured for a
varying percentage of contains() method calls

— Using a benchmark on a 16 node shared memory machine

Ops/sec (32 threads)
8-106 i Lock-free
I ‘M Lazy
e IO B e]
106 ¥i’ """" . | Coarse Grained
b4 & & Fine Grained

% contains()

Low Ratio of contains()

e If the ratio of contains() is low, the lock-free linked list and the linked list
with lazy synchronization perform well even if there are many threads

3.5-10°
3-106
2.5-106
2-10°
1.5-10°
1-106
5-10°

Ops/sec (50% read)

=) | m-,,,a,,,m,,,amm,,n,,@h /o) A O 1N 0 I

0

5

10

15 20
Threads

25

30

D

Lock-free

Lazy

Coarse Grained
Fine Grained

High Ratio of contains()

e |f the ratio of contains() is high, again both the lock-free linked list and the
linked list with lazy synchronization perform well even if there are many
threads

Ops/sec (90% reads)
1.2-107 T I | | T |

1107 - e]
8-106 %%% | B Ay
' a--m R N k-7 Lock-free
A o -
6-106 | >IK' m-m lazy

4106

2:10° -

—+—+———+————+ Coarse Grained
Fine Grained

Threads

“To Lock or Not to Lock”

e Locking vs. non-blocking: Extremist views on both sides
e |tis nobler to compromise by combining locking and non-blocking
techniques

— Example: Linked list with lazy synchronization combines blocking add() and
remove() and a non-blocking contains()

— Blocking/non-blocking is a property of a method

Linear-Time Set Methods

e We looked at a number of ways to make highly-concurrent list-based sets
— Fine-grained locks
— Optimistic synchronization
— Lazy synchronization
— Lock-free synchronization

e What's not so great?

— add(), remove(), contains() take time linear in the set size

e \We want constant-time methods! How...?
— At least on average...

Hashing

e A hash function maps the items to integers
— h:items — integers
e Uniformly distributed

— Different items “most likely” have different hash values

e InJava thereis a hashCode() method

Sequential Hash Map

e The hash table is implemented as an array of buckets, each pointing to a

list of items
—
O e 16| ® 4 | e 28
< 1 e 9
buckets
2 |h(k)=kmod4
3 e 7| ° 15
N

e Problem: If many items are added, the lists get long = Inefficient
lookups!

e Solution: Resize!

Resizing

The array size is doubled and the hash function adjusted

» 16

" 15

Grow the array

"l 28

|h(k)=kmod8|]

New hash function

Resizing

Some items have to be moved to different buckets!

» 16

" 28

" 15

[h(k) = k mod 8

Hash Sets

e A hash set implements a set object
— Collection of items, no duplicates
— add(), remove(), contains() methods

e More coding ahead! @

Simple Hash Set

public class SimpleHashSet

{

protected LockFreeList[]

table; = Array of lock-free lists

public SimpleHashSet(int

. Initial size
capacityf 1

table = new LockFreeList[capacity];

Initialization

for (int 1 = 0; 1 < capacity; i++) {
table[i1] = new LockFreeList();
h

}

public boolean add(Object key) {

int hash = key.hashCode() % table.length;
return table[hash].add(key);

b

Use hash of object to pick a bucket
and call bucket’s add() method

Simple Hash Set: Evaluation

e Wejustsaw a
— Simple
— Lock-free

— Concurrent

hash-based set implementation
e Butwe don’t know how to resize...

e |s Resizing really necessary?

— Yes, since constant-time method calls require constant-length buckets and a
table size proportional to the set size

— As the set grows, we must be able to resize

Set Method Mix

Typical load
— 90% contains()

— 9% add ()
— 1% remove()

e Growing is important, shrinking not so much

e \When do we resize?

e There are many reasonable policies, e.g., pick a threshold on the number
of items in a bucket

e Global threshold

— When, e.g., 2 % buckets exceed this value
e Bucket threshold

— When any bucket exceeds this value

Coarse-Grained Locking

e If there are concurrent accesses, how can we safely resize the array?

e As with the linked list, a straightforward solution is to use coarse-grained
locking: lock the entire array!

e This is very simple and correct
e However, we again get a sequential bottleneck...

e How about fine-grained locking?

Fine-Grained Locking

e Each lock is associated with one bucket

A 0 e 4 | 8

Ala 1 e 9 | e 17
2 |h(k)=kmod4
3 7 1° 11

e After acquiring the lock of the list, insert the item in the list!

Fine-Grained Locking: Resizing

Acquire all locks in ascending order and make sure that the table
reference didn’t change between resize decision and lock acquisition!

" 17

O o 1 4 | °
1 e 9 | °
2

3¢ 7 | °

[

Table reference
didn’t change?

" 11

[h(k) = k mod 4

Fine-Grained Locking: Resizing

e Allocate a new table and copy all elements

= 2
A | 10 —8
| oe—t—— 17
. 11 = 9| 117
1 [h(k) = k mod 4
— 1 2
: 7L e==ns| 11
___ 3 [—u
4 4
5
6
7 7

Fine-Grained Locking: Resizing

Stripe the locks: Each lock is now associated with two buckets

Update the hash function and the table reference

" 17

" 11

[h(k) = k mod 8

Observations

e We grow the table, but we don’t increase the number of locks
— Resizing the lock array is possible, but tricky...

e We use sequential lists (coarse-grained locking)
— No lock-free list
— If we're locking anyway, why pay?

Fine-Grained Hash Set

public class FGHashSet {
protected RangeLock[] lock;— Array of locks
protected List[] tabTe; 7 Array of buckets

public FGHashSet(int capacity) {

table = new List[capacity];

lock = new RangeLock[capacity];

(for (int i = 0; i < capacity; i++) { Initially the same
lock[1] = new RangeLock(); number of locks
table[i1] = new LinkedList(Q); and buckets

J

Fine-Grained Hash Set: Add Method

public boolean add(Object key) { Acquire the
[1’ nt keyHash = key.hashCode() % lock.length;|rightlock

synchronized (lock[keyHash]) {
int tableHash = key.hashCode() % table.length;
return table[tableHash].add(key);

} \/
} Call the add() method of
the right bucket

Fine-Grained Hash Set: Resize Method

public void resize(b’nt depth, List[] oldTable) {

[synchrom’zed (lock[depth]) { - Resize() calls
1f (oldTable == this.table) { resize(0,this.table)
[1'nt next = depth + 1;

Acquire the next

1T (next < lock.length) lock and check

resize(next, oldTable);
else that no one else

sequentialResize(); has resized
} V— Recursively acquire
the next lock

) Once the locks are
} acquired, do the work

Fine-Grained Locks: Evaluation

e We can resize the table, but not the locks

e I|tis debatable whether method calls are constant-time in presence of
contention ...

e Insight: The contains() method does not modify any fields
— Why should concurrent contains() calls conflict?

Read/Write Locks

public interface ReadwriteLock {

Lock readLock();—— Return the associated read lock
Lock writeLock();

} Return the associated write lock

Lock Safety Properties

e No thread may acquire the write lock
— while any thread holds the write lock
— or the read lock

e No thread may acquire the read lock

— while any thread holds the write lock

e Concurrent read locks OK

e This satisfies the following safety properties
— If readers > 0 then writer == false
— If writer = true then readers ==

Read/Write Lock: Liveness

e How do we guarantee liveness?

— If there are lots of readers, the writers may be locked out!

e Solution: FIFO Read/Write lock
— As soon as a writer requests a lock, no more readers are accepted
— Current readers “drain” from lock and the writers acquire it eventually

Optimistic Synchronization

e What if the contains() method scans without locking...?

e Ifitfinds the key JRRRHHTisCLISS

— Itis ok to return true! RIS ECttire

— Actually requires a proof...

e What if it doesn’t find the key?
— It may be a victim of resizing...
— Get aread lock and try again!
— This makes sense if it is expected(?) that the key is there and resizes are rare.
— Better: Check if the table size is the same before and after the method call!

Stop The World Resizing

e The resizing we have seen up till now stops all concurrent operations
e (Can we design a resize operation that will be incremental?
e \We need to avoid locking the table...

How...?
e We want a lock-free table with incremental resizing!

Lock-Free Resizing Problem

e |n order to remove and then add even a single item, “single location CAS”
is not enough...

0 —— 16 [[-

1 e 1 9 We need to extend the table!
2

3 71° 15

s =4] 28

5

6

7

Idea: Don’t Move the Items

e Move the buckets instead of the items!
e Keep all items in a single lock-free list
e Buckets become “shortcut pointers” into the list

16| 4 | =1 28| ~1 5

7

Recursive Split Ordering

Example: The items 0 to 7 need to be hashed into the table
Recursively split the buckets in half:

1/4

1/2

3/4

O [4 >

6

[
>

1

A 4

v
~

X

T

[
®

The list entries are sorted in an order that allows recursive splitting

How...?

Recursive Split Ordering

 Note that the least significant bit (LSB) is O in the first half and 1 in the
other half! The second LSB determines the next pointers etc.

LSB=0 LSB=1
A A

| 11

O I 4 I't1 2 I'r”1 © I'T1 1 I'T1 5 I'r 3 |1 7

' | | | | | |

LSB = 00 LSB = 10 LSB = 01 1SB = 11

NN

Split-Order

e If the table size is 2':
— Bucket b contains keys k = b mod 2!

— The bucket index consists of the key's i least significant bits

e When the table splits:
— Some keys stay (b = k mod 2+1)
— Some keys move (b+2' = k mod 2i*1)

e Whether a key moves is determined by the (i+1)t bit
— counting backwards

A Bit of Magic

e We need to map the real keys to the split-order
e Look at the reversed binary representation of the keys and the indices
e The real keys:

0 1 | 2 3 4 5 6 7

000 (100X, 010 110 001 101 011 111

e Split-order: Real key 1 is at index 4!

000 001 010 011 100} 101 110 111

e Just reverse the order of the key bits in order to get the index!

Split Ordered Hashing

e After aresize, the new pointers are found by searching for the right index

Order according to reversed bits

010

(09
[
A 4
N

N

[
®

2 pointers to some nodes!

e A problem remains: How can we remove a node by means of a CAS if two
sources point to it?

Sentinel Nodes

Solution: Use a sentinel node for each bucket

We want a sentinel key for i
— before all keys that hash to bucket i
— after all keys that hash to bucket (i-1)

A 4

15

Initialization of Buckets

e We can now split a bucket in a lock-free manner using two CAS() calls
e Example: We need to initialize bucket 3 to split bucket 1!

16==7‘/9 D07 T 15

|

=
?

Adding Nodes

e Example: Node 10 is added

e First, bucket 2 (= 10 mod 4) must be initialized, then the new node is
added

F 10}

~
v

15

Recursive Initialization

e |tis possible that buckets must be initialized recursively

e Example: When node 7 is added, bucket 3 (= 7 mod 4) is initialized and
then bucket 1 (= 3 mod 2) is also initialized

12 |+

‘ol
00
\ 4

=
?

n = number of nodes

e Note that = log n empty buckets may be initialized if one node is added,
but the expected depth is constant!

Lock-Free List

private int makeRegularKey(int key) {

return reverse(key | 0x80000000);— >ethigh-order bit
} to 1 and reverse

private int makeSentinelKey(int key) {

return reverse(key):r— Simply reverse
} (high-order bit is 0)

Split-Ordered Set

public class SoOSet{ - i
protected LockFreeList[] tab]e;?

(public soSet(int capacity) {

table[0] = new LockFreeList();
tableSize = new AtomicInteger(l);

_ SsetSize = new AtomicInteger(0);
} \/—)

Initially use 1 bucket
and the sizeis 0

table = new LockFreeList[capacity];

This is the lock-free
list with minor

‘protected AtomicInteger tableSize; modifications
_protected AtomicInteger setSize;

Track how much of
the table is used and
the set size so that
we know when to
resize

Split-Ordered Set: Add

public boolean add(Object object) { _

(int hash = object.hashCode();]7P|ckabucket
int bucket = hash % tableSize.get(); Non-sentinel
int key = makeRegularkey(Chash);— split-ordered key
LockFreeList list = getBucketList(bucket);
1f (!Tist.add(object,key))

return false;

Get pointer to

resizeCheck(); Try to add with bucket’s sentinel,
return true; reversed key initializing if
¥ Resize if necessary

necessary

Recall: Resizing & Initializing Buckets

e Decision to Resize
— Divide the set size by the total number of buckets
— If the quotient exceeds a threshold, double the table size up to a fixed limit

e |nitializing Buckets
— Buckets are originally null
— If you encounter a null bucket, initialize it

— Go to bucket’s parent (earlier nearby bucket) and recursively initialize if
necessary

— Constant expected work per bucket!

Split-Ordered Set: Initialize Bucket

public void 1nitializeBucket(int bucket) {

int parent = getParent(bucket); Find parent,
if (table[parent] == null)

initializeBucket(parent); recursively

\ y e, ® ° .

int key = makeSentinelKey(bucket); L
‘table[bucket] = new
LockFreeList(table[parent],key);

Prepare key for
new sentinel

\

Insert sentinel if not present and
return reference to rest of list

Correctness

e Split-ordered set is a correct, linearizable, concurrent set
implementation

e Constant-time operations!
- It takes no more than O(1) items between two dummy nodes on average

- Lazy initialization causes at most O(1) expected recursion depth in
initializeBucket()

Empirical Evaluation

Evaluation has been performed on a 30-processor Sun Enterprise 3000
Lock-Free vs. fine-grained optimistic locking (“Lea”)
10° operations: 88% contains(), 10% add(), 2% remove()

Low load: High load:
GEJ lock-free g
= =
o o
) o

lock-free
ocking ﬁ’c |
locking

threads threads

Empirical Evaluation

Expected bucket length

The load factor is the capacity
of the individual buckets

Varying The Mix

Increasing the number of updates

/-/\/mck—free

locking

ops/time

M

Load factor

lock-free

N.locking

More updates

ops/time

More reads

Additional Performance

e Additionally, the following parameters have been analyzed:
— The effects of the choice of locking granularity
— The effects of the bucket size

Number of Fine-Grain Locks

ops/ms

2500

2000

1500

1000

(Lea = fine-érained'optimi'stic Iocll<ing)

s P Lea, 64 locks

Lea, 128 locks
Lea, 32 locks

Lea, 16 locks

Lea,. 8 locks
Lea, 256 locks

60
70

80

Lock-free vs. Locks

ops/ms

5500
5000
4500
4000
3500
3000
2500
2000
1500
1000

500

;’e-_ i

B S i

10 +

20 +

=

o

threads

1
=
-

50

60

70

Hash Table Load Factor

6000 :

(Iolad factor = nodes ioer bulcket) |

5000 New, load factor=1 ——

New, load factor=4 -

New, load factor=8 =

4000

—.__a New, load factor=12 2

2000 Lea, load factor=1 e~

ops/ms

Lea, load factor=4 --e--
2000

--® Lea, load factor=8 --—-e--

@ Lea, load factor=12 -~

1000

0
70 |
80
90 |

threads

Varying Operations

ops/ms

8000 . . | .
New, 8 threads i
7000 & New, 16 threads - -
New, 32 threads ----x
6000 New, 48 threads a]
5000 L & Lea, 8 threads --o--
w' Lea, 16 threads - - e®--
4000 Lea, 32 threads — o -
Lea, 48 threads o
3000 F S - S
S-S |
2000 | S R
1000 . %_-f_:-;_-.:-;-_"_,_gfi.’-‘gw g]
0 | | 1 | 1 1 1 | | | 1 |
o o o = = = = = o o o = = =
o =) o T et 1 1. g} o — = = = =3
= € 2 € € £ € ¢ ¢ & = & & I
- = S S S S o S S S S o S
S — & e s B ~ & Iy & & = N

% of insert; % of delete; % of find

Summary

e We talked about techniques to deal with concurrency in linked lists
— Hand-over-hand locking
— Optimistic synchronization
— Lazy synchronization
— Lock-free synchronization

e Then we talked about hashing
— Fine-grained locking
— Recursive split ordering

Credits

e The first lock-free list algorithms are credited to John Valois, 1995.

e The lock-free list algorithm discussed in this lecture is a variation of
algorithms proposed by Harris, 2001, and Michael, 2002.

e The lock-free hash set based on split-ordering is by Shalev and Shavit,
2006.

That’s all!

Questions & Comments?

S a o
R

Roger Wattenhofer

ETH Zurich — Distributed Computing — www.disco.ethz.ch

