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1 Quiz Questions

a) Yes, by using states that consist of the current and the previous value in our sequence of
random variables (or, more specifically, by using all possible combinations (current value,
previous value) as states). For a concrete example (which is even a bit more complex since
only for one state the probabilites for the next state depend also on the previous state)
compare the solution to exercise 2c).

b) Yes, since all states have the same period if a Markov chain is irreducible, which yields the
required aperiodicity.

c) Using the argument for the previous answer again, the existence of two states with different
periods implies that the Markov chain is (always) not irreducible. It immediately follows
that the Markov chain is not ergodic. Obviously, the Markov chain is not aperiodic.

d) All of the 6 possibilities can improve the PageRank of u, except the removal of a link from
v to u. Reasons (admittedly, somewhat high-level) for the improvement are that there are
more links to u, more links to a website that supports u (e.g., by linking to u directly) or
less links to a website that does not support u. The high-level reason why the removal of a
link from v to u cannot improve the PageRank of u is that the “amount of PageRank” that
went from v to u via this link before the removal is now distributed among the other links
from v. Some of it may arrive at u via a detour, but less than before.

e) No, e.g., if you have a graph consisting of two nodes and a connecting edge and you start in
one node, then, in each time step, you will switch to the other node and never converge to
the stable distribution (which has probability of 0.5 for each of the two nodes).

2 Soccer Betting

a) The following Markov chain models the different transition probabilities (W :Win, T :Tie,
L:Loss):
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b) The transition matrix P is

P =

0.6 0.2 0.2
0.3 0.4 0.3
0.1 0.2 0.7

 .

As you might have noticed, we gave redundant information here. You only need the infor-
mation that the FCB lost its last game. Thus, the Markov chain is currently in the state L
and hence, the initial vector is q0 =

(
0 0 1

)
. The probability distribution q2 for the game

against the FC Zurich is therefore given by

q2 = q0 · P 2 = (q0 · P ) · P =
(
0.1 0.2 0.7

)
·

0.6 0.2 0.2
0.3 0.4 0.3
0.1 0.2 0.7


=
(
0.19 0.24 0.57

)
.

(Note that q0 must be a row vector, not a column vector.)

Hint: We exploited the associativity of the matrix multiplication to avoid having to calculate
P 2 explicitly. This is usually a good “trick” to avoid extensive and error-prone calculations
if no calculator is at hand (as for example in an exam situation ¨̂ ).

Given the quotas of the exercise, the expected return for each of the three possibilities (W ,
T , L) calculates as follows.

E[W ] = 0.19 · 3.5 = 0.665

E[T ] = 0.24 · 4 = 0.96

E[L] = 0.57 · 1.5 = 0.855

Therefore, the best choice is not to bet at all since the expected return is smaller than 1 for
every choice. If a “sales representative” of the Swiss gambling mafia were to force you to
bet, you would be best off with betting on a tie, though.

c) The new Markov chain model looks like this. In addition to the three states W , T , and L,
there is now a new state LL which is reached if the team has lost twice in a row.
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The new transition matrix P is

P =


0.6 0.2 0.2 0
0.3 0.4 0.3 0
0.1 0.2 0 0.7
0.05 0.1 0 0.85

 . (1)

As the FCB lost its last two games, the Markov chain is currently in the state q0 =(
0 0 0 1

)
. The probabilities for the game against the FC Zurich can again be com-

puted as follows.

q3 = q0 · P 2 = (q0 · P ) · P =
(
0.05 0.1 0 0.85

)
·


0.6 0.2 0.2 0
0.3 0.4 0.3 0
0.1 0.2 0 0.7
0.05 0.1 0 0.85


=
(
0.1025 0.135 0.04 0.7225

)
Finally, we can compute the expected profit for each of the three possible bets:

E[W ] = 0.1025 · 3.5 = 0.35875

E[T ] = 0.135 · 4 = 0.54

E[L] = (0.04 + 0.7225) · 1.5 = 1.14375 .

Now, the best choice is to bet on a loss. Clearly, the addition of the state LL worsens the
situation for FCB.

3 PageRank

a) With v = (1, 1, 1, 1)


0 1 0 0
0 0 1 0
0 0 0 0
1 1 1 0

 we get a PageRank vector v of (1, 2, 2, 0). We see that

website v4 is quite important for the PageRanks of the other websites, even though it is just
a collection of links! So its PageRank should reflect this fact somehow, which it does not at
the moment ...

b) We first calculate d1 = 1, d2 = 1, d3 = 0, d4 = 3 and now get a PageRank vector of

v = (1, 1, 1, 1)


0 1 0 0
0 0 1 0
0 0 0 0
1
3

1
3

1
3 0

 = (
1

3
,

4

3
,

4

3
, 0)

We now reduced the importance of the link-collection v4, but still, we do not account for
the fact that, according to the calculated PageRank, v4 is not important at all—nobody
recommends it!

c) The results of your iterations should look like this:

(a) ( 1
3 ,

4
3 ,

4
3 , 0)

(b) (0, 13 ,
4
3 , 0)

(c) (0, 0, 13 , 0)

(d) (0, 0, 0, 0)
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(e) (0, 0, 0, 0)

As you can see, when the Markov chain is not ergodic we run into problems. The (1 −
α) · R component in the Google matrix M ensures that M is ergodic, and thus, due to the
Ergodic Markov Chain theorem, the process would converge towards the unique stationary
distribution. However, continuing these calculations including R might get a bit tedious if
you are not a computer—so let us look at the other exercises now :-)

4 Queues

Before describing our solutions to the different exercises, we note that the respective systems of
linear equations for determining the stationary distributions can of course also be solved in the
standard way you learned in your classes. However, sometimes a look into the structure of the
respective problem (or into the structure of the respective system of linear equations if you will)
can help to solve it faster and somewhat more elegantly, as is the case here.

a) The Markov chain below models the load of the queue:

0 1 2 . . . 10
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1
3

1
3

2
3

Every loop has a probability of 1/3 except for the first and the last one which have a
probability of 2/3 each. Regarding the stationary distribution π = (π0, π1, . . . , π10), we
observe that π0 = 2/3 ·π0 + 1/3 ·π1 which implies π1 = π0. By similar arguments, we obtain
π2 = π1, π3 = π2, . . . , π10 = π9. Since the sum of all the πi is 1, the stationary distribution
is π = (1/11, 1/11, . . . , 1/11).

b) The Markov chain now looks like this:

0 1 2 . . . 10
p2 p2 p2 p2

p0 p0 p0 p0

p0 + p1 p1 p1 p1 + p2

Similarly to the solution to the last question, we can calculate π1 (and then π2, π3, . . . )
depending on π0 (respectively π1, π2, . . . ). Denoting the probabilites for the arrival of 0, 1
and 2 packets by p0, p1 and p2, respectively, we obtain π0 = (p0 + p1)π0 + p0π1 which yields
π1 = p2/p0 ·π0 where we use that p0 +p1 +p2 = 1. Analogously, we get π2 = p2/p0 ·π1, etc.,
thus, in general, we have πi+1 = kπi for all 0 ≤ i ≤ 9. Hence, πi = kiπ0 for all 0 ≤ i ≤ 10
and since the πi sum up to 1, we obtain

π0 =
1∑10

i=0 k
i

=
k − 1

k11 − 1
,

except if k = 1 for which we obtain π0 = 1/11. Since all πi can be calculated from π0, it is
indeed enough to know the factor k between p0 and p2 in order to calculate the stationary
distribution. In the stationary distribution, the probabilities of any two subsequent nodes
in the Markov chain differ exactly by a factor of k.
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c) Using the same reasoning as in the last two solutions, we obtain π0 = π1 = π2 = . . . . The
only choice for π0 where the (infinite) sum of the pi does not go to infinity is π0 = 0, but
in this case the obtained π, while stationary, is not a distribution since the πi do not sum
up to 1. However, there does not necessarily have to be a problem with the stationary
distribution in the infinite case: With the arrival probabilities of 2/5, 2/5 and 1/5, we can
use the approach in the solution to b) in order to determine the stationary distribution: We
obtain

k =
p2
p0

=
1
5
2
5

=
1

2

which implies

π0 =
1∑∞

i=0

(
1
2

)i =
1

2

and we get

πi =

(
1

2

)i+1

in general. As the πi sum up to 1, this is indeed a stationary distribution.

d) Now the Markov chain looks like depicted below:

0 1 2 . . . 10
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In the previous solutions, we started our reasoning on the left side of the chain since π0 only
depended on (π0 and) π1, π1 depended only on π0, π1 and π2, and so on. As we now have
a transition from state 10 to state 0, we start from the other side.

Applying our usual reasoning, we obtain π9 = 2 · π10. Furthermore we observe that, for
each 1 ≤ i ≤ 9, it holds that πi = 1/3 · πi−1 + 1/3 · πi + 1/3 · πi+1 which implies πi =
1/2 ·πi−1 +1/2 ·πi+1. In other words, πi is the arithmetic mean of πi−1 and πi+1. We obtain
πi = (11− i) ·π10, for all 0 ≤ i ≤ 10. As the πi sum up to 1, we get π10 = 1/66 which implies
πi = (11 − i)/66.

e) The Markov chain including retirement looks like this:

0 1 2 . . . 10

Island
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1
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1
3 + 0.999999 · 1

3

0.000001 · 1
3

1
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Since the Markov chain is not irreducible anymore, it could be that there is more than one
stationary distribution now. However, a closer look reveals that there is only one stationary
distribution: Using the argument in the solution to a), we see that π0 = π1 = · · · = π10.
Moreover, πIsland = πIsland + 0.000001 · π10 which implies π10 = 0. Thus, the only stationary
distribution is π = (π0, . . . , π10, πIsland) = (0, . . . , 0, 1).
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