Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
FS 2017

Computer Engineering II

Exercise Sheet Chapter 8

Quiz

1 Quiz

a) What happens if a hash function is biased to favor some buckets?
i) The number of collisions stays the same, it just spreads to the favored buckets.
ii) The number of collisions goes down since more buckets will be empty.
iii) The number of collisions goes up.
b) What do we need to take into account to analyze the time complexity of using a hash table that picks hash functions from a universal family?
i) Number of keys
ii) Distribution of keys
iii) Size of hash table
iv) Similarities between keys
v) Method for resolving collisions
c) Is hashing a good idea if you need every single insert/delete/search to be fast? Consider what the worst-case scenario for e.g. an insert operation can be.
i) Yes
ii) No

Basic

\qquad

2 Trying out hashing

Let $N=\{10,22,31,4,15,28,17,88,59\}$ and $m=11$. Let $h(k)=k \bmod m$; now build three hash tables: one for linear probing with $c=1$, one for quadratic probing with $c=1$ and $d=3$, and one for double hashing with $h^{\prime}(k)=1+(k \bmod (m-1))$. Reminder:

- Linear probing: $h_{i}(k) \equiv h(k)+c i \bmod m$
- Quadratic probing: $h_{i}(k) \equiv h(k)+c i+d i^{2} \bmod m$
- Double hashing: $h_{i}(k) \equiv h(k)+i h^{\prime}(k) \bmod m$

Note: You can just do half the exercise in class and the rest at home since it is somewhat time consuming. Also, don't give up if a probing sequence seems to go on for too long!

3 Using hash tables

Assume you are given two sets of integers, $S=\left\{s_{1}, \ldots, s_{q}\right\}$ and $T=\left\{t_{1}, \ldots, t_{r}\right\}$.
a) Give an algorithm to check whether $S \subseteq T$ that uses hash tables. It suffices to specify how to use insert/search/delete operations for hash tables.
b) What is the time complexity of your algorithm? Remember Quiz question b)!

Advanced

4 r-independent hashing

Given a family of hash functions $\mathcal{H} \subseteq\{U \rightarrow M\}$, we say that \mathcal{H} is r-independent if for every r distinct keys $\left\langle x_{1}, \ldots, x_{r}\right\rangle$ and h sampled uniformly from \mathcal{H}, the vector $\left\langle h\left(x_{1}\right), \ldots, h\left(x_{r}\right)\right\rangle$ is equally likely to be any element of M^{r}.
a) Show that if \mathcal{H} is 2 -independent, then it is universal. Hint: use that \mathcal{H} is universal if and only if $\operatorname{Pr}[h(k)=h(l)] \leq \frac{1}{m}$ for keys $k \neq l$.
b) Show that the universal family \mathcal{H} defined in the script (Theorem 8.9) is not 2-independent.

5 Obfuscated quadratic probing

Consider Algorithm 1 with $m=2^{p}$ for some integer p.

```
Algorithm 1 Obfuscated quadratic probing: search
Input: key \(k\) to search for
    \(i:=h(k)\)
    if \(M[i]=k\) then
        return \(M[i]\)
    end if
    \(j:=0\)
    for \(l \in\{0, \ldots, m-1\}\) do
        \(j:=j+1\)
        \(i:=(i+j) \bmod m\)
        if \(M[i]=k\) then
            return \(M[i]\)
        end if
    end for
    return \(\perp\)
```

a) Show that this is an instance of quadratic probing by giving the constants c and d for a hash function $h_{i}(k) \equiv h(k)+c i+d i^{2} \bmod m$.
b) Prove that the probing sequence of every key covers the whole table. Do this in two steps:

- Show that $h_{s}(k) \equiv h_{r}(k) \bmod m$ for $r<s$ if and only if $(s-r)(s+r+1)=t 2^{p+1}$ for some integer t.
- Show that only one of $(s-r)$ and $(s+r+1)$ can be even, then show that $(s-r)(s+$ $r+1)=t 2^{p+1}$ has no solutions if $r<s$ and $r, s<m$.

Mastery

6 Not quite universal hashing

Remember the universal family from the script: $\mathcal{H}:=\left\{h_{a}: a \in[m]^{r+1}\right\}$ where $h_{a}\left(k_{0}, \ldots, k_{r}\right)=$ $\sum_{i=0}^{r} a_{i} \cdot k_{i} \bmod m$ for some prime m. Show that if we restrict the a_{i} to be nonzero, then \mathcal{H} is no longer a universal family if $r \geq 1$ and $m \geq 3$.

Hint: Find two keys with a collision probability of more than $\frac{1}{m}$!

