Principles of Distributed Computing	04/26,2017
Lecture 9	
Lecturer: Mohsen Ghaffari	Scribe:

In this lecture, we discuss a rather general method for solving various a wide range of *local* problems. The key concept in our discussion will be *network decompositions* first introduced by [ALGP89], also known as *low-diameter graph decomposition* [LS91].

0.1 Definition and Applications

Let us start with defining this concept.

Definition 1. (Weak Diameter Network Decomposition) Given a graph G = (V, E), a (C, D)weak diameter network decomposition of G is a partition of G into vertex-disjoint graphs G_1 , G_2, \ldots, G_C such that for each $i \in \{1, 2, \ldots, C\}$, we have the following property: the graph G_i is made of a number of vertex-disjoint and mutually non-adjacent clusters X_1, X_2, \ldots, X_ℓ , where each two vertices $v, u \in X_j$ have distance at most D in graph G. We note that we do not bound the number ℓ . We refer to each subgraph G_i as one block of this network decomposition.

Definition 2. (Strong Diameter Network Decomposition) Given a graph G = (V, E), a (C, D) strong diameter network decomposition of G is a partition of G into vertex-disjoint graphs G_1 , G_2, \ldots, G_C such that for each $i \in \{1, 2, \ldots, C\}$, we have the following property: each connected component of G_i has diameter at most D.

Notice that a strong diameter network decomposition is also a weak diameter network decomposition.

Network decompositions can be used to solve a wide range of *local* problems. To see the general method in a concrete manner, let us go back to our beloved $(\Delta + 1)$ -coloring problem.

Theorem 3. Provided an $(\mathcal{C}, \mathcal{D})$ weak-diameter network decomposition of a graph G, we can compute a $\Delta + 1$ coloring of G in O(CD) rounds.

Proof. We will color graphs G_1, G_2, \ldots, G_C one by one, each time considering the coloring assigned to the previous subgraphs. Suppose that vertices of graphs graphs G_1, G_2, \ldots, G_i are already colored using colors in $\{1, 2, \ldots, \Delta + 1\}$. We explain how to color G_{i+1} in O(D) rounds. Consider the clusters X_1, X_2, \ldots, X_ℓ of G_{i+1} and notice their two properties: (1) they are mutually non-adjacent, (2) for each cluster X_i , its vertices are within distance D of each other (where distances are according to the base graph G). For each cluster X_j , let node $v_j \in X_j$ who has the maximum identifier among nodes of X_j be the leader of X_j . Notice that leaders of clusters X_1, X_2, \ldots, X_ℓ can be identified in O(D) rounds (why?). Then, let v_j aggregate the topology of the subgraph induced by X_i as well as the colors assigned to nodes adjacent to X_i in the previous graphs G_1, G_2, \ldots, G_i . This again can be done in O(D) rounds, thanks to the fact that all the relevant information is within distance D + 1 of v_j . Once this information is gathered, node v_i can compute a $(\Delta + 1)$ -coloring for vertices of X_i , while taking into account the colors of neighboring nodes of previous graphs, using a simple greedy procedure. Then, node v_i can report back these colors to nodes of X_i . This will happen for all the clusters X_1 , X_2, \ldots, X_ℓ in parallel, thanks to the fact that they are non-adjacent and thus, their coloring choices does not interfere with each other.

0.2 Randomized Algorithm for Network Decomposition

Theorem 4. There is a randomized LOCAL algorithm that computes a $(\mathcal{C}, \mathcal{D})$ weak-diameter network decomposition of any n-node graph G, for $\mathcal{C} = O(\log n)$ and $\mathcal{D} = O(\log n)$, in $O(\log^2 n)$ rounds, with high probability¹.

As we see in the exercises of this class, the two key parameters C and D are nearly optimal and one cannot improve them simultaneously and significantly.

Network Decomposition Algorithm: Suppose that we have already computed subgraphs G_1, \ldots, G_i so far. We now explain how to compute a subgraph $G_{i+1} \subseteq G \setminus (\bigcup_{j=1}^i G_j)$, in $O(\log n)$ rounds, which would satisfy the properties of one block of a weak diameter network decomposition.

Let each node v pick a random radius r_u from an geometric distribution with parameter ε , for a desired (free parameter) constant $\varepsilon \in (0, 1)$. That is, for each integer $y \ge 1$, we have $\Pr[r_u = y] = \varepsilon(1-\varepsilon)^{y-1}$. We will think of the vertices within distance r_u of u as the ball of node u. Now for each node v, let Center(v) be the node u^* among nodes u such that $dist_G(u, v) \le r_u$ that has the smallest identifier. The is, $Center(v) = u^*$ is the smallest-identifier node whose ball contains v. Define the clusters of G_i by letting all nodes with the same center define one cluster, and then discarding nodes who are at the boundary of their cluster. That is, any node v for which $dist_G(v, u) = r_u$ where u = Center(v) remains unclustered.

There are two properties to prove: one that the clusters have low diameter, and second, that after C iterations, all nodes are clustered. In the following two lemmas, we argue that with high probability, each cluster has diameter $O(\log n/\varepsilon)$ and after $C = O(\log_{1/\varepsilon} n)$ iterations, all nodes are clustered.

Lemma 5. With high probability, the maximum cluster diameter is at most $O(\log n/\varepsilon)$. Hence, this clustering can be computed in $O(\log n/\varepsilon)$ rounds, with high probability.

Proof. The proof is simple and is left as an exercise.

Lemma 6. For each node v, the probability that v is not clustered — that v is on the boundary of its supposed cluster and thus it gets discarded — is at most ε .

Proof. Notice that

$$\Pr \quad [v \text{ is not clustered }] = \sum_{u \in V} \quad \Pr \quad [v \text{ is not clustered } | Center(v) = u] \cdot \Pr[Center(v) = u]$$

For each vertex u, let before(u) denote the set of all vertices whose identifier is less than that of u. Define the following events

- $\mathcal{E}_1 = (r_u = dist_G(v, u)).$
- $\mathcal{E}_2 = (r_u \ge dist_G(v, u)).$
- $\mathcal{E}_3 = (\forall u' \in before(u), r_{u'} < dist_G(v, u')).$

¹Throughout, we will use the phrase with high probability to indicate that an event happens with probability at least $1 - \frac{1}{n^c}$, for a desirably large but fixed constant $c \ge 2$.

We have

$$\begin{aligned} \Pr & [v \text{ is not clustered } | Center(v) = u] \\ = & \Pr[\mathcal{E}_1 \cap \mathcal{E}_3 | \mathcal{E}_2 \cap \mathcal{E}_3] \\ = & \frac{\Pr[\mathcal{E}_1 \cap \mathcal{E}_2 \cap \mathcal{E}_3]}{\Pr[\mathcal{E}_2 \cap \mathcal{E}_3]} \\ = & \frac{\Pr[\mathcal{E}_1 \cap \mathcal{E}_3]}{\Pr[\mathcal{E}_2 \cap \mathcal{E}_3]} \\ = & \frac{\Pr[\mathcal{E}_3] \cdot \Pr[\mathcal{E}_1 | \mathcal{E}_3]}{\Pr[\mathcal{E}_3] \cdot \Pr[\mathcal{E}_2 | \mathcal{E}_3]} \\ = & \frac{\Pr[\mathcal{E}_1]}{\Pr[\mathcal{E}_2]} = \varepsilon, \end{aligned}$$

where in the penultimate equality, we used the property that the event \mathcal{E}_3 is independent of events \mathcal{E}_1 and \mathcal{E}_2 , and the last equality follows from the probability distribution function of the exponential distribution (recall that this is exactly the *memoryless property* of the exponential distribution). Hence, we can now go back and say that

$$\begin{array}{ll} \Pr & [v \ is \ not \ clustered \] \\ = & \sum_{u \in V} \Pr[v \ is \ not \ clustered \ | \ Center(v) = u] \cdot \Pr[Center(v) = u] \\ = & \sum_{u \in V} \varepsilon \cdot \Pr[Center(v) = u] = \varepsilon. \end{array}$$

Corollary 7. After $C = O(\log_{1/\varepsilon} n)$ iterations, all nodes are clustered, with high probability.

References

- [ALGP89] Baruch Awerbuch, M Luby, AV Goldberg, and Serge A Plotkin. Network decomposition and locality in distributed computation. In *Foundations of Computer Science*, 1989., 30th Annual Symposium on, pages 364–369. IEEE, 1989.
- [LS91] Nathan Linial and Michael Saks. Decomposing graphs into regions of small diameter. In Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '91, pages 320–330, 1991.