Principles of Distributed Computing 05/17, 2017

Lecture 12
Lecturer: Mohsen Ghaffari Scribe:

1 Minimum Spanning Tree

In this lecture, we discuss a near-optimal distributed algorithm in the CONGEST model for
the problem of computing a minimum spanning tree (MST). We note that, over the years, the
problem of computing an MST has turned out to have a central role in distributed algorithms
for network optimization problems, significantly more central than its role in the centralized
algorithms domain. The upper and lower bound techniques for the MST problem are used
frequently in solving other distributed network optimization problems.

A first-order summary of global network optimization problems Distributed algo-
rithms for global network optimization problems have a long and rich history. A first-order
summary of the state of the art is that, for many of the basic problems, including MST, Mini-
mum Cut Approximation, Maximum Flow Approximation, and Shortest-Paths Approximations,
the best-known upper bound is O(D + y/n) rounds, where D denotes the network diameter.
Furthermore, it is known that this round complexity is essentially the best-possible in general
graphs, that is, there are graphs in which any (non-trivial approximation) algorithm for these
problems requires Q(D + 1/n) rounds [PR99, Elk04, DSHKt11].

1.1 MST: The Algorithm Outline

The algorithm we describe follows the outline of Boruvka’s MST[NMNO1] from 1926, though
with some small changes. In particular, we have O(logn) phases. During these phases, we
gradually grow a forest until we reach a spanning tree. We start with the trivial forest where
each node forms its own component of the forest, that is, each node is one separate component
in our partition of G.

In each phase, each component S; will have a leader node s; € .S;, and moreover, the leader
will know the size of its component. Each component S; suggests a merge along the edge with
exactly one endpoint in S; that has the smallest weight among such edges. This is called the
minimum weight outgoing edge (MWOE). Recall from the second lecture (lemma 2.17) that all
such edges belong to MST!. We soon explain how to compute these min-weight outgoing edges,
one per part, using shortcuts. Let us for now continue with the high-level explanation of how
to use these edges to merge parts.

Let N be the current number of connected components of the forest. If N = 1, we are done
already. Otherwise, each component suggests one merge edge. Each edge might be suggested
by two of its endpoints, so we have at least N/2 suggested edges in total. We add these edges
to the forest and thus, effectively, merge the connected components at their two endpoints.
Hence, the number of components shrinks to at most N/2. After logn iterations, the number
of connected components is down to 1, which means we have reached a spanning tree.

What remains is to explain how to find the merge edges, and how to perform the merges.
We first discuss the process of computing minimum-weight edges of one phase in O(D + /n)
rounds. Then, we will discuss how to perform the merges in the same round complexity.

!This assumes that the edge-weights are unique, which is effectively without loss of generality, because we can
append the identifier of the edge—composed of the identifiers of its two endpoints—to its weight in a manner
that makes the edge weights unique, and guarantees that the MST according to the new weights is one of the
MSTs according to the original weights.

1.2 Computing Min-Weight Outgoing Edges

Our objective is to let each node know the the minimum weight outgoing edge of its component.
More concretely, let each node v set ¢(v) to be the minimum-weight outgoing edge among edges
incident to v. The objective is that each node v € S; learns the weight of the minimum-weight
outgoing edge among edges all edges incident on component S;. Notice that node v can easily
find ¢(v) by first receiving from all neighbors the component leader IDs of their components
and then only considering the smallest of those edges having the other endpoint in a different
component. We handle the components in two categories of small and large, depending on
whether the component has at least \/n vertices or not.

Small Components Consider a single small component .S;, which means this component has
no more than /n vertices. Then, in this component, each node v starts with its own smallest
weight-outgoing edge and its weight c¢(v). Then, we perform a convergecast (or simply minimum
flooding) on the BFS tree of this component S;. This convergecast goes from the leaves to the
root, maintaining the minimum value seen, and thus eventually delivering the minimum-weight
outgoing edge to the component leader. The information about this edge can be delivered to
all nodes of the component by a broadcast from the root to the leaves.

Large Components There are at most n/y/n = y/n large parts, as each of them has at
least /n vertices. Since the number of large components is relatively small, we can handle
all these components by performing their communications on the BFS of the whole graph G,
simultaneously. Using standard pipelining techniques[Pel00], we can compute the minimum-
weight outgoing edges of all these y/n components in O(D + /n) rounds.

A more general treatment

The above division to small and large categories, and then the rules for where each of these
should communicate, leads to an O(D + /n)-round algorithm. This is nearly-optimal in the
worst case. However, in many graphs families of interest, this would be quite far from desirable
bounds. In the following, and mostly as side remarks, we introduce a graph-theoretic notion of
low-congestion shortcuts and briefly outline how this notion leads to more efficient algorithms,
as well as a simple and clean unification of many methods.

Definition 1 (Low-Congestin Shortcuts). Consider a graph G = (V, E) and a partition of
V into disjoint subsets Si, ..., Sy C V, each inducing a connected subgraph G[S;|. We
define an a-congestion shortcut with dilation B to be a set of subgraphs Hy, ..., Hy C G,
one for each set S;, such that:

(1) For each i, the diameter of the subgraph G[S;] + H; is at most 3.

(2) For each e € E, the number of subgraphs G|[S;]| + H; containing e is at most «.

Theorem 2. Suppose that the graph family G is such that for each graph G € G, and any
partition of G into vertex-disjoint connected subsets Si, ..., Sy, we can find an a-congestion
B-dilation shortcut such that max{a, 8} < K. Here, K can be a function of the family G, and
it can depend on n and D. Moreover, we assume such a low-congestion shortcut can be found
in O(T) rounds.

Then, there is a randomized distributed MST algorithm that computes an MST in O(T) +
O(alogn+ Blog?n) = O(T + K) rounds, with high probability, in any graph from the family G.

It is not hard to see that the above rule for small and large components can be used to
infer that any graph has a a-congestion S-dilation shortcut such that max{«, 3} < D + /n,

and thus leads to an O(D + /n)-round MST algorithm for general graphs. There are a number
of graph families where the question, and especially its graph-theoretic aspects, becomes much
more interesting:

e For planar graphs and a few generalizations (e.g. bounded-genus graphs), it has been
shown[MH16] that there always exists an a-congestion [-dilation shortcut such that
max{a, f} < O(D) and moreover, such a shortcut can be found in O(D) rounds. This
leads to an O(D)-round algorithm for MST in planar and near-planar graphs.

e In Erdds-Renyi random graph G, ;,, where each of the possible (g) edges is included with
probability p > Q(logn/n) (that is, above the connectivity threshold), it has been shown
that there always exists a low-congestion shortcut with max{ca, 5} < polylogn, and such
a shortcut can be found in 20(Vlegnloglogn) roynds. That leads to an 20(vVieanloglogn)_
round algorithm for MST in Erdds-Renyi random graphs. See [GKS17] for this result and
extensions to much broader graph families (those with small random walk mixing time).

1.3 Back to Worst-Case Graphs, Merging Components

A small change in Boruvka’s outline to have low-depth merges We restrict the merges
to be star shapes, using a simple random coin idea: toss a random coin per component and then
allow only merges centered on head-parts, each accepting incoming suggested merge-edges from
tail-parts. The leader of this head-component becomes the leader of the merged new part. In
exercise 2 of today’s lecture, we see that, albeit this slightly slowed down probabilistic merging
process, still after O(logn) phases, with high probability, we reach a tree.

What we need to compute for a merge We need to make all nodes learn, besides the
minimum-weight outgoing edge of their component, two extra things: (1) the coin tossed by
their component leader, (2) the ID of their new component leader, (3) the size of the new
component. We next explain how to perform each of these steps in O(D + y/n) rounds.

e Item (1)—which is to let each node know the coin toss of its component leader—is by
a simple small change to the messages sent in computing the min-weight outgoing edge:
now the message starting at the root also carries the random bit flipped by the leader.

e Item (2)—which is to let each node know its new component leader ID—is performed as
follows: We define the component leader ID to be the leader of the center component of
the merge, who had a head coin. This ID is already delivered to the physical endpoint of
the merge edge in the tail part.

Hence, within the tail component, all that we need to do is that one node knows the ID of
the new leader and we want all nodes to have it. If the component was small, we can do it
directly in O(y/n) rounds, inside the component. For large components, which there are
only at most y/n of them, we can broadcast the their new ID leader, which is known to
the physical endpoint of their merge edge, to all nodes of the graph in O(D + /i) rounds.

e Item (3)—which is to let each node know the size of its component—can be performed
similar to (2). First, in the center-of-merge head component, the physical endpoints of
the merge can receive from their other endpoints the sizes of the merging tail components.
Then, within this head component, we can compute the new component size by performing
a simple converge-case, if the component is small, and by doing it through the global BFS
tree, for large components. At the end, this information can be passed to all vertices
of the new component, by first delivering it to all nodes of the head component, then
passing it through the physical edges to the tail components, and then spreading it in the
tail components.

References

[DSHK*11] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,

[E1k04]

[GKS17]

[MH16]

[NMNO1]

[Pel00]

[PR9Y]

Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification
and hardness of distributed approximation. In Proc. of the Symp. on Theory of
Comp. (STOC), pages 363-372, 2011.

Michael Elkin. Unconditional lower bounds on the time-approximation tradeoffs
for the distributed minimum spanning tree problem. In Proc. of the Symp. on
Theory of Comp. (STOC), pages 331-340, 2004.

Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distrbuted MST and routing
in almost mixing time. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp.
(PODC), 2017.

M. Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks
II: Low-congestion shortcuts, MST, and min-cut. In Pro. of ACM-SIAM Symp. on
Disc. Alg. (SODA), 2016.

Jaroslav Nesetfil, Eva Milkovda, and Helena NeSetfilova. Otakar boruvka on mini-
mum spanning tree problem translation of both the 1926 papers, comments, history.
Discrete Mathematics, 233(1):3-36, 2001.

David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time com-
plexity of distributed MST construction. In Proc. of the Symp. on Found. of Comp.
Sci. (FOCS), pages 253, 1999.

