Chapter 1

Vertex Coloring

Vertex coloring is an infamous graph theory problem. It is also a useful toy
example to see the style of this course already in the first lecture. Vertex coloring
does have quite a few practical applications, for example in the area of wireless
networks where coloring is the foundation of so-called TDMA MAC protocols.
Generally speaking, vertex coloring is used as a means to break symmetries,
one of the main themes in distributed computing. In this chapter we will not
really talk about vertex coloring applications, but treat the problem abstractly.
At the end of the class you probably learned the fastest algorithm ever! Let us
start with some simple definitions and observations.

1.1 Problem & Model

Problem 1.1 (Vertex Coloring). Given an undirected graph G = (V, E), assign
a color ¢, to each vertex v € V such that the following holds: e = (v,w) €
E = ¢, # cy.

Remarks:

e Throughout this course, we use the terms vertex and node interchange-
ably.

e The application often asks us to use few colors! In a TDMA MAC pro-
tocol, for example, less colors immediately imply higher throughput.
However, in distributed computing we are often happy with a solution
which is suboptimal. There is a tradeoff between the optimality of a
solution (efficacy), and the work/time needed to compute the solution
(efficiency).

Assumption 1.3 (Node Identifiers). Each node has a unique identifier, e.g.,
its IP address. We usually assume that each identifier consists of only logn bits
if the system has n nodes.
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Figure 1.2: 3-colorable graph with a valid coloring.

Remarks:

e Sometimes we might even assume that the nodes exactly have identi-
fiers 1,...,n.

o It is easy to see that node identifiers (as defined in Assumption 1.3)
solve the coloring problem 1.1, but using n colors is not exciting. How
many colors are needed is a well-studied problem:

Definition 1.4 (Chromatic Number). Giwen an undirected Graph G = (V, E),
the chromatic number x(G) is the minimum number of colors to solve Problem
1.1.

To get a better understanding of the vertex coloring problem, let us first look
at a simple non-distributed (“centralized”) vertex coloring algorithm:

Algorithm 1.5 Greedy Sequential

1: while there is an uncolored vertex v do

2:  color v with the minimal color (number) that does not conflict with the
already colored neighbors

3: end while

Definition 1.6 (Degree). The number of neighbors of a vertex v, denoted by
6(v), is called the degree of v. The mazimum degree vertez in a graph G defines
the graph degree A(G) = A.

Theorem 1.7. Algorithm 1.5 is correct and terminates in n “steps”. The
algorithm uses at most A + 1 colors.

Proof: Since each node has at most A neighbors, there is always at least one
color free in the range {1,...,A +1}.

Remarks:
e In Definition 1.11 we will see what is meant by “step”.
e Sometimes x(G) < A+ 1.

Definition 1.8 (Synchronous Distributed Algorithm). In a synchronous dis-
tributed algorithm, nodes operate in synchronous rounds. In each round, each
node executes the following steps:

1. Send messages to neighbors in graph (of reasonable size).
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2. Receive messages (that were sent by neighbors in step 1 of the same round).

3. Do some local computation (of reasonable complexity).

Remarks:
e Any other step ordering is fine.

e What does “reasonable” mean in this context? We are somewhat
flexible here, and different model variants exist. Generally, we will
deal with algorithms that only do very simple computations (a com-
parison, an addition, etc.). Exponential-time computation is usually
considered cheating in this context. Similarly, sending a message with
a node ID, or a value is considered okay, whereas sending really long
messages is fishy. We will have more exact definitions later, when we
need them.

e We can build a distributed version of Algorithm 1.5:

Algorithm 1.9 Reduce

: Assume that initially all nodes have IDs

: Each node v executes the following code:

: node v sends its ID to all neighbors

: node v receives IDs of neighbors

: while node v has an uncolored neighbor with higher ID do
node v sends “undecided” to all neighbors
node v receives new decisions from neighbors

: end while

: node v chooses the smallest admissible free color
10: node v informs all its neighbors about its choice
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Figure 1.10: Vertex 100 receives the lowest possible color.

Definition 1.11 (Time Complexity). For synchronous algorithms (as defined in
1.8) the time complexity is the number of rounds until the algorithm terminates.
The algorithm terminates when the last node terminates.

Theorem 1.12. Algorithm 1.9 is correct and has time complexity n. The al-
gorithm uses at most A+ 1 colors.
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Proof. Nodes choose colors that are different from their neighbors, and no two
neighbors choose concurrently. In each round at least one node chooses a color,
so we are done after at most n rounds. O

Remarks:
e In the worst case, this algorithm is still not better than sequential.
e Moreover, it seems difficult to come up with a fast algorithm.

e Maybe it’s better to first study a simple special case, a tree, and then
go from there.

1.2 Coloring Trees

Lemma 1.13. x(Tree) <2

Proof. Call some node the root of the tree. If the distance of a node to the root
is odd (even), color it 1 (0). An odd node has only even neighbors and vice
versa. O

Remarks:

e If we assume that each node knows its parent (root has no parent)
and children in a tree, this constructive proof gives a very simple
algorithm:

Algorithm 1.14 Slow Tree Coloring

1: Color the root 0, root sends 0 to its children

2: Each node v concurrently executes the following code:

3: if node v receives a message ¢, (from parent) then

4:  node v chooses color ¢, =1 —¢,

5:  node v sends ¢, to its children (all neighbors except parent)
6: end if

Theorem 1.15. Algorithm 1.14 is correct. If each node knows its parent and its
children, the time complexity is the tree height which is bounded by the diameter
of the tree.

Remarks:

e How can we determine a root in a tree if it is not already given? We
will figure that out later.

The time complexity of the algorithm is the height of the tree.

Nice trees, e.g., balanced binary trees, have logarithmic height, that
is we have a logarithmic time complexity.

However, if the tree has a degenerated topology, the time complexity
may again be up to n, the number of nodes.
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e This algorithm is not very exciting. Can we do better than logarith-
mic?

Here is the idea of the algorithm: We start with color labels that have logn bits.
In each round we compute a new label with exponentially smaller size than the
previous label, still guaranteeing to have a valid vertex coloring! The algorithm
terminates in log” n time. Log-Star?! That’s the number of logarithms (to the
base 2) you need to take to get down to 2. Formally:

Definition 1.16 (Log-Star).
Ve <2:log"z:=1 Va>2: log"z:=1+log"(logz)

Remarks:

e Log-star is an amazingly slowly growing function. Log-star of all the
atoms in the observable universe (estimated to be 10%°) is 5. So log-
star increases indeed very slowly! There are functions which grow
even more slowly, such as the inverse Ackermann function, however,
the inverse Ackermann function of all the atoms is already 4.

Algorithm 1.17 “6-Color”

: Assume that initially the nodes have IDs of size log n bits

: The root assigns itself the label 0

. Each other node v executes the following code

: send own color ¢, to all children

: repeat

receive color ¢, from parent

interpret ¢, and c, as bit-strings

let i be the index of the smallest bit where ¢, and ¢, differ
the new label is i (as bitstring) followed by the it® bit of ¢,
send ¢, to all children

. until ¢, € {0,...,5} for all nodes w

© 0N U AW

—
= o

Example:
Algorithm 1.17 executed on the following part of a tree:

Grand-parent 0010110000 — 10010 — ...
Parent 1010010000 — 01010 — 111
Child 0110010000 — 10001 — 001

Theorem 1.18. Algorithm 1.17 terminates in log™n + k time, where k is a
constant independent of n.

Proof. We need to show that parent p and child ¢ always have different colors.
Initially, this is true, since all nodes start out with their unique ID. In a round,
let i be the smallest index where child ¢ has a different bit from parent p. If
parent p differs in a different index bit j # i from its own parent, parent and
child will compute different colors in that round. On the other hand, if j = 4,
the symmetry is broken by p having a different bit at index i.
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Regarding runtime, note that the size of the largest color shrinks dramat-
ically in each round, apart from the symmetry-breaking bit, exactly as a log-
arithmic function. With some (tedious and boring) machinery, one can show
that indeed every node will have a color in the range {0,...,5} in log"n + k
rounds.

Remarks:

e Let us have a closer look at the end game of the algorithm. Colors
11% (in binary notation, i.e., 6 or 7 in decimal notation) will not be
chosen, because the node will then do another round. This gives a

total of 6 colors (i.e., colors 0,. .., 5).

What about that last line of the loop? How do the nodes know that
all nodes now have a color in the range {0, ...,5}? The answer to this
question is surprisingly complex. One may hardwire the number of
rounds into the until statement, such that all nodes execute the loop
for exactly the same number of rounds. However, in order to do so,
all nodes need to know n, the number of nodes, which is ugly. There
are (non-trivial) solutions where nodes do not need to know n, see
exercises.

Can one reduce the number of colors? Note that Algorithm 1.9 does
not work (since the degree of a node can be much higher than 6)! For
fewer colors we need to have siblings monochromatic!

Algorithm 1.19 Shift Down

1: Each node v concurrently executes the following code:
2: Recolor v with the color of parent
3: Root chooses a new (different) color from {0, 1, 2}

Lemma 1.20. Algorithm 1.19 preserves coloring legality; also siblings are monochro-

matic.

Now Algorithm 1.9 can be used to reduce the number of used colors from 6 to
3.

Algorithm 1.21 Six-2-Three

1: Each node v concurrently executes the following code:
2: for z =5,4,3 do
3:  Perform subroutine Shift down (Algorithm 1.19)
4: if ¢, = x then
5 choose the smallest admissible new color ¢, € {0,1,2}
6: end if
7. end for

Theorem 1.23. Algorithms 1.17 and 1.21 color a tree with three colors in time
O(log" n).
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Figure 1.22: Possible execution of Algorithm 1.21.

Remarks:

e The term O() used in Theorem 1.18 is called “big O” and is often
used in distributed computing. Roughly speaking, O(f) means “in
the order of f, ignoring constant factors and smaller additive terms.”
More formally, for two functions f and g, it holds that f € O(g) if
there are constants ¢ and ¢ so that |f(z)| < c|g(x)| for all z > zo.
For an elaborate discussion on the big O notation we refer to other
introductory math or computer science classes, or Wikipedia.

A fast tree-coloring with only 2 colors is more than exponentially more
expensive than coloring with 3 colors. In a tree degenerated to a list,
nodes far away need to figure out whether they are an even or odd
number of hops away from each other in order to get a 2-coloring. To
do that one has to send a message to these nodes. This costs time
linear in the number of nodes.

The idea of this algorithm can be generalized, e.g., to a ring topology.
Also a general graph with constant degree A can be colored with
A +1 colors in O(log”™ n) time. The idea is as follows: In each step,
a node compares its label to each of its neighbors, constructing a
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logarithmic difference-tag as in Algorithm 1.17. Then the new label
is the concatenation of all the difference-tags. For constant degree
A, this gives a 3A-bit label in O(log™ n) steps. Algorithm 1.9 then
reduces the number of colors to A + 1 in 234 (this is still a constant
for constant Al) steps.

Unfortunately, coloring a general graph is not yet possible with this
technique. We will see another technique for that in Chapter ??. With
this technique it is possible to color a general graph with A + 1 colors
in O(logn) time.

A lower bound shows that many of these log-star algorithms are
asymptotically (up to constant factors) optimal. We will see that
later.

Chapter Notes

The basic technique of the log-star algorithm is by Cole and Vishkin [CV86]. A
tight bound of 1 log*n was proven recently [RS15]. The technique can be gen-
eralized and extended, e.g., to a ring topology or to graphs with constant degree
[GP87, GPS88, KMWO05]. Using it as a subroutine, one can solve many problems
in log-star time. For instance, one can color so-called growth bounded graphs (a
model which includes many natural graph classes, for instance unit disk graphs)
asymptotically optimally in O(log" n) time [SWO08]. Actually, Schneider et al.
show that many classic combinatorial problems beyond coloring can be solved
in log-star time in growth bounded and other restricted graphs. For the case
of toroidal grids of fixed dimension d > 2, a generalization of the ring topol-
ogy to higher dimensions, Brandt et al. recently proved that a coloring with 4
colors can be found in O(log" n) time while a 3-coloring requires global time
[BHK*17].

In a later chapter we learn a Q(log™ n) lower bound for coloring and related
problems [Lin92]. Linial’s paper also contains a number of other results on
coloring, e.g., that any algorithm for coloring d-regular trees of radius r that
run in time at most 2r/3 require at least Q(v/d) colors.

For general graphs, later we will learn fast coloring algorithms that use a
maximal independent set as a base. Since coloring exhibits a trade-off between
efficacy and efficiency, many different results for general graphs exist, e.g., [PS96,
KSOS06, BE09, Kuh09, SW10, BE11b, KP11, BE11la, BEPS12, PS13, CPS14,
BEK14].

Some parts of this chapter are also discussed in Chapter 7 of [Pel00], e.g.,
the proof of Theorem 1.18.
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