
Distributed
    Computing 

FS 2017 Prof. R. Wattenhofer
Sebastian Brandt

Principles of Distributed Computing

Exercise 11: Sample Solution

1 Communication Complexity of Set Disjointness

a) We obtain

MDISJ =



DISJ 000 001 010 011 100 101 110 111 ← x
000 1 1 1 1 1 1 1 1
001 1 0 1 0 1 0 1 0
010 1 1 0 0 1 1 0 0
011 1 0 0 0 1 0 0 0
100 1 1 1 1 0 0 0 0
101 1 0 1 0 0 0 0 0
110 1 1 0 0 0 0 0 0
111 1 0 0 0 0 0 0 0
↑ y


.

b) When k = 3, a fooling set of size 4 for DISJ is, e.g.,

S1 := {(111, 000), (110, 001), (101, 010), (100, 011)}.

Entries in MDISJ corresponding to elements of S1 are marked dark gray. However, a fooling
set does not always need to be on a diagonal of the matrix. An example for such a set is

S2 := {(001, 110), (010, 001), (011, 100), (100, 010)},

and marked light gray in MDISJ.

c) In general, S := {(x, x) | x ∈ {0, 1}k} is a fooling set for DISJ. To prove this, we note: If y > x
then there is always an index i such that xi = yi = 1 and we conclude DISJ(x, y) = 0. Second,
we note for any two elements (x1, y1), (x2, y2) of any fooling set that x1 6= x2. Otherwise it
was (x1, yj) = (x2, yj) for j ∈ {1, 2} and thus f(x2, y1) = f(x1, y2) = f(x1, y1) = f(x2, y2) =:
z which contradicts the definition of a fooling set. Similarly it is y1 6= y2.

• For any (x, y) ∈ S it is DISJ(x, y) = 1.

• Now consider any (x1, y1) 6= (x2, y2) ∈ S. Since x1 6= x2 and y1 6= y2, we conclude that
either y2 > x1, in which case DISJ(x1, y2) = 0, or y1 > x2 causing DISJ(x2, y1) = 0.



2 Distinguishing Diameter 2 from 4

a) • Choosing v ∈ L takes O(D): Use any leader election protocol from the lecture. E.g.,
the node with smallest ID in L can be elected as a leader. Then this node will be v.

• Computing a BFS tree from a vertex usually takes O(D). Since in our setting all graphs
are guaranteed to have constant diameter, the time required for this is O(1). As node
v is in L, at most |N1(v)| ≤ s executions of BFS are performed. These can be started
one after each other and yield a complexity of O(s).

• The comment states: Computing an H-dominating set DOM takes time O(D) = O(1).

• Since |DOM | ≤ n logn
s , the time complexity of computing all BFS trees from each

vertex in DOM (one after each other) is O(n logn
s ).

• Checking whether all trees have depth of at most 2 can be done in O(D) = O(1) as
well: Each node knows its depth in any of the computed trees. If its depth is 3 or
4, it floods “diameter is 4” to the graph. If a node gets such a message from several
neighbors, it only forwards it to those from which it did not receive it yet. If any node
did not receive message “diameter is 4” after 4 rounds, it decides that the diameter is
2. Otherwise it decides that the diameter is 4. This decision will be consistent among
all nodes.

• By adding all these runtimes, we conclude that the total time complexity of Algorithm

2-vs-4 is O
(
s + n logn

s

)
.

b) By deriving O
(
s + n logn

s

)
as a function of s we can argue that O

(
s + n logn

s

)
is minimal

for s =
√
n log n. Thus the runtime of the Algorithm is O(

√
n log n).

c) Since in this case no BFS tree can have depth larger than 2 the algorithm returns “diameter
is 2”.

d) Using the triangle inequality we obtain that d(w, v) ≥ d(u, v) − d(u,w) = 3 thus the BFS
tree of w has at least depth 3. Therefore Algorithm 2-vs-4 decides “diameter is 4”.

e) Let w be the leader elected in step 2 of Algorithm 2-vs-4. If the BFS started in w has depth
at least 3, we are done. In the other case it is d(u,w) ≤ 2. Using d) we conclude that
d(u,w) = 2. Let w′ be a node that connects u to w. Since w′ ∈ N1(w), Algorithm 2-vs-4
executes a BFS from w′. Then we apply d) using that w′ ∈ N1(u).

f) Since DOM is a dominating set for H = V \L = V , it follows immediately that the algorithm
executes a BFS from a node w ∈ DOM ∩N1(u) 6= ∅. Now apply d).

g) A careful look into the construction of family G reveals that we essentially showed an
Ω(n/ log n) lower bound to distinguish diameter 2 from 3. Since the graphs considered
here cannot have diameter 3, the studied algorithm does not contradict this lower bound.

h) Consider a clique (with n nodes, n large enough) and remove an arbitrary edge (u, v). Since
d(u, v) = 2, the graph has diameter 2. We have L = ∅ and {w} is an H-dominating set for
all u 6= w 6= v. If DOM = {w}, then Algorithm 2-vs-4 executes exactly one BFS (from w)
which has depth 1 which disproves the claim. Note that this proof works for all s ≤ n− 2.
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