Principles of Distributed Computing

Exercise 9

Lecturer: Mohsen Ghaffari

Network Decompositions

Exercise 1: Explain how given a $(\mathcal{C}, \mathcal{D})$ network decomposition of graph G, a maximal independent set can be computed in $O(C D)$ rounds.

Exercise 2: We here see that the $(O(\log n), O(\log n))$ network decomposition that we discussed in the class has the nearly best possible parameters. In particular, it is known that there are n-node graphs that have girth ${ }^{1} \Omega(\log n / \log \log n)$ and chromatic number $\Omega(\log n)[\operatorname{ASO4}$, Erd59]. Use this fact to argue that on these graphs, an $(o(\log n), o(\log n / \log \log n))$ network decomposition does not exist.

Exercise 3: Given an n-node undirected graph $G=(V, E)$, we define a $d(n)$-diameter ordering of G to be a one-to-one labeling $f: V \rightarrow\{1,2, \ldots, n\}$ of vertices such that for any path $P=$ $v_{1}, v_{2}, \ldots, v_{p}$ on which the labels $f\left(v_{i}\right)$ are monotonically increasing, any two nodes $v_{i}, v_{j} \in P$ have $\operatorname{dist}_{G}\left(v_{i}, v_{j}\right) \leq d(n)$.

Use the existence of $(O(\log n), O(\log n))$ network decompositions, proved in the class, to argue that each n-node graph has an $O\left(\log ^{2} n\right)$-diameter ordering.

References

[AS04] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley \& Sons, 2004.
[Erd59] Paul Erdős. Graph theory and probability. Canada J. Math, 11:34G38, 1959.

[^0]
[^0]: ${ }^{1}$ Recall that the girth of a graph is the length of its shortest cycle.

