
Distributed
 Computing

FS 2016 Prof. R. Wattenhofer

Computer Engineering II
Exercise Sheet 8

Quiz

1 Quiz

a) If requesting a lock is very expensive, how would you implement a linked list set?

b) What properties do (good) hash functions have? List as many as you can!

c) How would you implement a hash map supporting inserting multiple values per key?

d) Which of the implementations for a list-based set is FIFO fair?

Basic

2 Livelock

In the lecture we discussed how to implement a Set using a linked list and the concept of optimistic
synchronization. The main trick was to only lock affected parts of the list once a change should
be applied. Are there bad situations in which the algorithm works badly?

a) Is there a scenario in which two (or more) threads deadlock? If yes: give an example. If
no: argue why.

b) Is there a scenario in which one thread never succeeds in removing a node? If yes: give an
example. If no: argue why.

Advanced

3 Old Exam Question: Fine-Grained Locking

The goal of this exercise is to implement a heap with mutual exclusion. A heap is a binary tree,
in which the value of the parent is smaller than the values of its children. The heap is stored
in an array, with the root at index 1 and the children of a node i are LEFT (i) = 2 · i and
RIGHT (i) = 2 · i + 1. The basic functionality is implemented in Algorithm 1 and Algorithm 2.

Algorithm 1 Insert value

1: i = 1
2: .
3: while A[i] != null do
4: .
5: next = smallestChild(i)
6: .
7: if if(A[i] > value) then
8:
9: exchange A[i] and value

10:
11: end if
12: .
13: i = next
14: .
15: end while
16: .
17: A[i] = value
18: .

Algorithm 2 Remove smallest value

1: .
2: ret = A[1]
3: i=1
4: A[1] = ∞
5: .
6: while A[i] != null do
7: .
8: next = smallestChild(i)
9: .

10: exchange A[i] and A[next]
11: .
12: i = next
13: end while
14: A[i] = null // Mark as not used
15: .
16: return ret

a) (4 Points) How would you implement coarse-grained locking? What consequences does this
have for concurrent access by multiple processes?

b) (8 Points) Complete the skeleton of the code in Algorithm 1 and Algorithm 2 to implement
hand-over-hand locking. You may use LOCK(j) and UNLOCK(j), which lock/unlock the
j th element in the array. Not all lines are needed. You may use multiple statements per
line.

c) (5 Points) Is your implementation deadlock free? Argue why deadlocks are not possible or
provide an example of a deadlock.

d) (3 Points) When using hand-over-hand locking the root is always locked at the beginning
of each operation. Could you use a different locking mechanism to avoid this contention of
the root?

2

