e
ETH P

Distributed ‘»,’/‘5,:;‘.

Eidgendssische Technische Hochschule Ziirich ““ 5%
Swiss Federal Institute of Technology Zurich Computmg ‘?‘\ Pl
FS 2016 Prof. R. Wattenhofer

Computer Engineering 11
Exercise Sheet 8

Quiz

1 Quiz

a) If requesting a lock is very expensive, how would you implement a linked list set?
b) What properties do (good) hash functions have? List as many as you can!

¢) How would you implement a hash map supporting inserting multiple values per key?
)

d) Which of the implementations for a list-based set is FIFO fair?

Basic

2 Livelock

In the lecture we discussed how to implement a Set using a linked list and the concept of optimistic
synchronization. The main trick was to only lock affected parts of the list once a change should
be applied. Are there bad situations in which the algorithm works badly?

a) Is there a scenario in which two (or more) threads deadlock? If yes: give an example. If
no: argue why.

b) Is there a scenario in which one thread never succeeds in removing a node? If yes: give an
example. If no: argue why.

Advanced

3 0Old Exam Question: Fine-Grained Locking

The goal of this exercise is to implement a heap with mutual exclusion. A heap is a binary tree,
in which the value of the parent is smaller than the values of its children. The heap is stored
in an array, with the root at index 1 and the children of a node ¢ are LEFT(i) = 2 -4 and
RIGHT (i) = 2-i+ 1. The basic functionality is implemented in Algorithm 1 and Algorithm 2.

Algorithm 1 Insert value

Algorithm 2 Remove smallest value

1:i=1

2

3: while AJi] != null do

4 e

5: next = smallestChild(i)
6:

7. if if(Afi] > value) then
8

9 exchange A[i] and value
10
11: end if

120

13: 1= next

14: oo

15: end while

16: oo

17 Alfi] = value

18

11:
12:
13:
14:
15:
16:

ret = A[l]

i=1

All] =

while Afi] != null do
next = smallestChild(i)

i = next
end while
Ali] = null // Mark as not used

return ret

a) (4 Points) How would you implement coarse-grained locking? What consequences does this
have for concurrent access by multiple processes?

b) (8 Points) Complete the skeleton of the code in Algorithm 1 and Algorithm 2 to implement
hand-over-hand locking. You may use LOCK(j) and UNLOCK(j), which lock/unlock the
jth element in the array. Not all lines are needed. You may use multiple statements per

line.

¢) (5 Points) Is your implementation deadlock free? Argue why deadlocks are not possible or

provide an example of a deadlock.

d) (3 Points) When using hand-over-hand locking the root is always locked at the beginning
of each operation. Could you use a different locking mechanism to avoid this contention of

the root?

