
Distributed
 Computing

FS 2016 Prof. R. Wattenhofer

Computer Engineering II
Solution to Exercise Sheet 6

Quiz

1 Quiz

a) The correct answer is iii): The number of collisions goes up.
Some buckets will have fewer than 1

m keys in them on average, and some significantly more.
Since the number of collisions is quadratic in the number of keys in a bucket, this means
that we get more collisions than if the hash function wasn’t biased.

For a specific example, consider the case of 2 buckets, one with x keys in it and the other
with y keys. If we increase x and decrease y, what happens to the number of collisions,
which is

(
x
2

)
+
(
y
2

)
? We show what happens to the proportional term x2 + y2.

(x+ d)2 + (y − d)2 = x2 + 2dx+ d2 + y2 − 2dy + d2 = x2 + y2 + 2d(x− y) + d2

If initially, x = y — which is the case in expectation if we distribute keys evenly among
the buckets — then we see that moving d keys from one bucket to the other results in

(x+ d)2 + (y − d)2 = x2 + y2 + 2d(x− y) + d2 = x2 + y2 + d2 > x2 + y2

b) We only need to consider:

i) Number of keys

iii) Size of hash table

v) Method for resolving collisions

If we insert many keys into a fixed size hash table, then we get more collisions and thus need
to do more work to resolve those collisions than if we only insert few keys. Analogously, if
we insert a fixed number of keys into a small hash table, then we get more collisions than
if we insert them into a large hash table. Finally, the method of resolving collisions makes
a difference, as can be seen for example in Table 6.18 in the script.

Altogether, we need to consider the number of keys, the size of the hash table, and the
method we use for resolving collisions. More succinctly, it is the ratio between number of
keys and size of the table that is relevant, and this is the load factor.

The genius of universal hashing is precisely that we do not need to consider the distribution
of keys; we know that in expectation, we get a good hash function in few tries no matter
what the distribution of keys looks like.

As for similarities between keys, some applications require “similar” keys to be close to
each other in the hash table, and there are techniques to handle this. In general, this is
not a requirement we need to consider.

c) If every single operation has to be fast, hashing is a bad choice; in the worst case, a single
operation can take linear time if we have to look at every bucket. The guarantees we get
from hashing are in expectation — at least one of insert/delete/search can only be fast in
expectation and will cost more than constant time in the worst case.

Basic

2 Trying out hashing

0 1 2 3 4 5 6 7 8 9 10
Linear 22 88 4 15 28 17 59 31 10

Quadratic 22 88 17 4 28 59 15 31 10
Double hashing 22 59 17 4 15 28 88 31 10

To give an example, we show how the insert operations go with linear probing:

h0(10) = 10 + 1 · 0 mod 11 = 10

h0(22) = 22 + 1 · 0 mod 11 = 0

h0(31) = 31 + 1 · 0 mod 11 = 9

h0(4) = 4 + 1 · 0 mod 11 = 4

h0(15) = 15 + 1 · 0 mod 11 = 4
h1(15) = 15 + 1 · 1 mod 11 = 5

h0(28) = 28 + 1 · 0 mod 11 = 6

h0(17) = 17 + 1 · 0 mod 11 = 6
h1(17) = 17 + 1 · 1 mod 11 = 7

h0(88) = 88 + 1 · 0 mod 11 = 0
h1(88) = 88 + 1 · 1 mod 11 = 1

h0(59) = 59 + 1 · 0 mod 11 = 4
h1(59) = 59 + 1 · 1 mod 11 = 5
h2(59) = 59 + 1 · 2 mod 11 = 6
h3(59) = 59 + 1 · 3 mod 11 = 7
h4(59) = 59 + 1 · 4 mod 11 = 8

3 Using hash tables

a)
1. Build a hash table M from T
2. For each key k ∈ S, search whether the key is in the hash table M
2.1) if every search says “yes, that’s here”, answer “yes”
2.2) else, answer “no” after the first search that came back “not in the set”

b) Our cost is the time for building plus the time for searching.

If we use perfect static hashing, we get expected cost in the order of O(q + r) in expectation:
building the table costs expected linear time in |T | = r, and searching all keys in S in the table
costs (worst case for perfect static hashing) |S| = q time.

If we use hashing with chaining, we want to keep α small so we choose a table size of r = |T |, which
gives us constant expected time cost for searching. More explicitly: for hashing with chaining
with linked lists as secondary structures, a single search costs roughly α = n

m in expectation

2

while an insert has constant cost in the worst case; therefore, if we keep m = r, we get constant
expected search cost per key since then α = n

m = r
r = 1.

Advanced

4 r-independent hashing

The difference between universal hashing and r-independent hashing is this: with universal hash-
ing, if we fix any two keys and sample a hash function from a universal family, then the chance
of the two keys colliding under that hash function is 1

m . r-independent hashing is not defined
via collisions, but via the possible combinations of buckets into which a random function will
put r fixed keys, and the statement here is: they are equally likely to be put into any bucket
combination from 〈0, . . . , 0〉 to 〈m−1, . . . ,m−1〉, i.e. for each of those combinations, the chance
of getting those hashes is 1

mr . The purpose of this exercise is to show that r-independence is a
strictly stronger property than universality.

a) Let H be 2-independent. For any two distinct keys k 6= l we have Pr[h(k) = a1 and h(l) =
a2] = 1

m2 for any a1, a2 ∈M . Therefore:

Pr[h(k) = h(l)] =

m−1∑
c=0

Pr[h(k) = h(l) and h(k) = c]

=

m−1∑
c=0

Pr[h(k) = c and h(l) = c]

=

m−1∑
c=0

1

m2
= m · 1

m2
=

1

m

Therefore, if h is 2-independent, then h is universal.

An alternative proof: we know that Pr[h(k) = a1 and h(l) = a2] = 1
m2 for any a1, a2 ∈M . There

are exactly m possible vectors 〈a, a〉 ∈ M2 that constitute all possible collisions, and since each
of them has probability 1

m2 , we get a total collision probability of m
m2 = 1

m .

b) Let k = (0, . . . , 0) and l ∈Mr+1, k 6= l arbitrary. Since ha(k) = 0 for all choices of a, for any
pair of hashes 〈r, s〉 ∈ M2 with r 6= 0, we have Pr[〈ha(k), ha(l)〉 = 〈r, s〉] = 0 6= 1

m2 . Thus, the
family defined in the script is not 2-independent.

5 Obfuscated quadratic probing

a) What the algorithm does is this: it iterates j from 0 to m − 1, and in every iteration, it
increases i by the current j. Thus, if ij denotes the value of i in the jth iteration, then

i0 = h(k)

i1 = h(k) + 1

i2 = h(k) + 1 + 2

...

ij = h(k) +

j∑
n=0

n

Thus if we denote our paramterized hash function as hj(k) = ij mod m, we only have to express
the partial sum in ij as a quadratic function to prove that this is an instance of quadratic probing.
This particular partial sum is well known:

3

j∑
n=0

n =
j(j + 1)

2
=

1

2
j +

1

2
j2

Therefore, hj(k) = h(k) + 1
2j + 1

2j
2 mod m.

b) To prove that the probing sequence of every key covers the whole table, we show that any two
steps of the sequence are distinct. Thus, let k be some key and let r, s ∈ [m] with r < s. Now
we have

hr(k) ≡ hs(k) mod m

⇔ h(k) +
1

2
r +

1

2
r2 ≡ h(k) +

1

2
s+

1

2
s2 mod m

⇔ 1

2
r2 +

1

2
r ≡ 1

2
s2 +

1

2
s mod m

⇔ 1

2
s2 +

1

2
s− 1

2
r2 − 1

2
r ≡ 0 mod m

This is the case if and only if there exists an integer t such that

1

2
s2 +

1

2
s− 1

2
r2 − 1

2
r = tm

1

2
(s2 − r2 + s− r) = tm

(s− r)(s+ r + 1) = t2p+1

The last step used that m = 2p. We now show that this equation has no solution. Notice that
t > 0 since the left hand side of the equation is positive.

Exactly one of (s−r) and (s+r+1) can be even: if (s−r) is even, then (s−r)+2r+1 = (s+r+1)
is odd, and vice versa. Thus, 2p+1 can divide at most one of (s − r) and (s + r + 1) since only
even numbers have 2 as a factor.

Since r < s ≤ m− 1, we know that (s− r) < m = 2p < 2p+1, so 2p+1 cannot divide (s− r). We
also know that (s + r + 1) ≤ (m − 1) + (m − 2) + 1 < 2m = 2p+1, and so 2p+1 cannot divide
(s+ r + 1) either. Therefore, 2p+1 divides neither.

We conclude that (s− r)(s+ r + 1) = t2p+1 has no solutions, therefore, hr(k) 6≡ hs(k) mod m.

4

