FS 2016

Computer Engineering II

Exercise Sheet 6

Quiz

\qquad

1 Quiz

a) What happens if a hash function is biased to favor some buckets?
b) What do we need to take into account to analyze the time complexity of using a hash table that picks hash functions from a universal family?
c) Is hashing a good idea if you need every single insert/delete/search to be fast?

Basic

\qquad

2 Trying out hashing

Let $N=\{10,22,31,4,15,28,17,88,59\}$ and $m=11$. Let $h_{1}(k)=k \bmod m$; now build three hash tables: one for linear probing with $c=1$, one for quadratic probing with $c=1$ and $d=3$, and one for double hashing with $h^{\prime}(k)=1+(k \bmod (m-1))$. Reminder:

- Linear probing: $h_{i}(k) \equiv h(k)+c i \bmod m$
- Quadratic probing: $h_{i}(k) \equiv h(k)+c i+d i^{2} \bmod m$
- Double hashing: $h_{i}(k) \equiv h(k)+i h^{\prime}(k) \bmod m$

Note: You can just do half the exercise in class and the rest at home since it is somewhat time consuming. Also, don't give up if a probing sequence seems to go on for too long!

3 Using hash tables

Assume you are given two sets of integers, $S=\left\{s_{1}, \ldots, s_{q}\right\}$ and $T=\left\{t_{1}, \ldots, t_{r}\right\}$.
a) Give an algorithm to check whether $S \subseteq T$ that uses hash tables.
b) What is the time complexity of your algorithm? Remember Quiz question c)!

4 r-independent hashing

Given a family of hash functions $\mathcal{H} \subseteq\{U \rightarrow M\}$, we say that \mathcal{H} is r-independent if for every r distinct keys $\left\langle x_{1}, \ldots, x_{r}\right\rangle$ and every h sampled uniformly from \mathcal{H}, the vector $\left\langle h\left(x_{1}\right), \ldots, h\left(x_{r}\right)\right\rangle$ is equally likely to be any element of M^{r}.
a) Show that if \mathcal{H} is 2 -independent, then it is universal. Hint: use that \mathcal{H} is universal if and only if $\operatorname{Pr}[h(k)=h(l)]=\frac{1}{m}$ for keys $k \neq l$.
b) Show that the universal family \mathcal{H} defined in the script (Theorem 6.9) is not 2-independent.

5 Obfuscated quadratic probing

Consider Algorithm 1 with $m=2^{p}$ for some integer p.

```
Algorithm 1 Obfuscated quadratic probing: search
Input: key \(k\) to search for
    \(i:=h(k)\)
    if \(M[i]=k\) then
        return \(M[i]\)
    end if
    \(j:=0\)
    for \(l \in\{0, \ldots, m-1\}\) do
        \(j:=j+1\)
        \(i:=(i+j) \bmod m\)
        if \(M[i]=k\) then
            return \(M[i]\)
        end if
    end for
    return \(\perp\)
```

a) Show that this is an instance of quadratic probing by giving the constants c and d for a hash function $h_{i}(k)=h(k)+c i+d i^{2}$.
b) Prove that the probing sequence of every key covers the whole table. Do this in two steps:

- Show that $h_{s}(k) \equiv h_{r}(k) \bmod m$ for $r<s$ if and only if $(s-r)(s+r+1)=t 2^{p+1}$ for some integer t.
- Show that only one of $(s-r)$ and $(s+r+1)$ can be even, then show that $(s-r)(s+$ $r+1)=t 2^{p+1}$ has no solutions if $r<s$ and $r, s<m$.

Mastery

6 Not quite universal hashing

Remember the universal family from the script: $\mathcal{H}:=\left\{h_{a}: a \in[m]^{r+1}\right\}$ where $h_{a}\left(u_{0}, \ldots, u_{r}\right)=$ $\sum_{i=0}^{r} a_{i} \cdot u_{i} \bmod m$. Show that if we restrict the a_{i} to be nonzero, then \mathcal{H} is no longer a universal family if $r \geq 1$.

Hint: Find two keys with a collision probability of more than $\frac{1}{m}$!

