
����������	

��������

Principles of

Distributed Computing

Roger Wattenhofer

wattenhofer@ethz.ch

Spring 2016

ii

Contents

1 Vertex Coloring 5
1.1 Problem & Model . 5
1.2 Coloring Trees . 8

2 Tree Algorithms 15
2.1 Broadcast . 15
2.2 Convergecast . 17
2.3 BFS Tree Construction . 18
2.4 MST Construction . 19

3 Leader Election 23
3.1 Anonymous Leader Election . 23
3.2 Asynchronous Ring . 24
3.3 Lower Bounds . 26
3.4 Synchronous Ring . 29

4 Shared Memory 33
4.1 Model . 33
4.2 Mutual Exclusion . 34
4.3 Store & Collect . 37

4.3.1 Problem Definition . 37
4.3.2 Splitters . 38
4.3.3 Binary Splitter Tree . 39
4.3.4 Splitter Matrix . 41

5 Distributed Sorting 45
5.1 Array & Mesh . 45
5.2 Sorting Networks . 48
5.3 Counting Networks . 51

6 Shared Objects 59
6.1 Centralized Solutions . 59
6.2 Arrow and Friends . 60
6.3 Ivy and Friends . 65

7 Maximal Independent Set 71
7.1 MIS . 71
7.2 Original Fast MIS . 73
7.3 Fast MIS v2 . 76

iii

iv CONTENTS

7.4 Applications . 80

8 Locality Lower Bounds 85
8.1 Model . 85
8.2 Locality . 86
8.3 The Neighborhood Graph . 88

9 Social Networks 93
9.1 Small World Networks . 94
9.2 Propagation Studies . 100

10 Wireless Protocols 105
10.1 Basics . 105
10.2 Initialization . 107

10.2.1 Non-Uniform Initialization 107
10.2.2 Uniform Initialization with CD 107
10.2.3 Uniform Initialization without CD 109

10.3 Leader Election . 109
10.3.1 With High Probability . 109
10.3.2 Uniform Leader Election 110
10.3.3 Fast Leader Election with CD 111
10.3.4 Even Faster Leader Election with CD 111
10.3.5 Lower Bound . 114
10.3.6 Uniform Asynchronous Wakeup without CD 114

10.4 Useful Formulas . 115

11 Synchronization 119
11.1 Basics . 119
11.2 Synchronizer α . 120
11.3 Synchronizer β . 121
11.4 Synchronizer γ . 122
11.5 Network Partition . 124
11.6 Clock Synchronization . 126

12 Stabilization 133
12.1 Self-Stabilization . 133
12.2 Advanced Stabilization . 138

13 Labeling Schemes 143
13.1 Adjacency . 143
13.2 Rooted Trees . 145
13.3 Road Networks . 146

14 Hard Problems 151
14.1 Diameter & APSP . 151
14.2 Lower Bound Graphs . 153
14.3 Communication Complexity . 156
14.4 Distributed Complexity Theory 161

Introduction

What is Distributed Computing?

In the last few decades, we have experienced an unprecedented growth in the
area of distributed systems and networks. Distributed computing now encom-
passes many of the activities occurring in today’s computer and communications
world. Indeed, distributed computing appears in quite diverse application areas:
The Internet, wireless communication, cloud or parallel computing, multi-core
systems, mobile networks, but also an ant colony, a brain, or even the human
society can be modeled as distributed systems.

These applications have in common that many processors or entities (often
called nodes) are active in the system at any moment. The nodes have certain
degrees of freedom: they have their own hard- and software. Nevertheless, the
nodes may share common resources and information, and, in order to solve
a problem that concerns several—or maybe even all—nodes, coordination is
necessary.

Despite these commonalities, a human brain is of course very different from a
quadcore processor. Due to such differences, many different models and parame-
ters are studied in the area of distributed computing. In some systems the nodes
operate synchronously, in other systems they operate asynchronously. There are
simple homogeneous systems, and heterogeneous systems where different types
of nodes, potentially with different capabilities, objectives etc., need to inter-
act. There are different communication techniques: nodes may communicate by
exchanging messages, or by means of shared memory. Occasionally the commu-
nication infrastructure is tailor-made for an application, sometimes one has to
work with any given infrastructure. The nodes in a system often work together
to solve a global task, occasionally the nodes are autonomous agents that have
their own agenda and compete for common resources. Sometimes the nodes can
be assumed to work correctly, at times they may exhibit failures. In contrast
to a single-node system, distributed systems may still function correctly despite
failures as other nodes can take over the work of the failed nodes. There are
different kinds of failures that can be considered: nodes may just crash, or they
might exhibit an arbitrary, erroneous behavior, maybe even to a degree where
it cannot be distinguished from malicious (also known as Byzantine) behavior.
It is also possible that the nodes follow the rules indeed, however they tweak
the parameters to get the most out of the system; in other words, the nodes act
selfishly.

Apparently, there are many models (and even more combinations of models)
that can be studied. We will not discuss them in detail now, but simply define

1

2 CONTENTS

them when we use them. Towards the end of the course a general picture should
emerge, hopefully!

Course Overview

This course introduces the basic principles of distributed computing, highlight-
ing common themes and techniques. In particular, we study some of the funda-
mental issues underlying the design of distributed systems:

• Communication: Communication does not come for free; often communi-
cation cost dominates the cost of local processing or storage. Sometimes
we even assume that everything but communication is free.

• Coordination: How can you coordinate a distributed system so that it
performs some task efficiently? How much overhead is inevitable?

• Fault-tolerance: A major advantage of a distributed system is that even
in the presence of failures the system as a whole may survive.

• Locality: Networks keep growing. Luckily, global information is not always
needed to solve a task, often it is sufficient if nodes talk to their neighbors.
In this course, we will address whether a local solution is possible.

• Parallelism: How fast can you solve a task if you increase your computa-
tional power, e.g., by increasing the number of nodes that can share the
workload? How much parallelism is possible for a given problem?

• Symmetry breaking: Sometimes some nodes need to be selected to or-
chestrate computation or communication. This is achieved by a technique
called symmetry breaking.

• Synchronization: How can you implement a synchronous algorithm in an
asynchronous environment?

• Uncertainty: If we need to agree on a single term that fittingly describes
this course, it is probably “uncertainty”. As the whole system is distrib-
uted, the nodes cannot know what other nodes are doing at this exact
moment, and the nodes are required to solve the tasks at hand despite the
lack of global knowledge.

Finally, there are also a few areas that we will not cover in this course,
mostly because these topics have become so important that they deserve their
own courses. Examples for such topics are distributed programming or secu-
rity/cryptography.

In summary, in this class we explore essential algorithmic ideas and lower
bound techniques, basically the “pearls” of distributed computing and network
algorithms. We will cover a fresh topic every week.

Have fun!

BIBLIOGRAPHY 3

Chapter Notes

Many excellent text books have been written on the subject. The book closest
to this course is by David Peleg [Pel00], as it shares about half of the material. A
main focus of Peleg’s book are network partitions, covers, decompositions, and
spanners – an interesting area that we will only touch in this course. There exist
a multitude of other text books that overlap with one or two chapters of this
course, e.g., [Lei92, Bar96, Lyn96, Tel01, AW04, HKP+05, CLRS09, Suo12].
Another related course is by James Aspnes [Asp] and one by Jukka Suomela
[Suo14].

Some chapters of this course have been developed in collaboration with (for-
mer) Ph.D. students, see chapter notes for details. Many students have helped
to improve exercises and script. Thanks go to Philipp Brandes, Raphael Ei-
denbenz, Roland Flury, Klaus-Tycho Förster, Stephan Holzer, Barbara Keller,
Fabian Kuhn, Christoph Lenzen, Thomas Locher, Remo Meier, Thomas Mosci-
broda, Regina O’Dell, Yvonne-Anne Pignolet, Jochen Seidel, Stefan Schmid,
Johannes Schneider, Jara Uitto, Pascal von Rickenbach (in alphabetical order).

Bibliography

[Asp] James Aspnes. Notes on Theory of Distributed Systems.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Funda-
mentals, Simulations and Advanced Topics (2nd edition). John Wi-
ley Interscience, March 2004.

[Bar96] Valmir C. Barbosa. An introduction to distributed algorithms. MIT
Press, Cambridge, MA, USA, 1996.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

[HKP+05] Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, and
Walter Unger. Dissemination of Information in Communication
Networks - Broadcasting, Gossiping, Leader Election, and Fault-
Tolerance. Texts in Theoretical Computer Science. An EATCS Se-
ries. Springer, 2005.

[Lei92] F. Thomson Leighton. Introduction to parallel algorithms and ar-
chitectures: array, trees, hypercubes. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1992.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[Pel00] David Peleg. Distributed Computing: a Locality-Sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[Suo12] Jukka Suomela. Deterministic Distributed Algorithms, 2012.

[Suo14] Jukka Suomela. Distributed algorithms. Online textbook, 2014.

4 CONTENTS

[Tel01] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Uni-
versity Press, New York, NY, USA, 2nd edition, 2001.

Chapter 1

Vertex Coloring

Vertex coloring is an infamous graph theory problem. It is also a useful toy
example to see the style of this course already in the first lecture. Vertex coloring
does have quite a few practical applications, for example in the area of wireless
networks where coloring is the foundation of so-called TDMA MAC protocols.
Generally speaking, vertex coloring is used as a means to break symmetries,
one of the main themes in distributed computing. In this chapter we will not
really talk about vertex coloring applications, but treat the problem abstractly.
At the end of the class you probably learned the fastest algorithm ever! Let us
start with some simple definitions and observations.

1.1 Problem & Model

Problem 1.1 (Vertex Coloring). Given an undirected graph G = (V,E), assign
a color cv to each vertex v ∈ V such that the following holds: e = (v, w) ∈
E ⇒ cv 6= cw.

Remarks:

• Throughout this course, we use the terms vertex and node interchange-
ably.

• The application often asks us to use few colors! In a TDMA MAC pro-
tocol, for example, less colors immediately imply higher throughput.
However, in distributed computing we are often happy with a solution
which is suboptimal. There is a tradeoff between the optimality of a
solution (efficacy), and the work/time needed to compute the solution
(efficiency).

Assumption 1.3 (Node Identifiers). Each node has a unique identifier, e.g.,
its IP address. We usually assume that each identifier consists of only log n bits
if the system has n nodes.

5

6 CHAPTER 1. VERTEX COLORING

3

1 2

3

Figure 1.2: 3-colorable graph with a valid coloring.

Remarks:

• Sometimes we might even assume that the nodes exactly have identi-
fiers 1, . . . , n.

• It is easy to see that node identifiers (as defined in Assumption 1.3)
solve the coloring problem 1.1, but using n colors is not exciting. How
many colors are needed is a well-studied problem:

Definition 1.4 (Chromatic Number). Given an undirected Graph G = (V,E),
the chromatic number χ(G) is the minimum number of colors to solve Problem
1.1.

To get a better understanding of the vertex coloring problem, let us first look
at a simple non-distributed (“centralized”) vertex coloring algorithm:

Algorithm 1.5 Greedy Sequential

1: while there is an uncolored vertex v do
2: color v with the minimal color (number) that does not conflict with the

already colored neighbors
3: end while

Definition 1.6 (Degree). The number of neighbors of a vertex v, denoted by
δ(v), is called the degree of v. The maximum degree vertex in a graph G defines
the graph degree ∆(G) = ∆.

Theorem 1.7. Algorithm 1.5 is correct and terminates in n “steps”. The
algorithm uses at most ∆ + 1 colors.

Proof: Since each node has at most ∆ neighbors, there is always at least one
color free in the range {1, . . . ,∆ + 1}.
Remarks:

• In Definition 1.11 we will see what is meant by “step”.

• Sometimes χ(G)� ∆ + 1.

Definition 1.8 (Synchronous Distributed Algorithm). In a synchronous dis-
tributed algorithm, nodes operate in synchronous rounds. In each round, each
node executes the following steps:

1. Send messages to neighbors in graph (of reasonable size).

1.1. PROBLEM & MODEL 7

2. Receive messages (that were sent by neighbors in step 1 of the same round).

3. Do some local computation (of reasonable complexity).

Remarks:

• Any other step ordering is fine.

• What does “reasonable” mean in this context? We are somewhat
flexible here, and different model variants exist. Generally, we will
deal with algorithms that only do very simple computations (a com-
parison, an addition, etc.). Exponential-time computation is usually
considered cheating in this context. Similarly, sending a message with
a node ID, or a value is considered okay, whereas sending really long
messages is fishy. We will have more exact definitions later, when we
need them.

• We can build a distributed version of Algorithm 1.5:

Algorithm 1.9 Reduce

1: Assume that initially all nodes have IDs
2: Each node v executes the following code:
3: node v sends its ID to all neighbors
4: node v receives IDs of neighbors
5: while node v has an uncolored neighbor with higher ID do
6: node v sends “undecided” to all neighbors
7: node v receives new decisions from neighbors
8: end while
9: node v chooses the smallest admissible free color

10: node v informs all its neighbors about its choice

31

100

5

31

2

5

Figure 1.10: Vertex 100 receives the lowest possible color.

Definition 1.11 (Time Complexity). For synchronous algorithms (as defined in
1.8) the time complexity is the number of rounds until the algorithm terminates.
The algorithm terminates when the last node terminates.

Theorem 1.12. Algorithm 1.9 is correct and has time complexity n. The al-
gorithm uses at most ∆ + 1 colors.

8 CHAPTER 1. VERTEX COLORING

Proof. Nodes choose colors that are different from their neighbors, and no two
neighbors choose concurrently. In each round at least one node chooses a color,
so we are done after at most n rounds.

Remarks:

• In the worst case, this algorithm is still not better than sequential.

• Moreover, it seems difficult to come up with a fast algorithm.

• Maybe it’s better to first study a simple special case, a tree, and then
go from there.

1.2 Coloring Trees

Lemma 1.13. χ(Tree) ≤ 2

Proof. Call some node the root of the tree. If the distance of a node to the root
is odd (even), color it 1 (0). An odd node has only even neighbors and vice
versa.

Remarks:

• If we assume that each node knows its parent (root has no parent)
and children in a tree, this constructive proof gives a very simple
algorithm:

Algorithm 1.14 Slow Tree Coloring

1: Color the root 0, root sends 0 to its children
2: Each node v concurrently executes the following code:
3: if node v receives a message cp (from parent) then
4: node v chooses color cv = 1− cp
5: node v sends cv to its children (all neighbors except parent)
6: end if

Theorem 1.15. Algorithm 1.14 is correct. If each node knows its parent and its
children, the time complexity is the tree height which is bounded by the diameter
of the tree.

Remarks:

• How can we determine a root in a tree if it is not already given? We
will figure that out later.

• The time complexity of the algorithm is the height of the tree.

• Nice trees, e.g., balanced binary trees, have logarithmic height, that
is we have a logarithmic time complexity.

• However, if the tree has a degenerated topology, the time complexity
may again be up to n, the number of nodes.

1.2. COLORING TREES 9

• This algorithm is not very exciting. Can we do better than logarith-
mic?

Here is the idea of the algorithm: We start with color labels that have log n bits.
In each round we compute a new label with exponentially smaller size than the
previous label, still guaranteeing to have a valid vertex coloring! The algorithm
terminates in log∗ n time. Log-Star?! That’s the number of logarithms (to the
base 2) you need to take to get down to 2. Formally:

Definition 1.16 (Log-Star).
∀x ≤ 2 : log∗ x := 1 ∀x > 2 : log∗ x := 1 + log∗(log x)

Remarks:

• Log-star is an amazingly slowly growing function. Log-star of all the
atoms in the observable universe (estimated to be 1080) is 5. So log-
star increases indeed very slowly! There are functions which grow
even more slowly, such as the inverse Ackermann function, however,
the inverse Ackermann function of all the atoms is already 4.

Algorithm 1.17 “6-Color”

1: Assume that initially the nodes have IDs of size log n bits
2: The root assigns itself the label 0
3: Each other node v executes the following code
4: send own color cv to all children
5: repeat
6: receive color cp from parent
7: interpret cv and cp as bit-strings
8: let i be the index of the smallest bit where cv and cp differ

9: the new label is i (as bitstring) followed by the ith bit of cv
10: send cv to all children
11: until cw ∈ {0, . . . , 5} for all nodes w

Example:

Algorithm 1.17 executed on the following part of a tree:

Grand-parent 0010110000 → 10010 → . . .
Parent 1010010000 → 01010 → 111
Child 0110010000 → 10001 → 001

Theorem 1.18. Algorithm 1.17 terminates in log∗ n + k time, where k is a
constant independent of n.

Proof. We need to show that parent p and child c always have different colors.
Initially, this is true, since all nodes start out with their unique ID. In a round,
let i be the smallest index where child c has a different bit from parent p. If
parent p differs in a different index bit j 6= i from its own parent, parent and
child will compute different colors in that round. On the other hand, if j = i,
the symmetry is broken by p having a different bit at index i.

10 CHAPTER 1. VERTEX COLORING

Regarding runtime, note that the size of the largest color shrinks dramat-
ically in each round, apart from the symmetry-breaking bit, exactly as a log-
arithmic function. With some (tedious and boring) machinery, one can show
that indeed every node will have a color in the range {0, . . . , 5} in log∗ n + k
rounds.

Remarks:

• Let us have a closer look at the end game of the algorithm. Colors
11∗ (in binary notation, i.e., 6 or 7 in decimal notation) will not be
chosen, because the node will then do another round. This gives a
total of 6 colors (i.e., colors 0,. . . , 5).

• What about that last line of the loop? How do the nodes know that
all nodes now have a color in the range {0, . . . , 5}? The answer to this
question is surprisingly complex. One may hardwire the number of
rounds into the until statement, such that all nodes execute the loop
for exactly the same number of rounds. However, in order to do so,
all nodes need to know n, the number of nodes, which is ugly. There
are (non-trivial) solutions where nodes do not need to know n, see
exercises.

• Can one reduce the number of colors? Note that Algorithm 1.9 does
not work (since the degree of a node can be much higher than 6)! For
fewer colors we need to have siblings monochromatic!

Algorithm 1.19 Shift Down

1: Each other node v concurrently executes the following code:
2: Recolor v with the color of parent
3: Root chooses a new (different) color from {0, 1, 2}

Lemma 1.20. Algorithm 1.19 preserves coloring legality; also siblings are monochro-
matic.

Now Algorithm 1.9 can be used to reduce the number of used colors from 6 to
3.

Algorithm 1.21 Six-2-Three

1: Each node v concurrently executes the following code:
2: for x = 5, 4, 3 do
3: Perform subroutine Shift down (Algorithm 1.19)
4: if cv = x then
5: choose the smallest admissible new color cv ∈ {0, 1, 2}
6: end if
7: end for

Theorem 1.23. Algorithms 1.17 and 1.21 color a tree with three colors in time
O(log∗ n).

1.2. COLORING TREES 11

Figure 1.22: Possible execution of Algorithm 1.21.

Remarks:

• The term O() used in Theorem 1.18 is called “big O” and is often
used in distributed computing. Roughly speaking, O(f) means “in
the order of f , ignoring constant factors and smaller additive terms.”
More formally, for two functions f and g, it holds that f ∈ O(g) if
there are constants x0 and c so that |f(x)| ≤ c|g(x)| for all x ≥ x0.
For an elaborate discussion on the big O notation we refer to other
introductory math or computer science classes, or Wikipedia.

• A fast tree-coloring with only 2 colors is more than exponentially more
expensive than coloring with 3 colors. In a tree degenerated to a list,
nodes far away need to figure out whether they are an even or odd
number of hops away from each other in order to get a 2-coloring. To
do that one has to send a message to these nodes. This costs time
linear in the number of nodes.

• The idea of this algorithm can be generalized, e.g., to a ring topology.
Also a general graph with constant degree ∆ can be colored with
∆ + 1 colors in O(log∗ n) time. The idea is as follows: In each step,
a node compares its label to each of its neighbors, constructing a

12 CHAPTER 1. VERTEX COLORING

logarithmic difference-tag as in Algorithm 1.17. Then the new label
is the concatenation of all the difference-tags. For constant degree ∆,
this gives a 3∆-label in O(log∗ n) steps. Algorithm 1.9 then reduces
the number of colors to ∆+1 in 23∆ (this is still a constant for constant
∆!) steps.

• Unfortunately, coloring a general graph is not yet possible with this
technique. We will see another technique for that in Chapter 7. With
this technique it is possible to color a general graph with ∆ + 1 colors
in O(log n) time.

• A lower bound shows that many of these log-star algorithms are
asymptotically (up to constant factors) optimal. We will see that
later.

Chapter Notes

The basic technique of the log-star algorithm is by Cole and Vishkin [CV86]. A
tight bound of 1

2 log∗ n was proven recently [RS15]. The technique can be gen-
eralized and extended, e.g., to a ring topology or to graphs with constant degree
[GP87, GPS88, KMW05]. Using it as a subroutine, one can solve many problems
in log-star time. For instance, one can color so-called growth bounded graphs (a
model which includes many natural graph classes, for instance unit disk graphs)
asymptotically optimally in O(log∗ n) time [SW08]. Actually, Schneider et al.
show that many classic combinatorial problems beyond coloring can be solved
in log-star time in growth bounded and other restricted graphs.

In a later chapter we learn a Ω(log∗ n) lower bound for coloring and related
problems [Lin92]. Linial’s paper also contains a number of other results on
coloring, e.g., that any algorithm for coloring d-regular trees of radius r that
run in time at most 2r/3 require at least Ω(

√
d) colors.

For general graphs, later we will learn fast coloring algorithms that use a
maximal independent sets as a base. Since coloring exhibits a trade-off between
efficacy and efficiency, many different results for general graphs exist, e.g., [PS96,
KSOS06, BE09, Kuh09, SW10, BE11b, KP11, BE11a, BEPS12, PS13, CPS14,
BEK14].

Some parts of this chapter are also discussed in Chapter 7 of [Pel00], e.g.,
the proof of Theorem 1.18.

Bibliography

[BE09] Leonid Barenboim and Michael Elkin. Distributed (delta+1)-coloring
in linear (in delta) time. In 41st ACM Symposium On Theory of
Computing (STOC), 2009.

[BE11a] Leonid Barenboim and Michael Elkin. Combinatorial Algorithms for
Distributed Graph Coloring. In 25th International Symposium on
DIStributed Computing, 2011.

[BE11b] Leonid Barenboim and Michael Elkin. Deterministic Distributed Ver-
tex Coloring in Polylogarithmic Time. J. ACM, 58(5):23, 2011.

BIBLIOGRAPHY 13

[BEK14] Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed
(delta+1)-coloring in linear (in delta) time. SIAM J. Comput.,
43(1):72–95, 2014.

[BEPS12] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schnei-
der. The locality of distributed symmetry breaking. In Foundations
of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium
on, pages 321–330, 2012.

[CPS14] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algo-
rithms for the lovász local lemma and graph coloring. In ACM Sym-
posium on Principles of Distributed Computing, pages 134–143, 2014.

[CV86] R. Cole and U. Vishkin. Deterministic coin tossing and accelerating
cascades: micro and macro techniques for designing parallel algo-
rithms. In 18th annual ACM Symposium on Theory of Computing
(STOC), 1986.

[GP87] Andrew V. Goldberg and Serge A. Plotkin. Parallel (∆+1)-coloring
of constant-degree graphs. Inf. Process. Lett., 25(4):241–245, June
1987.

[GPS88] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon.
Parallel Symmetry-Breaking in Sparse Graphs. SIAM J. Discrete
Math., 1(4):434–446, 1988.

[KMW05] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. On
the Locality of Bounded Growth. In 24th ACM Symposium on the
Principles of Distributed Computing (PODC), Las Vegas, Nevada,
USA, July 2005.

[KP11] Kishore Kothapalli and Sriram V. Pemmaraju. Distributed graph
coloring in a few rounds. In 30th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC), 2011.

[KSOS06] Kishore Kothapalli, Christian Scheideler, Melih Onus, and Christian
Schindelhauer. Distributed coloring in O(

√
log n) Bit Rounds. In

20th international conference on Parallel and Distributed Processing
(IPDPS), 2006.

[Kuh09] Fabian Kuhn. Weak graph colorings: distributed algorithms and
applications. In 21st ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2009.

[Lin92] N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal
on Computing, 21(1)(1):193–201, February 1992.

[Pel00] David Peleg. Distributed Computing: a Locality-Sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[PS96] Alessandro Panconesi and Aravind Srinivasan. On the Complexity of
Distributed Network Decomposition. J. Algorithms, 20(2):356–374,
1996.

14 CHAPTER 1. VERTEX COLORING

[PS13] Seth Pettie and Hsin-Hao Su. Fast distributed coloring algorithms
for triangle-free graphs. In Automata, Languages, and Programming
- 40th International Colloquium, ICALP, pages 681–693, 2013.

[RS15] Joel Rybicki and Jukka Suomela. Exact bounds for distributed graph
colouring. In Structural Information and Communication Complex-
ity - 22nd International Colloquium, SIROCCO 2015, Montserrat,
Spain, July 14-16, 2015, Post-Proceedings, pages 46–60, 2015.

[SW08] Johannes Schneider and Roger Wattenhofer. A Log-Star Distributed
Maximal Independent Set Algorithm for Growth-Bounded Graphs.
In 27th ACM Symposium on Principles of Distributed Computing
(PODC), Toronto, Canada, August 2008.

[SW10] Johannes Schneider and Roger Wattenhofer. A New Technique For
Distributed Symmetry Breaking. In 29th Symposium on Principles
of Distributed Computing (PODC), Zurich, Switzerland, July 2010.

Chapter 2

Tree Algorithms

In this chapter we learn a few basic algorithms on trees, and how to construct
trees in the first place so that we can run these (and other) algorithms. The
good news is that these algorithms have many applications, the bad news is
that this chapter is a bit on the simple side. But maybe that’s not really bad
news?!

2.1 Broadcast

Definition 2.1 (Broadcast). A broadcast operation is initiated by a single node,
the source. The source wants to send a message to all other nodes in the system.

Definition 2.2 (Distance, Radius, Diameter). The distance between two nodes
u and v in an undirected graph G is the number of hops of a minimum path
between u and v. The radius of a node u is the maximum distance between u
and any other node in the graph. The radius of a graph is the minimum radius
of any node in the graph. The diameter of a graph is the maximum distance
between two arbitrary nodes.

Remarks:

• Clearly there is a close relation between the radius R and the diameter
D of a graph, such as R ≤ D ≤ 2R.

Definition 2.3 (Message Complexity). The message complexity of an algo-
rithm is determined by the total number of messages exchanged.

Theorem 2.4 (Broadcast Lower Bound). The message complexity of broadcast
is at least n− 1. The source’s radius is a lower bound for the time complexity.

Proof: Every node must receive the message.

Remarks:

• You can use a pre-computed spanning tree to do broadcast with tight
message complexity. If the spanning tree is a breadth-first search
spanning tree (for a given source), then the time complexity is tight
as well.

15

16 CHAPTER 2. TREE ALGORITHMS

Definition 2.5 (Clean). A graph (network) is clean if the nodes do not know
the topology of the graph.

Theorem 2.6 (Clean Broadcast Lower Bound). For a clean network, the num-
ber of edges m is a lower bound for the broadcast message complexity.

Proof: If you do not try every edge, you might miss a whole part of the graph
behind it.

Definition 2.7 (Asynchronous Distributed Algorithm). In the asynchronous
model, algorithms are event driven (“upon receiving message . . . , do . . . ”).
Nodes cannot access a global clock. A message sent from one node to another
will arrive in finite but unbounded time.

Remarks:

• The asynchronous model and the synchronous model (Definition 1.8)
are the cornerstone models in distributed computing. As they do
not necessarily reflect reality there are several models in between syn-
chronous and asynchronous. However, from a theoretical point of view
the synchronous and the asynchronous model are the most interesting
ones (because every other model is in between these extremes).

• Note that in the asynchronous model, messages that take a longer
path may arrive earlier.

Definition 2.8 (Asynchronous Time Complexity). For asynchronous algorithms
(as defined in 2.7) the time complexity is the number of time units from the
start of the execution to its completion in the worst case (every legal input, ev-
ery execution scenario), assuming that each message has a delay of at most one
time unit.

Remarks:

• You cannot use the maximum delay in the algorithm design. In other
words, the algorithm has to be correct even if there is no such delay
upper bound.

• The clean broadcast lower bound (Theorem 2.6) directly brings us to
the well known flooding algorithm.

Algorithm 2.9 Flooding

1: The source (root) sends the message to all neighbors.
2: Each other node v upon receiving the message the first time forwards the

message to all (other) neighbors.
3: Upon later receiving the message again (over other edges), a node can dis-

card the message.

2.2. CONVERGECAST 17

Remarks:

• If node v receives the message first from node u, then node v calls
node u parent. This parent relation defines a spanning tree T . If the
flooding algorithm is executed in a synchronous system, then T is a
breadth-first search spanning tree (with respect to the root).

• More interestingly, also in asynchronous systems the flooding algo-
rithm terminates after R time units, R being the radius of the source.
However, the constructed spanning tree may not be a breadth-first
search spanning tree.

2.2 Convergecast

Convergecast is the same as broadcast, just reversed: Instead of a root sending
a message to all other nodes, all other nodes send information to a root (starting
from the leaves, i.e., the tree T is known). The simplest convergecast algorithm
is the echo algorithm:

Algorithm 2.10 Echo

1: A leave sends a message to its parent.
2: If an inner node has received a message from each child, it sends a message

to the parent.

Remarks:

• Usually the echo algorithm is paired with the flooding algorithm,
which is used to let the leaves know that they should start the echo
process; this is known as flooding/echo.

• One can use convergecast for termination detection, for example. If a
root wants to know whether all nodes in the system have finished some
task, it initiates a flooding/echo; the message in the echo algorithm
then means “This subtree has finished the task.”

• Message complexity of the echo algorithm is n− 1, but together with
flooding it is O(m), where m = |E| is the number of edges in the
graph.

• The time complexity of the echo algorithm is determined by the depth
of the spanning tree (i.e., the radius of the root within the tree) gen-
erated by the flooding algorithm.

• The flooding/echo algorithm can do much more than collecting ac-
knowledgements from subtrees. One can for instance use it to com-
pute the number of nodes in the system, or the maximum ID, or the
sum of all values stored in the system, or a route-disjoint matching.

• Moreover, by combining results one can compute even fancier aggrega-
tions, e.g., with the number of nodes and the sum one can compute the
average. With the average one can compute the standard deviation.
And so on . . .

18 CHAPTER 2. TREE ALGORITHMS

2.3 BFS Tree Construction

In synchronous systems the flooding algorithm is a simple yet efficient method to
construct a breadth-first search (BFS) spanning tree. However, in asynchronous
systems the spanning tree constructed by the flooding algorithm may be far from
BFS. In this section, we implement two classic BFS constructions—Dijkstra and
Bellman-Ford—as asynchronous algorithms.

We start with the Dijkstra algorithm. The basic idea is to always add the
“closest” node to the existing part of the BFS tree. We need to parallelize
this idea by developing the BFS tree layer by layer. The algorithm proceeds in
phases. In phase p the nodes with distance p to the root are detected. Let Tp
be the tree in phase p.

Algorithm 2.11 Dijkstra BFS

1: We start with T1 which is the root plus all direct neighbors of the root. We
start with phase p = 1:

2: repeat
3: The root starts phase p by broadcasting “start p” within Tp.
4: When receiving “start p” a leaf node u of Tp (that is, a node that was

newly discovered in the last phase) sends a “join p + 1” message to all
quiet neighbors. (A neighbor v is quiet if u has not yet “talked” to v.)

5: A node v receiving the first “join p+1” message replies with “ACK” and
becomes a leaf of the tree Tp+1.

6: A node v receiving any further “join” message replies with “NACK”.
7: The leaves of Tp collect all the answers of their neighbors; then the leaves

start an echo algorithm back to the root.
8: When the echo process terminates at the root, the root increments the

phase
9: until there was no new node detected

Theorem 2.12. The time complexity of Algorithm 2.11 is O(D2), the message
complexity is O(m+ nD), where D is the diameter of the graph, n the number
of nodes, and m the number of edges.

Proof: A broadcast/echo algorithm in Tp needs at most time 2D. Finding new
neighbors at the leaves costs 2 time units. Since the BFS tree height is bounded
by the diameter, we have D phases, giving a total time complexity of O(D2).
Each node participating in broadcast/echo only receives (broadcasts) at most 1
message and sends (echoes) at most once. Since there are D phases, the cost is
bounded by O(nD). On each edge there are at most 2 “join” messages. Replies
to a “join” request are answered by 1 “ACK” or “NACK” , which means that we
have at most 4 additional messages per edge. Therefore the message complexity
is O(m+ nD).

Remarks:

• The time complexity is not very exciting, so let’s try Bellman-Ford!

The basic idea of Bellman-Ford is even simpler, and heavily used in the
Internet, as it is a basic version of the omnipresent border gateway protocol
(BGP). The idea is to simply keep the distance to the root accurate. If a

2.4. MST CONSTRUCTION 19

neighbor has found a better route to the root, a node might also need to update
its distance.

Algorithm 2.13 Bellman-Ford BFS

1: Each node u stores an integer du which corresponds to the distance from u
to the root. Initially droot = 0, and du =∞ for every other node u.

2: The root starts the algorithm by sending “1” to all neighbors.
3: if a node u receives a message “y” with y < du from a neighbor v then
4: node u sets du := y
5: node u sends “y + 1” to all neighbors (except v)
6: end if

Theorem 2.14. The time complexity of Algorithm 2.13 is O(D), the message
complexity is O(nm), where D,n,m are defined as in Theorem 2.12.

Proof: We can prove the time complexity by induction. We claim that a node
at distance d from the root has received a message “d” by time d. The root
knows by time 0 that it is the root. A node v at distance d has a neighbor u at
distance d− 1. Node u by induction sends a message “d” to v at time d− 1 or
before, which is then received by v at time d or before. Message complexity is
easier: A node can reduce its distance at most n− 1 times; each of these times
it sends a message to all its neighbors. If all nodes do this, then we have O(nm)
messages.

Remarks:

• Algorithm 2.11 has the better message complexity and Algorithm 2.13
has the better time complexity. The currently best algorithm (opti-
mizing both) needs O(m + n log3 n) messages and O(D log3 n) time.
This “trade-off” algorithm is beyond the scope of this chapter, but we
will later learn the general technique.

2.4 MST Construction

There are several types of spanning trees, each serving a different purpose. A
particularly interesting spanning tree is the minimum spanning tree (MST). The
MST only makes sense on weighted graphs, hence in this section we assume that
each edge e is assigned a weight ωe.

Definition 2.15 (MST). Given a weighted graph G = (V,E, ω), the MST of
G is a spanning tree T minimizing ω(T), where ω(G′) =

∑
e∈G′ ωe for any

subgraph G′ ⊆ G.

Remarks:

• In the following we assume that no two edges of the graph have the
same weight. This simplifies the problem as it makes the MST unique;
however, this simplification is not essential as one can always break
ties by adding the IDs of adjacent vertices to the weight.

• Obviously we are interested in computing the MST in a distributed
way. For this we use a well-known lemma:

20 CHAPTER 2. TREE ALGORITHMS

Definition 2.16 (Blue Edges). Let T be a spanning tree of the weighted graph
G and T ′ ⊆ T a subgraph of T (also called a fragment). Edge e = (u, v) is an
outgoing edge of T ′ if u ∈ T ′ and v /∈ T ′ (or vice versa). The minimum weight
outgoing edge b(T ′) is the so-called blue edge of T ′.

Lemma 2.17. For a given weighted graph G (such that no two weights are the
same), let T denote the MST, and T ′ be a fragment of T . Then the blue edge
of T ′ is also part of T , i.e., T ′ ∪ b(T ′) ⊆ T .

Proof: For the sake of contradiction, suppose that in the MST T there is edge
e 6= b(T ′) connecting T ′ with the remainder of T . Adding the blue edge b(T ′)
to the MST T we get a cycle including both e and b(T ′). If we remove e from
this cycle, then we still have a spanning tree, and since by the definition of the
blue edge ωe > ωb(T ′), the weight of that new spanning tree is less than than
the weight of T . We have a contradiction.

Remarks:

• In other words, the blue edges seem to be the key to a distributed
algorithm for the MST problem. Since every node itself is a fragment
of the MST, every node directly has a blue edge! All we need to do
is to grow these fragments! Essentially this is a distributed version of
Kruskal’s sequential algorithm.

• At any given time the nodes of the graph are partitioned into frag-
ments (rooted subtrees of the MST). Each fragment has a root, the
ID of the fragment is the ID of its root. Each node knows its parent
and its children in the fragment. The algorithm operates in phases.
At the beginning of a phase, nodes know the IDs of the fragments of
their neighbor nodes.

Remarks:

• Algorithm 2.18 was stated in pseudo-code, with a few details not re-
ally explained. For instance, it may be that some fragments are much
larger than others, and because of that some nodes may need to wait
for others, e.g., if node u needs to find out whether neighbor v also
wants to merge over the blue edge b = (u, v). The good news is that
all these details can be solved. We can for instance bound the asyn-
chronicity by guaranteeing that nodes only start the new phase after
the last phase is done, similarly to the phase-technique of Algorithm
2.11.

Theorem 2.19. The time complexity of Algorithm 2.18 is O(n log n), the mes-
sage complexity is O(m log n).

Proof: Each phase mainly consists of two flooding/echo processes. In general,
the cost of flooding/echo on a tree is O(D) time and O(n) messages. However,
the diameter D of the fragments may turn out to be not related to the diameter
of the graph because the MST may meander, hence it really is O(n) time. In
addition, in the first step of each phase, nodes need to learn the fragment ID of
their neighbors; this can be done in 2 steps but costs O(m) messages. There are
a few more steps, but they are cheap. Altogether a phase costs O(n) time and

2.4. MST CONSTRUCTION 21

Algorithm 2.18 GHS (Gallager–Humblet–Spira)

1: Initially each node is the root of its own fragment. We proceed in phases:
2: repeat
3: All nodes learn the fragment IDs of their neighbors.
4: The root of each fragment uses flooding/echo in its fragment to determine

the blue edge b = (u, v) of the fragment.
5: The root sends a message to node u; while forwarding the message on the

path from the root to node u all parent-child relations are inverted {such
that u is the new temporary root of the fragment}

6: node u sends a merge request over the blue edge b = (u, v).
7: if node v also sent a merge request over the same blue edge b = (v, u)

then
8: either u or v (whichever has the smaller ID) is the new fragment root
9: the blue edge b is directed accordingly

10: else
11: node v is the new parent of node u
12: end if
13: the newly elected root node informs all nodes in its fragment (again using

flooding/echo) about its identity
14: until all nodes are in the same fragment (i.e., there is no outgoing edge)

O(m) messages. So we only have to figure out the number of phases: Initially all
fragments are single nodes and hence have size 1. In a later phase, each fragment
merges with at least one other fragment, that is, the size of the smallest fragment
at least doubles. In other words, we have at most log n phases. The theorem
follows directly.

Chapter Notes

Trees are one of the oldest graph structures, already appearing in the first book
about graph theory [Koe36]. Broadcasting in distributed computing is younger,
but not that much [DM78]. Overviews about broadcasting can be found for
example in Chapter 3 of [Pel00] and Chapter 7 of [HKP+05]. For a introduction
to centralized tree-construction, see e.g. [Eve79] or [CLRS09]. Overviews for the
distributed case can be found in Chapter 5 of [Pel00] or Chapter 4 of [Lyn96].
The classic papers on routing are [For56, Bel58, Dij59]. In a later chapter, we
will later learn a general technique to derive algorithms with an almost optimal
time and message complexity.

Algorithm 2.18 is called “GHS” after Gallager, Humblet, and Spira, three
pioneers in distributed computing [GHS83]. Their algorithm won the presti-
gious Edsger W. Dijkstra Prize in Distributed Computing in 2004, among other
reasons because it was one of the first non-trivial asynchronous distributed al-
gorithms. As such it can be seen as one of the seeds of this research area. We
presented a simplified version of GHS. The original paper featured an improved
message complexity of O(m + n log n). Later, Awerbuch managed to further
improve the GHS algorithm to get O(n) time and O(m+n log n) message com-
plexity, both asymptotically optimal [Awe87].

22 CHAPTER 2. TREE ALGORITHMS

Bibliography

[Awe87] B. Awerbuch. Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election, and related problems. In
Proceedings of the nineteenth annual ACM symposium on Theory of
computing, STOC ’87, pages 230–240, New York, NY, USA, 1987.
ACM.

[Bel58] Richard Bellman. On a Routing Problem. Quarterly of Applied
Mathematics, 16:87–90, 1958.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

[Dij59] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[DM78] Y.K. Dalal and R.M. Metcalfe. Reverse path forwarding of broadcast
packets. Communications of the ACM, 12:1040–148, 1978.

[Eve79] S. Even. Graph Algorithms. Computer Science Press, Rockville, MD,
1979.

[For56] Lester R. Ford. Network Flow Theory. The RAND Corporation
Paper P-923, 1956.

[GHS83] R. G. Gallager, P. A. Humblet, and P. M. Spira. Distributed Algo-
rithm for Minimum-Weight Spanning Trees. ACM Transactions on
Programming Languages and Systems, 5(1):66–77, January 1983.

[HKP+05] Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, and
Walter Unger. Dissemination of Information in Communication
Networks - Broadcasting, Gossiping, Leader Election, and Fault-
Tolerance. Texts in Theoretical Computer Science. An EATCS Se-
ries. Springer, 2005.

[Koe36] Denes Koenig. Theorie der endlichen und unendlichen Graphen.
Teubner, Leipzig, 1936.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[Pel00] David Peleg. Distributed Computing: a Locality-Sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

Chapter 3

Leader Election

Some algorithms (e.g. the slow tree coloring Algorithm 1.14) ask for a special
node, a so-called “leader”. Computing a leader is a very simple form of symme-
try breaking. Algorithms based on leaders do generally not exhibit a high degree
of parallelism, and therefore often suffer from poor time complexity. However,
sometimes it is still useful to have a leader to make critical decisions in an easy
(though non-distributed!) way.

3.1 Anonymous Leader Election

The process of choosing a leader is known as leader election. Although leader
election is a simple form of symmetry breaking, there are some remarkable issues
that allow us to introduce notable computational models.

In this chapter we concentrate on the ring topology. Many interesting chal-
lenges in distributed computing already reveal the root of the problem in the
special case of the ring. Paying attention to the ring also makes sense from a
practical point of view as some real world systems are based on a ring topology,
e.g., the antiquated token ring standard.

Problem 3.1 (Leader Election). Each node eventually decides whether it is a
leader or not, subject to the constraint that there is exactly one leader.

Remarks:

• More formally, nodes are in one of three states: undecided, leader,
not leader. Initially every node is in the undecided state. When
leaving the undecided state, a node goes into a final state (leader or
not leader).

Definition 3.2 (Anonymous). A system is anonymous if nodes do not have
unique identifiers.

Definition 3.3 (Uniform). An algorithm is called uniform if the number of
nodes n is not known to the algorithm (to the nodes, if you wish). If n is
known, the algorithm is called non-uniform.

Whether a leader can be elected in an anonymous system depends on whether
the network is symmetric (ring, complete graph, complete bipartite graph, etc.)

23

24 CHAPTER 3. LEADER ELECTION

or asymmetric (star, single node with highest degree, etc.). We will now show
that non-uniform anonymous leader election for synchronous rings is impossible.
The idea is that in a ring, symmetry can always be maintained.

Lemma 3.4. After round k of any deterministic algorithm on an anonymous
ring, each node is in the same state sk.

Proof by induction: All nodes start in the same state. A round in a synchronous
algorithm consists of the three steps sending, receiving, local computation (see
Definition 1.8). All nodes send the same message(s), receive the same mes-
sage(s), do the same local computation, and therefore end up in the same state.

Theorem 3.5 (Anonymous Leader Election). Deterministic leader election in
an anonymous ring is impossible.

Proof (with Lemma 3.4): If one node ever decides to become a leader (or a
non-leader), then every other node does so as well, contradicting the problem
specification 3.1 for n > 1. This holds for non-uniform algorithms, and therefore
also for uniform algorithms. Furthermore, it holds for synchronous algorithms,
and therefore also for asynchronous algorithms.

Remarks:

• Sense of direction is the ability of nodes to distinguish neighbor nodes
in an anonymous setting. In a ring, for example, a node can distinguish
the clockwise and the counterclockwise neighbor. Sense of direction
does not help in anonymous leader election.

• Theorem 3.5 also holds for other symmetric network topologies (e.g.,
complete graphs, complete bipartite graphs, . . .).

• Note that Theorem 3.5 does generally not hold for randomized algo-
rithms; if nodes are allowed to toss a coin, some symmetries can be
broken.

• However, more surprisingly, randomization does not always help. A
randomized uniform anonymous algorithm can for instance not elect
a leader in a ring. Randomization does not help to decide whether the
ring has n = 3 or n = 6 nodes: Every third node may generate the
same random bits, and as a result the nodes cannot distinguish the
two cases. However, an approximation of n which is strictly better
than a factor 2 will help.

3.2 Asynchronous Ring

We first concentrate on the asynchronous model from Definition 2.7. Through-
out this section we assume non-anonymity; each node has a unique identifier.
Having IDs seems to lead to a trivial leader election algorithm, as we can simply
elect the node with, e.g., the highest ID.

Theorem 3.7. Algorithm 3.6 is correct. The time complexity is O(n). The
message complexity is O(n2).

3.2. ASYNCHRONOUS RING 25

Algorithm 3.6 Clockwise Leader Election

1: Each node v executes the following code:
2: v sends a message with its identifier (for simplicity also v) to its clockwise

neighbor.
3: v sets m := v {the largest identifier seen so far}
4: if v receives a message w with w > m then
5: v forwards message w to its clockwise neighbor and sets m := w
6: v decides not to be the leader, if it has not done so already.
7: else if v receives its own identifier v then
8: v decides to be the leader
9: end if

Proof: Let node z be the node with the maximum identifier. Node z sends
its identifier in clockwise direction, and since no other node can swallow it,
eventually a message will arrive at z containing it. Then z declares itself to
be the leader. Every other node will declare non-leader at the latest when
forwarding message z. Since there are n identifiers in the system, each node
will at most forward n messages, giving a message complexity of at most n2.
We start measuring the time when the first node that “wakes up” sends its
identifier. For asynchronous time complexity (Definition 2.8) we assume that
each message takes at most one time unit to arrive at its destination. After at
most n − 1 time units the message therefore arrives at node z, waking z up.
Routing the message z around the ring takes at most n time units. Therefore
node z decides no later than at time 2n − 1. Every other node decides before
node z.

Remarks:

• Note that in Algorithm 3.6 nodes distinguish between clockwise and
counterclockwise neighbors. This is not necessary: It is okay to simply
send your own identifier to any neighbor, and forward a message to
the neighbor you did not receive the message from. So nodes only
need to be able to distinguish their two neighbors.

• Careful analysis shows, that while having worst-case message com-
plexity of O(n2), Algorithm 3.6 has an average message complexity of
O(n log n). Can we improve this algorithm?

Theorem 3.9. Algorithm 3.8 is correct. The time complexity is O(n). The
message complexity is O(n log n).

Proof: Correctness is as in Theorem 3.7. The time complexity is O(n) since
the node with maximum identifier z sends messages with round-trip times
2, 4, 8, 16, . . . , 2 · 2k with k ≤ log(n + 1). (Even if we include the additional
wake-up overhead, the time complexity stays linear.) Proving the message com-
plexity is slightly harder: if a node v manages to survive round r, no other node
in distance 2r (or less) survives round r. That is, node v is the only node in its
2r-neighborhood that remains active in round r + 1. Since this is the same for
every node, less than n/2r nodes are active in round r+1. Being active in round
r costs 2 · 2 · 2r messages. Therefore, round r costs at most 2 · 2 · 2r · n

2r−1 = 8n

26 CHAPTER 3. LEADER ELECTION

Algorithm 3.8 Radius Growth

1: Each node v does the following:
2: Initially all nodes are active. {all nodes may still become leaders}
3: Whenever a node v sees a message w with w > v, then v decides to not be

a leader and becomes passive.
4: Active nodes search in an exponentially growing neighborhood (clockwise

and counterclockwise) for nodes with higher identifiers, by sending out probe
messages. A probe message includes the ID of the original sender, a bit
whether the sender can still become a leader, and a time-to-live number
(TTL). The first probe message sent by node v includes a TTL of 1.

5: Nodes (active or passive) receiving a probe message decrement the TTL and
forward the message to the next neighbor; if their ID is larger than the one
in the message, they set the leader bit to zero, as the probing node does
not have the maximum ID. If the TTL is zero, probe messages are returned
to the sender using a reply message. The reply message contains the ID of
the receiver (the original sender of the probe message) and the leader-bit.
Reply messages are forwarded by all nodes until they reach the receiver.

6: Upon receiving the reply message: If there was no node with higher ID
in the search area (indicated by the bit in the reply message), the TTL is
doubled and two new probe messages are sent (again to the two neighbors).
If there was a better candidate in the search area, then the node becomes
passive.

7: If a node v receives its own probe message (not a reply) v decides to be the
leader.

messages. Since there are only logarithmic many possible rounds, the message
complexity follows immediately.

Remarks:

• This algorithm is asynchronous and uniform as well.

• The question may arise whether one can design an algorithm with an
even lower message complexity. We answer this question in the next
section.

3.3 Lower Bounds

Lower bounds in distributed computing are often easier than in the standard
centralized (random access machine, RAM) model because one can argue about
messages that need to be exchanged. In this section we present a first difficult
lower bound. We show that Algorithm 3.8 is asymptotically optimal.

Definition 3.10 (Execution). An execution of a distributed algorithm is a list
of events, sorted by time. An event is a record (time, node, type, message),
where type is “send” or “receive”.

3.3. LOWER BOUNDS 27

Remarks:

• We assume throughout this course that no two events happen at ex-
actly the same time (or one can break ties arbitrarily).

• An execution of an asynchronous algorithm is generally not only de-
termined by the algorithm but also by a “god-like” scheduler. If more
than one message is in transit, the scheduler can choose which one
arrives first.

• If two messages are transmitted over the same directed edge, then it
is sometimes required that the message first transmitted will also be
received first (“FIFO”).

For our lower bound, we assume the following model:

• We are given an asynchronous ring, where nodes may wake up at arbitrary
times (but at the latest when receiving the first message).

• We only accept uniform algorithms where the node with the maximum
identifier can be the leader. Additionally, every node that is not the
leader must know the identity of the leader. These two requirements can
be dropped when using a more complicated proof; however, this is beyond
the scope of this course.

• During the proof we will “play god” and specify which message in trans-
mission arrives next in the execution. We respect the FIFO conditions for
links.

Definition 3.11 (Open Schedule). A schedule is an execution chosen by the
scheduler. An open (undirected) edge is an edge where no message traversing
the edge has been received so far. A schedule for a ring is open if there is an
open edge in the ring.

The proof of the lower bound is by induction. First we show the base case:

Lemma 3.12. Given a ring R with two nodes, we can construct an open sched-
ule in which at least one message is received. The nodes cannot distinguish this
schedule from one on a larger ring with all other nodes being where the open
edge is.

Proof: Let the two nodes be u and v with u < v. Node u must learn the
identity of node v, thus receive at least one message. We stop the execution of
the algorithm as soon as the first message is received. (If the first message is
received by v, bad luck for the algorithm!) Then the other edge in the ring (on
which the received message was not transmitted) is open. Since the algorithm
needs to be uniform, maybe the open edge is not really an edge at all, nobody
can tell. We could use this to glue two rings together, by breaking up this
imaginary open edge and connect two rings by two edges. An example can be
seen in Figure 3.13.

Lemma 3.14. By gluing together two rings of size n/2 for which we have open
schedules, we can construct an open schedule on a ring of size n. If M(n/2)
denotes the number of messages already received in each of these schedules, at
least 2M(n/2) + n/4 messages have to be exchanged in order to solve leader
election.

28 CHAPTER 3. LEADER ELECTION

Figure 3.13: The rings R1, R2 are glued together at their open edge.

We divide the ring into two sub-rings R1 and R2 of size n/2. These subrings
cannot be distinguished from rings with n/2 nodes if no messages are received
from “outsiders”. We can ensure this by not scheduling such messages until
we want to. Note that executing both given open schedules on R1 and R2 “in
parallel” is possible because we control not only the scheduling of the messages,
but also when nodes wake up. By doing so, we make sure that 2M(n/2) messages
are sent before the nodes in R1 and R2 learn anything of each other!

Without loss of generality, R1 contains the maximum identifier. Hence, each
node in R2 must learn the identity of the maximum identifier, thus at least
n/2 additional messages must be received. The only problem is that we cannot
connect the two sub-rings with both edges since the new ring needs to remain
open. Thus, only messages over one of the edges can be received. We look into
the future: we check what happens when we close only one of these connecting
edges.

Since we know that n/2 nodes have to be informed in R2, there must be
at least n/2 messages that must be received. Closing both edges must inform
n/2 nodes, thus for one of the two edges there must be a node in distance n/4
which will be informed upon creating that edge. This results in n/4 additional
messages. Thus, we pick this edge and leave the other one open which yields
the claim.

Lemma 3.15. Any uniform leader election algorithm for asynchronous rings
has at least message complexity M(n) ≥ n

4 (log n+ 1).

Proof by induction: For the sake of simplicity we assume n being a power of
2. The base case n = 2 works because of Lemma 3.12 which implies that
M(2) ≥ 1 = 2

4 (log 2 + 1). For the induction step, using Lemma 3.14 and the
induction hypothesis we have

M(n) = 2 ·M
(n

2

)
+
n

4

≥ 2 ·
(n

8

(
log

n

2
+ 1
))

+
n

4

=
n

4
log n+

n

4
=
n

4
(log n+ 1) .

2

Remarks:

• To hide the ugly constants we use the “big Omega” notation, the lower
bound equivalent of O(). A function f is in Ω(g) if there are constants
x0 and c > 0 such that |f(x)| ≥ c|g(x)| for all x ≥ x0.

3.4. SYNCHRONOUS RING 29

• In addition to the already presented parts of the “big O” notation,
there are 3 additional ones. Remember that a function f is in O(g) if
f grows at most as fast as g. A function f is in o(g) if f grows slower
than g.

• An analogous small letter notation exists for Ω. A function f is in
ω(g) if f grows faster than g.

• Last but not least, we say that a function f is in Θ(g) if f grows as
fast as g, i.e., f ∈ O(g) and f ∈ Ω(g).

• Again, we refer to standard text books for formal definitions.

Theorem 3.16 (Asynchronous Leader Election Lower Bound). Any uniform
leader election algorithm for asynchronous rings has Ω(n log n) message com-
plexity.

3.4 Synchronous Ring

The lower bound relied on delaying messages for a very long time. Since this is
impossible in the synchronous model, we might get a better message complexity
in this case. The basic idea is very simple: In the synchronous model, not
receiving a message is information as well! First we make some additional
assumptions:

• We assume that the algorithm is non-uniform (i.e., the ring size n is
known).

• We assume that every node starts at the same time.

• The node with the minimum identifier becomes the leader; identifiers are
integers.

Algorithm 3.17 Synchronous Leader Election

1: Each node v concurrently executes the following code:
2: The algorithm operates in synchronous phases. Each phase consists of n

time steps. Node v counts phases, starting with 0.
3: if phase = v and v did not yet receive a message then
4: v decides to be the leader
5: v sends the message “v is leader” around the ring
6: end if

Remarks:

• Message complexity is indeed n.

• But the time complexity is huge! If m is the minimum identifier it is
m · n.

• The synchronous start and the non-uniformity assumptions can be
dropped by using a wake-up technique (upon receiving a wake-up mes-
sage, wake up your clockwise neighbors) and by letting messages travel
slowly.

30 CHAPTER 3. LEADER ELECTION

• There are several lower bounds for the synchronous model: comparison-
based algorithms or algorithms where the time complexity cannot be a
function of the identifiers have message complexity Ω(n log n) as well.

• In general graphs, efficient leader election may be tricky. While time-
optimal leader election can be done by parallel flooding-echo (see
Chapter 2), bounding the message complexity is more difficult.

Chapter Notes

[Ang80] was the first to mention the now well-known impossibility result for
anonymous rings and other networks, even when using randomization. The
first algorithm for asynchronous rings was presented in [Lan77], which was im-
proved to the presented clockwise algorithm in [CR79]. Later, [HS80] found the
radius growth algorithm, which decreased the worst case message complexity.
Algorithms for the unidirectional case with runtime O(n log n) can be found in
[DKR82, Pet82]. The Ω(n log n) message complexity lower bound for compari-
son based algorithms was first published in [FL87]. In [Sch89] an algorithm with
constant error probability for anonymous networks is presented. General results
about limitations of computer power in synchronous rings are in [ASW88, AS88].

Bibliography

[Ang80] Dana Angluin. Local and global properties in networks of proces-
sors (Extended Abstract). In 12th ACM Symposium on Theory of
Computing (STOC), 1980.

[AS88] Hagit Attiya and Marc Snir. Better Computing on the Anonymous
Ring. In Aegean Workshop on Computing (AWOC), 1988.

[ASW88] Hagit Attiya, Marc Snir, and Manfred K. Warmuth. Computing on
an anonymous ring. volume 35, pages 845–875, 1988.

[CR79] Ernest Chang and Rosemary Roberts. An improved algorithm for
decentralized extrema-finding in circular configurations of processes.
Commun. ACM, 22(5):281–283, May 1979.

[DKR82] Danny Dolev, Maria M. Klawe, and Michael Rodeh. An O(n log n)
Unidirectional Distributed Algorithm for Extrema Finding in a Circle.
J. Algorithms, 3(3):245–260, 1982.

[FL87] Greg N. Frederickson and Nancy A. Lynch. Electing a leader in a
synchronous ring. J. ACM, 34(1):98–115, 1987.

[HS80] D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in
circular configurations of processors. Commun. ACM, 23(11):627–628,
November 1980.

[Lan77] Gérard Le Lann. Distributed Systems - Towards a Formal Ap-
proach. In International Federation for Information Processing (IFIP)
Congress, 1977.

BIBLIOGRAPHY 31

[Pet82] Gary L. Peterson. An O(n log n) Unidirectional Algorithm for the
Circular Extrema Problem. 4(4):758–762, 1982.

[Sch89] B. Schieber. Calling names on nameless networks. In Proceedings
of the eighth annual ACM Symposium on Principles of distributed
computing, PODC ’89, pages 319–328, New York, NY, USA, 1989.
ACM.

32 CHAPTER 3. LEADER ELECTION

Chapter 4

Shared Memory

In distributed computing, various different models exist. So far, the focus of the
course was on loosely-coupled distributed systems such as the Internet, where
nodes asynchronously communicate by exchanging messages. The “opposite”
model is a tightly-coupled parallel computer where nodes access a common
memory totally synchronously—in distributed computing such a system is called
a Parallel Random Access Machine (PRAM).

4.1 Model

A third major model is somehow between these two extremes, the shared mem-
ory model. In a shared memory system, asynchronous processes (or processors)
communicate via a common memory area of shared variables or registers:

Definition 4.1 (Shared Memory). A shared memory system is a system that
consists of asynchronous processes that access a common (shared) memory. A
process can atomically access a register in the shared memory through a set of
predefined operations. An atomic modification appears to the rest of the system
instantaneously. Apart from this shared memory, processes can also have some
local (private) memory.

Remarks:

• Various shared memory systems exist. A main difference is how they
allow processes to access the shared memory. All systems can atom-
ically read or write a shared register R. Most systems do allow for
advanced atomic read-modify-write (RMW) operations, for example:

– test-and-set(R): t := R; R := 1; return t

– fetch-and-add(R, x): t := R; R := R+ x; return t

– compare-and-swap(R, x, y): if R = x then R := y; return true;
else return false; endif;

– load-link(R)/store-conditional(R, x): Load-link returns the cur-
rent value of the specified registerR. A subsequent store-conditional
to the same register will store a new value x (and return true)

33

34 CHAPTER 4. SHARED MEMORY

only if no updates have occurred to that register since the load-
link. If any updates have occurred, the store-conditional is guar-
anteed to fail (and return false), even if the value read by the
load-link has since been restored.

• The power of RMW operations can be measured with the so-called
consensus-number : The consensus-number k of a RMW operation de-
fines whether one can solve consensus for k processes. Test-and-set
for instance has consensus-number 2 (one can solve consensus with 2
processes, but not 3), whereas the consensus-number of compare-and-
swap is infinite. It can be shown that the power of a shared mem-
ory system is determined by the consensus-number (“universality of
consensus”.) This insight has a remarkable theoretical and practical
impact. In practice for instance, after this was known, hardware de-
signers stopped developing shared memory systems supporting weak
RMW operations.

• Many of the results derived in the message passing model have an
equivalent in the shared memory model. Consensus for instance is
traditionally studied in the shared memory model.

• Whereas programming a message passing system is rather tricky (in
particular if fault-tolerance has to be integrated), programming a
shared memory system is generally considered easier, as programmers
are given access to global variables directly and do not need to worry
about exchanging messages correctly. Because of this, even distrib-
uted systems which physically communicate by exchanging messages
can often be programmed through a shared memory middleware, mak-
ing the programmer’s life easier.

• We will most likely find the general spirit of shared memory systems
in upcoming multi-core architectures. As for programming style, the
multi-core community seems to favor an accelerated version of shared
memory, transactional memory.

• From a message passing perspective, the shared memory model is like
a bipartite graph: On one side you have the processes (the nodes)
which pretty much behave like nodes in the message passing model
(asynchronous, maybe failures). On the other side you have the shared
registers, which just work perfectly (no failures, no delay).

4.2 Mutual Exclusion

A classic problem in shared memory systems is mutual exclusion. We are given
a number of processes which occasionally need to access the same resource. The
resource may be a shared variable, or a more general object such as a data
structure or a shared printer. The catch is that only one process at the time is
allowed to access the resource. More formally:

Definition 4.2 (Mutual Exclusion). We are given a number of processes, each
executing the following code sections:

4.2. MUTUAL EXCLUSION 35

<Entry> → <Critical Section> → <Exit> → <Remaining Code>
A mutual exclusion algorithm consists of code for entry and exit sections, such
that the following holds

• Mutual Exclusion: At all times at most one process is in the critical sec-
tion.

• No deadlock: If some process manages to get to the entry section, later
some (possibly different) process will get to the critical section.

Sometimes we in addition ask for

• No lockout: If some process manages to get to the entry section, later the
same process will get to the critical section.

• Unobstructed exit: No process can get stuck in the exit section.

Using RMW primitives one can build mutual exclusion algorithms quite easily.
Algorithm 4.3 shows an example with the test-and-set primitive.

Algorithm 4.3 Mutual Exclusion: Test-and-Set

Input: Shared register R := 0
<Entry>
1: repeat
2: r := test-and-set(R)
3: until r = 0
<Critical Section>
4: . . .
<Exit>
5: R := 0
<Remainder Code>
6: . . .

Theorem 4.4. Algorithm 4.3 solves the mutual exclusion problem as in Defi-
nition 4.2.

Proof. Mutual exclusion follows directly from the test-and-set definition: Ini-
tially R is 0. Let pi be the ith process to successfully execute the test-and-set,
where successfully means that the result of the test-and-set is 0. This happens
at time ti. At time t′i process pi resets the shared register R to 0. Between ti
and t′i no other process can successfully test-and-set, hence no other process can
enter the critical section concurrently.

Proving no deadlock works similar: One of the processes loitering in the
entry section will successfully test-and-set as soon as the process in the critical
section exited.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

36 CHAPTER 4. SHARED MEMORY

Remarks:

• No lockout, on the other hand, is not given by this algorithm. Even
with only two processes there are asynchronous executions where al-
ways the same process wins the test-and-set.

• Algorithm 4.3 can be adapted to guarantee fairness (no lockout), es-
sentially by ordering the processes in the entry section in a queue.

• A natural question is whether one can achieve mutual exclusion with
only reads and writes, that is without advanced RMW operations.
The answer is yes!

Our read/write mutual exclusion algorithm is for two processes p0 and p1 only.
In the remarks we discuss how it can be extended. The general idea is that
process pi has to mark its desire to enter the critical section in a “want” register
Wi by setting Wi := 1. Only if the other process is not interested (W1−i = 0)
access is granted. This however is too simple since we may run into a deadlock.
This deadlock (and at the same time also lockout) is resolved by adding a priority
variable Π. See Algorithm 4.5.

Algorithm 4.5 Mutual Exclusion: Peterson’s Algorithm

Initialization: Shared registers W0,W1,Π, all initially 0.
Code for process pi , i = {0, 1}
<Entry>
1: Wi := 1
2: Π := 1− i
3: repeat until Π = i or W1−i = 0
<Critical Section>
4: . . .
<Exit>
5: Wi := 0
<Remainder Code>
6: . . .

Remarks:

• Note that line 3 in Algorithm 4.5 represents a “spinlock” or “busy-
wait”, similarly to the lines 1-3 in Algorithm 4.3.

Theorem 4.6. Algorithm 4.5 solves the mutual exclusion problem as in Defi-
nition 4.2.

Proof. The shared variable Π elegantly grants priority to the process that passes
line 2 first. If both processes are competing, only process pΠ can access the
critical section because of Π. The other process p1−Π cannot access the critical
section because WΠ = 1 (and Π 6= 1− Π). The only other reason to access the
critical section is because the other process is in the remainder code (that is,
not interested). This proves mutual exclusion!

No deadlock comes directly with Π: Process pΠ gets direct access to the
critical section, no matter what the other process does.

4.3. STORE & COLLECT 37

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

Thanks to the shared variable Π also no lockout (fairness) is achieved: If a
process pi loses against its competitor p1−i in line 2, it will have to wait until
the competitor resets W1−i := 0 in the exit section. If process pi is unlucky it
will not check W1−i = 0 early enough before process p1−i sets W1−i := 1 again
in line 1. However, as soon as p1−i hits line 2, process pi gets the priority due
to Π, and can enter the critical section.

Remarks:

• Extending Peterson’s Algorithm to more than 2 processes can be done
by a tournament tree, like in tennis. With n processes every process
needs to win log n matches before it can enter the critical section.
More precisely, each process starts at the bottom level of a binary
tree, and proceeds to the parent level if winning. Once winning the
root of the tree it can enter the critical section. Thanks to the priority
variables Π at each node of the binary tree, we inherit all the properties
of Definition 4.2.

4.3 Store & Collect

4.3.1 Problem Definition

In this section, we will look at a second shared memory problem that has an
elegant solution. Informally, the problem can be stated as follows. There are
n processes p1, . . . , pn. Every process pi has a read/write register Ri in the
shared memory where it can store some information that is destined for the
other processes. Further, there is an operation by which a process can collect
(i.e., read) the values of all the processes that stored some value in their register.

We say that an operation op1 precedes an operation op2 iff op1 terminates
before op2 starts. An operation op2 follows an operation op1 iff op1 precedes
op2.

Definition 4.7 (Collect). There are two operations: A store(val) by process
pi sets val to be the latest value of its register Ri. A collect operation returns
a view, a partial function V from the set of processes to a set of values, where
V (pi) is the latest value stored by pi, for each process pi. For a collect
operation cop, the following validity properties must hold for every process pi:

• If V (pi) = ⊥, then no store operation by pi precedes cop.

• If V (pi) = v 6= ⊥, then v is the value of a store operation sop of pi that
does not follow cop, and there is no store operation by pi that follows
sop and precedes cop.

Hence, a collect operation cop should not read from the future or miss a
preceding store operation sop.

We assume that the read/write register Ri of every process pi is initialized
to ⊥. We define the step complexity of an operation op to be the number of
accesses to registers in the shared memory. There is a trivial solution to the
collect problem as shown by Algorithm 4.8.

38 CHAPTER 4. SHARED MEMORY

Algorithm 4.8 Collect: Simple (Non-Adaptive) Solution

Operation store(val) (by process pi) :
1: Ri := val

Operation collect:
2: for i := 1 to n do
3: V (pi) := Ri // read register Ri
4: end for

Remarks:

• Algorithm 4.8 clearly works. The step complexity of every store
operation is 1, the step complexity of a collect operation is n.

• At first sight, the step complexities of Algorithm 4.8 seem optimal. Be-
cause there are n processes, there clearly are cases in which a collect
operation needs to read all n registers. However, there are also scenar-
ios in which the step complexity of the collect operation seems very
costly. Assume that there are only two processes pi and pj that have
stored a value in their registers Ri and Rj . In this case, a collect
in principle only needs to read the registers Ri and Rj and can ignore
all the other registers.

• Assume that up to a certain time t, k ≤ n processes have finished
or started at least one operation. We call an operation op at time t
adaptive to contention if the step complexity of op only depends on k
and is independent of n.

• In the following, we will see how to implement adaptive versions of
store and collect.

4.3.2 Splitters

Algorithm 4.9 Splitter Code

Shared Registers: X : {⊥} ∪ {1, . . . , n}; Y : boolean
Initialization: X := ⊥; Y := false

Splitter access by process pi:
1: X := i;
2: if Y then
3: return right
4: else
5: Y := true
6: if X = i then
7: return stop
8: else
9: return left

10: end if
11: end if

4.3. STORE & COLLECT 39

k processors

at most 1

left

at most k−1

right

at most k−1

stop

Figure 4.10: A Splitter

To obtain adaptive collect algorithms, we need a synchronization primitive,
called a splitter.

Definition 4.11 (Splitter). A splitter is a synchronization primitive with the
following characteristic. A process entering a splitter exits with either stop,
left, or right. If k processes enter a splitter, at most one process exits with
stop and at most k − 1 processes exit with left and right, respectively.

Hence, it is guaranteed that if a single process enters the splitter, then it
obtains stop, and if two or more processes enter the splitter, then there is
at most one process obtaining stop and there are two processes that obtain
different values (i.e., either there is exactly one stop or there is at least one
left and at least one right). For an illustration, see Figure 4.10. The code
implementing a splitter is given by Algorithm 4.9.

Lemma 4.12. Algorithm 4.9 correctly implements a splitter.

Proof. Assume that k processes enter the splitter. Because the first process that
checks whether Y = true in line 2 will find that Y = false, not all processes
return right. Next, assume that i is the last process that sets X := i. If i does
not return right, it will find X = i in line 6 and therefore return stop. Hence,
there is always a process that does not return left. It remains to show that at
most 1 process returns stop. For the sake of contradiction, assume pi and pj
are two processes that return stop and assume that pi sets X := i before pj sets
X := j. Both processes need to check whether Y is true before one of them
sets Y := true. Hence, they both complete the assignment in line 1 before the
first one of them checks the value of X in line 6. Hence, by the time pi arrives
at line 6, X 6= i (pj and maybe some other processes have overwritten X by
then). Therefore, pi does not return stop and we get a contradiction to the
assumption that both pi and pj return stop.

4.3.3 Binary Splitter Tree

Assume that we are given 2n − 1 splitters and that for every splitter S, there
is an additional shared variable ZS : {⊥} ∪ {1, . . . , n} that is initialized to ⊥
and an additional shared variable MS : boolean that is initialized to false. We
call a splitter S marked if MS = true. The 2n − 1 splitters are arranged in a
complete binary tree of height n − 1. Let S(v) be the splitter associated with
a node v of the binary tree. The store and collect operations are given by
Algorithm 4.13.

40 CHAPTER 4. SHARED MEMORY

Algorithm 4.13 Adaptive Collect: Binary Tree Algorithm

Operation store(val) (by process pi) :
1: Ri := val
2: if first store operation by pi then
3: v := root node of binary tree
4: α := result of entering splitter S(v);
5: MS(v) := true
6: while α 6= stop do
7: if α = left then
8: v := left child of v
9: else

10: v := right child of v
11: end if
12: α := result of entering splitter S(v);
13: MS(v) := true
14: end while
15: ZS(v) := i
16: end if

Operation collect:
Traverse marked part of binary tree:
17: for all marked splitters S do
18: if ZS 6= ⊥ then
19: i := ZS ; V (pi) := Ri // read value of process pi
20: end if
21: end for // V (pi) = ⊥ for all other processes

Theorem 4.14. Algorithm 4.13 correctly implements store and collect.
Let k be the number of participating processes. The step complexity of the first
store of a process pi is O(k), the step complexity of every additional store of
pi is O(1), and the step complexity of collect is O(k).

Proof. Because at most one process can stop at a splitter, it is sufficient to show
that every process stops at some splitter at depth at most k − 1 ≤ n− 1 when
invoking the first store operation to prove correctness. We prove that at most
k − i processes enter a subtree at depth i (i.e., a subtree where the root has
distance i to the root of the whole tree). By definition of k, the number of
processes entering the splitter at depth 0 (i.e., at the root of the binary tree)
is k. For i > 1, the claim follows by induction because of the at most k − i
processes entering the splitter at the root of a depth i subtree, at most k− i− 1
obtain left and right, respectively. Hence, at the latest when reaching depth
k − 1, a process is the only process entering a splitter and thus obtains stop.
It thus also follows that the step complexity of the first invocation of store is
O(k).

To show that the step complexity of collect is O(k), we first observe
that the marked nodes of the binary tree are connected, and therefore can
be traversed by only reading the variables MS associated to them and their
neighbors. Hence, showing that at most 2k − 1 nodes of the binary tree are
marked is sufficient. Let xk be the maximum number of marked nodes in a tree,

4.3. STORE & COLLECT 41

left

right

Figure 4.15: 5× 5 Splitter Matrix

where k processes access the root. We claim that xk ≤ 2k − 1, which is true
for k = 1 because a single process entering a splitter will always compute stop.
Now assume the inequality holds for 1, . . . , k − 1. Not all k processes may exit
the splitter with left (or right), i.e., kl ≤ k − 1 processes will turn left and
kr ≤ min{k − kl, k − 1} turn right. The left and right children of the root are
the roots of their subtrees, hence the induction hypothesis yields

xk = xkl + xkr + 1 ≤ (2kl − 1) + (2kr − 1) + 1 ≤ 2k − 1,

concluding induction and proof.

Remarks:

• The step complexities of Algorithm 4.13 are very good. Clearly, the
step complexity of the collect operation is asymptotically optimal.
In order for the algorithm to work, we however need to allocate the
memory for the complete binary tree of depth n− 1. The space com-
plexity of Algorithm 4.13 therefore is exponential in n. We will next
see how to obtain a polynomial space complexity at the cost of a worse
collect step complexity.

4.3.4 Splitter Matrix

Instead of arranging splitters in a binary tree, we arrange n2 splitters in an n×n
matrix as shown in Figure 4.15. The algorithm is analogous to Algorithm 4.13.
The matrix is entered at the top left. If a process receives left, it next visits
the splitter in the next row of the same column. If a process receives right, it
next visits the splitter in the next column of the same row. Clearly, the space
complexity of this algorithm is O(n2). The following theorem gives bounds on
the step complexities of store and collect.

42 CHAPTER 4. SHARED MEMORY

Theorem 4.16. Let k be the number of participating processes. The step com-
plexity of the first store of a process pi is O(k), the step complexity of every
additional store of pi is O(1), and the step complexity of collect is O(k2).

Proof. Let the top row be row 0 and the left-most column be column 0. Let xi
be the number of processes entering a splitter in row i. By induction on i, we
show that xi ≤ k − i. Clearly, x0 ≤ k. Let us therefore consider the case i > 0.
Let j be the largest column such that at least one process visits the splitter in
row i−1 and column j. By the properties of splitters, not all processes entering
the splitter in row i− 1 and column j obtain left. Therefore, not all processes
entering a splitter in row i − 1 move on to row i. Because at least one process
stays in every row, we get that xi ≤ k − i. Similarly, the number of processes
entering column j is at most k − j. Hence, every process stops at the latest in
row k − 1 and column k − 1 and the number of marked splitters is at most k2.
Thus, the step complexity of collect is at most O(k2). Because the longest
path in the splitter matrix is 2k, the step complexity of store is O(k).

Remarks:

• With a slightly more complicated argument, it is possible to show that
the number of processes entering the splitter in row i and column j
is at most k − i− j. Hence, it suffices to only allocate the upper left
half (including the diagonal) of the n× n matrix of splitters.

• The binary tree algorithm can be made space efficient by using a
randomized version of a splitter. Whenever returning left or right, a
randomized splitter returns left or right with probability 1/2. With
high probability, it then suffices to allocate a binary tree of depth
O(log n).

• Recently, it has been shown that with a considerably more complicated
deterministic algorithm, it is possible to achieve O(k) step complexity
and O(n2) space complexity.

Chapter Notes

Already in 1965 Edsger Dijkstra gave a deadlock-free solution for mutual ex-
clusion [Dij65]. Later, Maurice Herlihy suggested consensus-numbers [Her91],
where he proved the “universality of consensus”, i.e., the power of a shared
memory system is determined by the consensus-number. For this work, Mau-
rice Herlihy was awarded the Dijkstra Prize in Distributed Computing in 2003.
Petersons Algorithm is due to [PF77, Pet81], and adaptive collect was studied
in the sequence of papers [MA95, AFG02, AL05, AKP+06].

Bibliography

[AFG02] Hagit Attiya, Arie Fouren, and Eli Gafni. An adaptive collect algo-
rithm with applications. Distributed Computing, 15(2):87–96, 2002.

BIBLIOGRAPHY 43

[AKP+06] Hagit Attiya, Fabian Kuhn, C. Greg Plaxton, Mirjam Wattenhofer,
and Roger Wattenhofer. Efficient adaptive collect using randomiza-
tion. Distributed Computing, 18(3):179–188, 2006.

[AL05] Yehuda Afek and Yaron De Levie. Space and Step Complexity Effi-
cient Adaptive Collect. In DISC, pages 384–398, 2005.

[Dij65] Edsger W. Dijkstra. Solution of a problem in concurrent program-
ming control. Commun. ACM, 8(9):569, 1965.

[Her91] Maurice Herlihy. Wait-Free Synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124–149, 1991.

[MA95] Mark Moir and James H. Anderson. Wait-Free Algorithms for Fast,
Long-Lived Renaming. Sci. Comput. Program., 25(1):1–39, 1995.

[Pet81] J.L. Peterson. Myths About the Mutual Exclusion Problem. Infor-
mation Processing Letters, 12(3):115–116, 1981.

[PF77] G.L. Peterson and M.J. Fischer. Economical solutions for the crit-
ical section problem in a distributed system. In Proceedings of the
ninth annual ACM symposium on Theory of computing, pages 91–97.
ACM, 1977.

44 CHAPTER 4. SHARED MEMORY

Chapter 5

Distributed Sorting

“Indeed, I believe that virtually every important aspect of
programming arises somewhere in the context of sorting [and searching]!”

– Donald E. Knuth, The Art of Computer Programming

In this chapter we study a classic problem in computer science—sorting—
from a distributed computing perspective. In contrast to an orthodox single-
processor sorting algorithm, no node has access to all data, instead the to-be-
sorted values are distributed. Distributed sorting then boils down to:

Definition 5.1 (Sorting). We choose a graph with n nodes v1, . . . , vn. Initially
each node stores a value. After applying a sorting algorithm, node vk stores the
kth smallest value.

Remarks:

• What if we route all values to the same central node v, let v sort the
values locally, and then route them to the correct destinations?! Ac-
cording to the message passing model studied in the first few chapters
this is perfectly legal. With a star topology sorting finishes in O(1)
time!

Definition 5.2 (Node Contention). In each step of a synchronous algorithm,
each node can only send and receive O(1) messages containing O(1) values, no
matter how many neighbors the node has.

Remarks:

• Using Definition 5.2 sorting on a star graph takes linear time.

5.1 Array & Mesh

To get a better intuitive understanding of distributed sorting, we start with two
simple topologies, the array and the mesh. Let us begin with the array:

45

46 CHAPTER 5. DISTRIBUTED SORTING

Algorithm 5.3 Odd/Even Sort

1: Given an array of n nodes (v1, . . . , vn), each storing a value (not sorted).
2: repeat
3: Compare and exchange the values at nodes i and i+ 1, i odd
4: Compare and exchange the values at nodes i and i+ 1, i even
5: until done

Remarks:

• The compare and exchange primitive in Algorithm 5.3 is defined as
follows: Let the value stored at node i be vi. After the compare and
exchange node i stores value min(vi, vi+1) and node i+ 1 stores value
max(vi, vi+1).

• How fast is the algorithm, and how can we prove correctness/efficiency?

• The most interesting proof uses the so-called 0-1 Sorting Lemma. It
allows us to restrict our attention to an input of 0’s and 1’s only, and
works for any “oblivious comparison-exchange” algorithm. (Oblivious
means: Whether you exchange two values must only depend on the
relative order of the two values, and not on anything else.)

Lemma 5.4 (0-1 Sorting Lemma). If an oblivious comparison-exchange algo-
rithm sorts all inputs of 0’s and 1’s, then it sorts arbitrary inputs.

Proof. We prove the opposite direction (does not sort arbitrary inputs ⇒ does
not sort 0’s and 1’s). Assume that there is an input x = x1, . . . , xn that is not
sorted correctly. Then there is a smallest value k such that the value at node
vk after running the sorting algorithm is strictly larger than the kth smallest
value x(k). Define an input x∗i = 0 ⇔ xi ≤ x(k), x∗i = 1 else. Whenever the
algorithm compares a pair of 1’s or 0’s, it is not important whether it exchanges
the values or not, so we may simply assume that it does the same as on the
input x. On the other hand, whenever the algorithm exchanges some values
x∗i = 0 and x∗j = 1, this means that xi ≤ x(k) < xj . Therefore, in this case the
respective compare-exchange operation will do the same on both inputs. We
conclude that the algorithm will order x∗ the same way as x, i.e., the output
with only 0’s and 1’s will also not be correct.

Theorem 5.5. Algorithm 5.3 sorts correctly in n steps.

Proof. Thanks to Lemma 5.4 we only need to consider an array with 0’s and
1’s. Let j1 be the node with the rightmost (highest index) 1. If j1 is odd (even)
it will move in the first (second) step. In any case it will move right in every
following step until it reaches the rightmost node vn. Let jk be the node with
the kth rightmost 1. We show by induction that jk is not “blocked” anymore
(constantly moves until it reaches destination!) after step k. We have already
anchored the induction at k = 1. Since jk−1 moves after step k − 1, jk gets
a right 0-neighbor for each step after step k. (For matters of presentation we
omitted a couple of simple details.)

5.1. ARRAY & MESH 47

Remarks:

• Linear time is not very exciting, maybe we can do better by using a
different topology? Let’s try a mesh (a.k.a. grid) topology first.

Algorithm 5.6 Shearsort

1: We are given a mesh with m rows and m columns, m even, n = m2.
2: The sorting algorithm operates in phases, and uses the odd/even sort algo-

rithm on rows or columns.
3: repeat
4: In the odd phases 1, 3, . . . we sort all the rows, in the even phases 2, 4, . . .

we sort all the columns, such that:
5: Columns are sorted such that the small values move up.
6: Odd rows (1, 3, . . . ,m− 1) are sorted such that small values move left.
7: Even rows (2, 4, . . . ,m) are sorted such that small values move right.
8: until done

Theorem 5.7. Algorithm 5.6 sorts n values in
√
n(log n+1) time in snake-like

order.

Proof. Since the algorithm is oblivious, we can use Lemma 5.4. We show that
after a row and a column phase, half of the previously unsorted rows will be
sorted. More formally, let us call a row with only 0’s (or only 1’s) clean, a row
with 0’s and 1’s is dirty. At any stage, the rows of the mesh can be divided
into three regions. In the north we have a region of all-0 rows, in the south all-1
rows, in the middle a region of dirty rows. Initially all rows can be dirty. Since
neither row nor column sort will touch already clean rows, we can concentrate
on the dirty rows.

First we run an odd phase. Then, in the even phase, we run a peculiar
column sorter: We group two consecutive dirty rows into pairs. Since odd and
even rows are sorted in opposite directions, two consecutive dirty rows look as
follows:

00000 . . . 11111

11111 . . . 00000

Such a pair can be in one of three states. Either we have more 0’s than 1’s, or
more 1’s than 0’s, or an equal number of 0’s and 1’s. Column-sorting each pair
will give us at least one clean row (and two clean rows if “|0| = |1|”). Then
move the cleaned rows north/south and we will be left with half the dirty rows.

At first glance it appears that we need such a peculiar column sorter. How-
ever, any column sorter sorts the columns in exactly the same way (we are very
grateful to have Lemma 5.4!).

All in all we need 2 logm = log n phases to remain only with 1 dirty row in
the middle which will be sorted (not cleaned) with the last row-sort.

48 CHAPTER 5. DISTRIBUTED SORTING

Remarks:

• There are algorithms that sort in 3m + o(m) time on an m by m
mesh (by diving the mesh into smaller blocks). This is asymptotically
optimal, since a value might need to move 2m times.

• Such a
√
n-sorter is cute, but we are more ambitious. There are non-

distributed sorting algorithms such as quicksort, heapsort, or merge-
sort that sort n values in (expected) O(n log n) time. Using our n-fold
parallelism effectively we might therefore hope for a distributed sort-
ing algorithm that sorts in time O(log n)!

5.2 Sorting Networks

In this section we construct a graph topology which is carefully manufactured
for sorting. This is a deviation from previous chapters where we always had to
work with the topology that was given to us. In many application areas (e.g.
peer-to-peer networks, communication switches, systolic hardware) it is indeed
possible (in fact, crucial!) that an engineer can build the topology best suited
for her application.

Definition 5.8 (Sorting Networks). A comparator is a device with two inputs
x, y and two outputs x′, y′ such that x′ = min(x, y) and y′ = max(x, y). We
construct so-called comparison networks that consist of wires that connect com-
parators (the output port of a comparator is sent to an input port of another
comparator). Some wires are not connected to comparator outputs, and some
are not connected to comparator inputs. The first are called input wires of the
comparison network, the second output wires. Given n values on the input wires,
a sorting network ensures that the values are sorted on the output wires. We will
also use the term width to indicate the number of wires in the sorting network.

Remarks:

• The odd/even sorter explained in Algorithm 5.3 can be described as
a sorting network.

• Often we will draw all the wires on n horizontal lines (n being the
“width” of the network). Comparators are then vertically connecting
two of these lines.

• Note that a sorting network is an oblivious comparison-exchange net-
work. Consequently we can apply Lemma 5.4 throughout this section.
An example sorting network is depicted in Figure 5.9.

Definition 5.10 (Depth). The depth of an input wire is 0. The depth of a
comparator is the maximum depth of its input wires plus one. The depth of
an output wire of a comparator is the depth of the comparator. The depth of a
comparison network is the maximum depth (of an output wire).

Definition 5.11 (Bitonic Sequence). A bitonic sequence is a sequence of num-
bers that first monotonically increases, and then monotonically decreases, or
vice versa.

5.2. SORTING NETWORKS 49

Figure 5.9: A sorting network.

Remarks:

• < 1, 4, 6, 8, 3, 2 > or < 5, 3, 2, 1, 4, 8 > are bitonic sequences.

• < 9, 6, 2, 3, 5, 4 > or < 7, 4, 2, 5, 9, 8 > are not bitonic.

• Since we restrict ourselves to 0’s and 1’s (Lemma 5.4), bitonic se-
quences have the form 0i1j0k or 1i0j1k for i, j, k ≥ 0.

Algorithm 5.12 Half Cleaner

1: A half cleaner is a comparison network of depth 1, where we compare wire
i with wire i+ n/2 for i = 1, . . . , n/2 (we assume n to be even).

Lemma 5.13. Feeding a bitonic sequence into a half cleaner (Algorithm 5.12),
the half cleaner cleans (makes all-0 or all-1) either the upper or the lower half
of the n wires. The other half is bitonic.

Proof. Assume that the input is of the form 0i1j0k for i, j, k ≥ 0. If the midpoint
falls into the 0’s, the input is already clean/bitonic and will stay so. If the
midpoint falls into the 1’s the half cleaner acts as Shearsort with two adjacent
rows, exactly as in the proof of Theorem 5.7. The case 1i0j1k is symmetric.

Algorithm 5.14 Bitonic Sequence Sorter

1: A bitonic sequence sorter of width n (n being a power of 2) consists of a
half cleaner of width n, and then two bitonic sequence sorters of width n/2
each.

2: A bitonic sequence sorter of width 1 is empty.

Lemma 5.15. A bitonic sequence sorter (Algorithm 5.14) of width n sorts
bitonic sequences. It has depth log n.

50 CHAPTER 5. DISTRIBUTED SORTING

Proof. The proof follows directly from the Algorithm 5.14 and Lemma 5.13.

Remarks:

• Clearly we want to sort arbitrary and not only bitonic sequences! To
do this we need one more concept, merging networks.

Algorithm 5.16 Merging Network

1: A merging network of width n is a merger of width n followed by two bitonic
sequence sorters of width n/2. A merger is a depth-one network where we
compare wire i with wire n− i+ 1, for i = 1, . . . , n/2.

Remarks:

• Note that a merging network is a bitonic sequence sorter where we
replace the (first) half-cleaner by a merger.

Lemma 5.17. A merging network of width n (Algorithm 5.16) merges two
sorted input sequences of length n/2 each into one sorted sequence of length n.

Proof. We have two sorted input sequences. Essentially, a merger does to two
sorted sequences what a half cleaner does to a bitonic sequence, since the lower
part of the input is reversed. In other words, we can use the same argument as
in Theorem 5.7 and Lemma 5.13: Again, after the merger step either the upper
or the lower half is clean, the other is bitonic. The bitonic sequence sorters
complete sorting.

Remarks:

• How do you sort n values when you are able to merge two sorted
sequences of size n/2? Piece of cake, just apply the merger recursively.

Algorithm 5.18 Batcher’s “Bitonic” Sorting Network

1: A batcher sorting network of width n consists of two batcher sorting net-
works of width n/2 followed by a merging network of width n. (See Figure
5.19.)

2: A batcher sorting network of width 1 is empty.

Theorem 5.20. A sorting network (Algorithm 5.18) sorts an arbitrary sequence
of n values. It has depth O(log2 n).

Proof. Correctness is immediate: at recursive stage k (k = 1, 2, 3, . . . , log n) we
merge 2k) sorted sequences into 2k−1 sorted sequences. The depth d(n) of the
sorting network of level n is the depth of a sorting network of level n/2 plus
the depth m(n) of a merging network with width n. The depth of a sorter of
level 1 is 0 since the sorter is empty. Since a merging network of width n has
the same depth as a bitonic sequence sorter of width n, we know by Lemma
5.15 that m(n) = log n. This gives a recursive formula for d(n) which solves to
d(n) = 1

2 log2 n+ 1
2 log n.

5.3. COUNTING NETWORKS 51

..
. B
[w

/2
]

B
[w

/2
]

B
[w

/2
]

M
[w

]

B[w]

..
.

..
.

..
.

..
.

..
.

Figure 5.19: A batcher sorting network

Remarks:

• Simulating Batcher’s sorting network on an ordinary sequential com-
puter takes time O(n log2 n). As said, there are sequential sorting
algorithms that sort in asymptotically optimal time O(n log n). So
a natural question is whether there is a sorting network with depth
O(log n). Such a network would have some remarkable advantages
over sequential asymptotically optimal sorting algorithms such as heap-
sort. Apart from being highly parallel, it would be completely obliv-
ious, and as such perfectly suited for a fast hardware solution. In
1983, Ajtai, Komlos, and Szemeredi presented a celebrated O(log n)
depth sorting network. (Unlike Batcher’s sorting network the constant
hidden in the big-O of the “AKS” sorting network is too large to be
practical, however.)

• It can be shown that Batcher’s sorting network and similarly others
can be simulated by a Butterfly network and other hypercubic net-
works, see next chapter.

• What if a sorting network is asynchronous?!? Clearly, using a synchro-
nizer we can still sort, but it is also possible to use it for something
else. Check out the next section!

5.3 Counting Networks

In this section we address distributed counting, a distributed service which can
for instance be used for load balancing.

Definition 5.21 (Distributed Counting). A distributed counter is a variable
that is common to all processors in a system and that supports an atomic test-

52 Counting Networks

and-increment operation. The operation delivers the system’s counter value to
the requesting processor and increments it.

Remarks:

• A naive distributed counter stores the system’s counter value with a
distinguished central node. When other nodes initiate the test-and-
increment operation, they send a request message to the central node
and in turn receive a reply message with the current counter value.
However, with a large number of nodes operating on the distributed
counter, the central processor will become a bottleneck. There will
be a congestion of request messages at the central processor, in other
words, the system will not scale.

• Is a scalable implementation (without any kind of bottleneck) of such
a distributed counter possible, or is distributed counting a problem
which is inherently centralized?!?

• Distributed counting could for instance be used to implement a load
balancing infrastructure, i.e. by sending the job with counter value i
(modulo n) to server i (out of n possible servers).

Definition 5.22 (Balancer). A balancer is an asynchronous flip-flop which
forwards messages that arrive on the left side to the wires on the right, the first
to the upper, the second to the lower, the third to the upper, and so on.

Algorithm 5.23 Bitonic Counting Network.

1: Take Batcher’s bitonic sorting network of width w and replace all the com-
parators with balancers.

2: When a node wants to count, it sends a message to an arbitrary input wire.
3: The message is then routed through the network, following the rules of the

asynchronous balancers.
4: Each output wire is completed with a “mini-counter.”
5: The mini-counter of wire k replies the value “k + i · w” to the initiator of

the ith message it receives.

Definition 5.24 (Step Property). A sequence y0, y1, . . . , yw−1 is said to have
the step property, if 0 ≤ yi − yj ≤ 1, for any i < j.

Remarks:

• If the output wires have the step property, then with r requests, ex-
actly the values 1, . . . , r will be assigned by the mini-counters. All we
need to show is that the counting network has the step property. For
that we need some additional facts...

Facts 5.25. For a balancer, we denote the number of consumed messages on the
ith input wire with xi, i = 0, 1. Similarly, we denote the number of sent messages
on the ith output wire with yi, i = 0, 1. A balancer has these properties:

(1) A balancer does not generate output-messages; that is, x0 + x1 ≥ y0 + y1

in any state.

53

(2) Every incoming message is eventually forwarded. In other words, if we
are in a quiescent state (no message in transit), then x0 + x1 = y0 + y1.

(3) The number of messages sent to the upper output wire is at most one
higher than the number of messages sent to the lower output wire: in any
state y0 = d(y0 + y1)/2e (thus y1 = b(y0 + y1)/2c).

Facts 5.26. If a sequence y0, y1, . . . , yw−1 has the step property,

(1) then all its subsequences have the step property.

(2) then its even and odd subsequences satisfy

w/2−1∑
i=0

y2i =

⌈
1

2

w−1∑
i=0

yi

⌉
and

w/2−1∑
i=0

y2i+1 =

⌊
1

2

w−1∑
i=0

yi

⌋
.

Facts 5.27. If two sequences x0, x1, . . . , xw−1 and y0, y1, . . . , yw−1 have the step
property,

(1) and
∑w−1
i=0 xi =

∑w−1
i=0 yi, then xi = yi for i = 0, . . . , w − 1.

(2) and
∑w−1
i=0 xi =

∑w−1
i=0 yi+1, then there exists a unique j (j = 0, 1, . . . , w−

1) such that xj = yj + 1, and xi = yi for i = 0, . . . , w − 1, i 6= j.

Remarks:

• An alternative representation of Batcher’s network has been intro-
duced in [AHS94]. It is isomorphic to Batcher’s network, and relies on
a Merger Network M [w] which is defined inductively: M [w] consists
of two M [w/2] networks (an upper and a lower one) whose output
is fed to w/2 balancers. The upper balancer merges the even sub-
sequence x0, x2, . . . , xw−2, while the lower balancer merges the odd
subsequence x1, x3, . . . , xw−1. Call the outputs of these two M [w/2],
z and z′ respectively. The final stage of the network combines z and z′

by sending each pair of wires zi and z′i into a balancer whose outputs
yield y2i and y2i+1.

• It is enough to prove that a merger network M [w] preserves the step
property.

Lemma 5.28. Let M [w] be a merger network of width w. In a quiescent state
(no message in transit), if the inputs x0, x1, . . . , xw/2−1 resp. xw/2, xw/2+1, . . . , xw−1

have the step property, then the output y0, y1, . . . , yw−1 has the step property.

Proof. By induction on the width w.
For w = 2: M [2] is a balancer and a balancer’s output has the step property

(Fact 5.25.3).
For w > 2: Let z resp. z′ be the output of the upper respectively lower

M [w/2] subnetwork. Since x0, x1, . . . , xw/2−1 and xw/2, xw/2+1, . . . , xw−1 both
have the step property by assumption, their even and odd subsequences also
have the step property (Fact 5.26.1). By induction hypothesis, the output of

both M [w/2] subnetworks have the step property. Let Z :=
∑w/2−1
i=0 zi and

54 Counting Networks

Z ′ :=
∑w/2−1
i=0 z′i. From Fact 5.26.2 we conclude that Z = d 1

2

∑w/2−1
i=0 xie +

b 1
2

∑w−1
i=w/2 xic and Z ′ = b 1

2

∑w/2−1
i=0 xic + d 1

2

∑w−1
i=w/2 xie. Since dae + bbc and

bac+ dbe differ by at most 1 we know that Z and Z ′ differ by at most 1.
If Z = Z ′, Fact 5.27.1 implies that zi = z′i for i = 0, . . . , w/2− 1. Therefore,

the output of M [w] is yi = zbi/2c for i = 0, . . . , w − 1. Since z0, . . . , zw/2−1 has
the step property, so does the output of M [w] and the lemma follows.

If Z and Z ′ differ by 1, Fact 5.27.2 implies that zi = z′i for i = 0, . . . , w/2−1,
except a unique j such that zj and z′j differ by only 1, for j = 0, . . . , w/2 − 1.
Let l := min(zj , z

′
j). Then, the output yi (with i < 2j) is l + 1. The output

yi (with i > 2j + 1) is l. The output y2j and y2j+1 are balanced by the final
balancer resulting in y2j = l + 1 and y2j+1 = l. Therefore M [w] preserves the
step property.

A bitonic counting network is constructed to fulfill Lemma 5.28, i.e., the
final output comes from a Merger whose upper and lower inputs are recursively
merged. Therefore, the following theorem follows immediately.

Theorem 5.29 (Correctness). In a quiescent state, the w output wires of a
bitonic counting network of width w have the step property.

Remarks:

• Is every sorting network also a counting network? No. But surpris-
ingly, the other direction is true!

Theorem 5.30 (Counting vs. Sorting). If a network is a counting network
then it is also a sorting network, but not vice versa.

Proof. There are sorting networks that are not counting networks (e.g. odd/even
sort, or insertion sort). For the other direction, let C be a counting network
and I(C) be the isomorphic network, where every balancer is replaced by a
comparator. Let I(C) have an arbitrary input of 0’s and 1’s; that is, some of
the input wires have a 0, all others have a 1. There is a message at C’s ith

input wire if and only if I(C)’s i input wire is 0. Since C is a counting network,
all messages are routed to the upper output wires. I(C) is isomorphic to C,
therefore a comparator in I(C) will receive a 0 on its upper (lower) wire if
and only if the corresponding balancer receives a message on its upper (lower)
wire. Using an inductive argument, the 0’s and 1’s will be routed through I(C)
such that all 0’s exit the network on the upper wires whereas all 1’s exit the
network on the lower wires. Applying Lemma 5.4 shows that I(C) is a sorting
network.

Remarks:

• We claimed that the counting network is correct. However, it is only
correct in a quiescent state.

Definition 5.31 (Linearizable). A system is linearizable if the order of the
values assigned reflects the real-time order in which they were requested. More
formally, if there is a pair of operations o1, o2, where operation o1 terminates be-
fore operation o2 starts, and the logical order is “o2 before o1”, then a distributed
system is not linearizable.

55

Lemma 5.32 (Linearizability). The bitonic counting network is not lineariz-
able.

Proof. Consider the bitonic counting network with width 4 in Figure 5.33: As-
sume that two inc operations were initiated and the corresponding messages
entered the network on wire 0 and 2 (both in light gray color). After hav-
ing passed the second resp. the first balancer, these traversing messages “fall
asleep”; In other words, both messages take unusually long time before they are
received by the next balancer. Since we are in an asynchronous setting, this
may be the case.

0

zzz

zzz

2

Figure 5.33: Linearizability Counter Example.

In the meantime, another inc operation (medium gray) is initiated and enters
the network on the bottom wire. The message leaves the network on wire 2,
and the inc operation is completed.

Strictly afterwards, another inc operation (dark gray) is initiated and enters
the network on wire 1. After having passed all balancers, the message will leave
the network wire 0. Finally (and not depicted in Figure 5.33), the two light gray
messages reach the next balancer and will eventually leave the network on wires
1 resp. 3. Because the dark gray and the medium gray operation do conflict
with Definition 5.31, the bitonic counting network is not linearizable.

Remarks:

• Note that the example in Figure 5.33 behaves correctly in the quiescent
state: Finally, exactly the values 0, 1, 2, 3 are allotted.

• It was shown that linearizability comes at a high price (the depth
grows linearly with the width).

Chapter Notes

The technique used for the famous lower bound of comparison-based sequential
sorting first appeared in [FJ59]. Comprehensive introductions to the vast field of
sorting can certainly be found in [Knu73]. Knuth also presents the 0/1 principle
in the context of sorting networks, supposedly as a special case of a theorem
for decision trees of W. G. Bouricius, and includes a historic overview of sorting
network research.

56 Counting Networks

Using a rather complicated proof not based on the 0/1 principle, [Hab72]
first presented and analyzed Odd/Even sort on arrays. Shearsort for grids first
appeared in [SSS86] as a sorting algorithm both easy to implement and to prove
correct. Later it was generalized to meshes with higher dimension in [SS89]. A
bubble sort based algorithm is presented in [SI86]; it takes time O(

√
n log n),

but is fast in practice. Nevertheless, already [TK77] presented an asymptotically
optimal algorithms for grid network which runs in 3n+O(n2/3 log n) rounds for
an n×n grid. A simpler algorithm was later found by [SS86] using 3n+O(n3/4)
rounds.

Batcher presents his famous O(log2 n) depth sorting network in [Bat68]. It
took until [AKS83] to find a sorting network with asymptotically optimal depth
O(log n). Unfortunately, the constants hidden in the big-O-notation render it
rather impractical.

The notion of counting networks was introduced in [AHS91], and shortly
afterward the notion of linearizability was studied by [HSW91]. Follow-up work
in [AHS94] presents bitonic counting networks and studies contention in the
counting network. An overview of research on counting networks can be found
in [BH98].

Bibliography

[AHS91] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks
and multi-processor coordination. In Proceedings of the twenty-third
annual ACM symposium on Theory of computing, STOC ’91, pages
348–358, New York, NY, USA, 1991. ACM.

[AHS94] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks.
J. ACM, 41(5):1020–1048, September 1994.

[AKS83] Miklos Ajtai, Janos Komlós, and Endre Szemerédi. An 0(n log n)
sorting network. In Proceedings of the fifteenth annual ACM sympo-
sium on Theory of computing, STOC ’83, pages 1–9, New York, NY,
USA, 1983. ACM.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In
Proceedings of the April 30–May 2, 1968, spring joint computer con-
ference, AFIPS ’68 (Spring), pages 307–314, New York, NY, USA,
1968. ACM.

[BH98] Costas Busch and Maurice Herlihy. A Survey on Counting Networks.
In WDAS, pages 13–20, 1998.

[FJ59] Lester R. Ford and Selmer M. Johnson. A Tournament Problem. The
American Mathematical Monthly, 66(5):pp. 387–389, 1959.

[Hab72] Nico Habermann. Parallel neighbor-sort (or the glory of the induc-
tion principle). Paper 2087, Carnegie Mellon University - Computer
Science Departement, 1972.

[HSW91] M. Herlihy, N. Shavit, and O. Waarts. Low contention linearizable
counting. In Foundations of Computer Science, 1991. Proceedings.,
32nd Annual Symposium on, pages 526–535, oct 1991.

BIBLIOGRAPHY 57

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume III:
Sorting and Searching. Addison-Wesley, 1973.

[SI86] Kazuhiro Sado and Yoshihide Igarashi. Some parallel sorts on a mesh-
connected processor array and their time efficiency. Journal of Parallel
and Distributed Computing, 3(3):398–410, 1986.

[SS86] Claus Peter Schnorr and Adi Shamir. An optimal sorting algorithm
for mesh connected computers. In Proceedings of the eighteenth annual
ACM symposium on Theory of computing, STOC ’86, pages 255–263,
New York, NY, USA, 1986. ACM.

[SS89] Isaac D. Scherson and Sandeep Sen. Parallel sorting in two-
dimensional VLSI models of computation. Computers, IEEE Trans-
actions on, 38(2):238–249, feb 1989.

[SSS86] Isaac Scherson, Sandeep Sen, and Adi Shamir. Shear sort – A true
two-dimensional sorting technique for VLSI networks. 1986 Interna-
tional Conference on Parallel Processing, 1986.

[TK77] Clark David Thompson and Hsiang Tsung Kung. Sorting on a mesh-
connected parallel computer. Commun. ACM, 20(4):263–271, April
1977.

58 Counting Networks

Chapter 6

Shared Objects

Assume that there is a common resource (e.g. a common variable or data struc-
ture), which different nodes in a network need to access from time to time. If
the nodes are allowed to change the common object when accessing it, we need
to guarantee that no two nodes have access to the object at the same time. In
order to achieve this mutual exclusion, we need protocols that allow the nodes
of a network to store and manage access to such a shared object.

6.1 Centralized Solutions

A simple and obvious solution is to store the shared object at a central location
(see Algorithm 6.1).

Algorithm 6.1 Shared Object: Centralized Solution

Initialization: Shared object stored at root node r of a spanning tree of the
network graph (i.e., each node knows its parent in the spanning tree).

Accessing Object: (by node v)
1: v sends request up the tree
2: request processed by root r (atomically)
3: result sent down the tree to node v

Remarks:

• Instead of a spanning tree, one can use routing.

• Algorithm 6.1 works, but it is not very efficient. Assume that the
object is accessed by a single node v repeatedly. Then we get a high
message/time complexity. Instead v could store the object, or at least
cache it. But then, in case another node w accesses the object, we
might run into consistency problems.

• Alternative idea: The accessing node should become the new master
of the object. The shared object then becomes mobile. There exist
several variants of this idea. The simplest version is a home-based
solution like in Mobile IP (see Algorithm 6.2).

59

60 CHAPTER 6. SHARED OBJECTS

Algorithm 6.2 Shared Object: Home-Based Solution

Initialization: An object has a home base (a node) that is known to every
node. All requests (accesses to the shared object) are routed through the
home base.

Accessing Object: (by node v)
1: v acquires a lock at the home base, receives object.

Remarks:

• Home-based solutions suffer from the triangular routing problem. If
two close-by nodes take turns to access the object, all the traffic is
routed through the potentially far away home-base.

6.2 Arrow and Friends

We will now look at a protocol (called the Arrow algorithm) that always
moves the shared object to the node currently accessing it without creating
the triangular routing problem of home-based solutions. The protocol runs on
a precomputed spanning tree. Assume that the spanning tree is rooted at the
current position of the shared object. When a node u wants to access the shared
object, it sends out a find request towards the current position of the object.
While searching for the object, the edges of the spanning tree are redirected
such that in the end, the spanning tree is rooted at u (i.e., the new holder of the
object). The details of the algorithm are given by Algorithm 6.3. For simplicity,
we assume that a node u only starts a find request if u is not currently the holder
of the shared object and if u has finished all previous find requests (i.e., it is
not currently waiting to receive the object).

Remarks:

• The parent pointers in Algorithm 6.3 are only needed for the find
operation. Sending the variable to u in line 13 or to w.successor in
line 23 is done using routing (on the spanning tree or on the underlying
network).

• When we draw the parent pointers as arrows, in a quiescent moment
(where no “find” is in motion), the arrows all point towards the node
currently holding the variable (i.e., the tree is rooted at the node
holding the variable)

• What is really great about the Arrow algorithm is that it works in
a completely asynchronous and concurrent setting (i.e., there can be
many find requests at the same time).

Theorem 6.4. (Arrow, Analysis) In an asynchronous and concurrent setting,
a “find” operation terminates with message and time complexity D, where D is
the diameter of the spanning tree.

6.2. ARROW AND FRIENDS 61

Algorithm 6.3 Shared Object: Arrow Algorithm

Initialization: As for Algorithm 6.1, we are given a rooted spanning tree. Each
node has a pointer to its parent, the root r is its own parent. The variable
is initially stored at r. For all nodes v, v.successor := null, v.wait := false.

Start Find Request at Node u:
1: do atomically
2: u sends “find by u” message to parent node
3: u.parent := u
4: u.wait := true
5: end do

Upon w Receiving “Find by u” Message from Node v:
6: do atomically
7: if w.parent 6= w then
8: w sends “find by u” message to parent
9: w.parent := v

10: else
11: w.parent := v
12: if not w.wait then
13: send variable to u // w holds var. but does not need it any more
14: else
15: w.successor := u // w will send variable to u a.s.a.p.
16: end if
17: end if
18: end do

Upon w Receiving Shared Object:
19: perform operation on shared object
20: do atomically
21: w.wait := false
22: if w.successor 6= null then
23: send variable to w.successor
24: w.successor := null
25: end if
26: end do

62 CHAPTER 6. SHARED OBJECTS

Before proving Theorem 6.4, we prove the following lemma.

Lemma 6.5. An edge {u, v} of the spanning tree is in one of four states:

1.) Pointer from u to v (no message on the edge, no pointer from v to u)
2.) Message on the move from u to v (no pointer along the edge)
3.) Pointer from v to u (no message on the edge, no pointer from u to v)
4.) Message on the move from v to u (no pointer along the edge)

Proof. W.l.o.g., assume that initially the edge {u, v} is in state 1. With a
message arrival at u (or if u starts a “find by u” request, the edge goes to state
2. When the message is received at v, v directs its pointer to u and we are
therefore in state 3. A new message at v (or a new request initiated by v) then
brings the edge back to state 1.

Proof of Theorem 6.4. Since the “find” message will only travel on a static tree,
it suffices to show that it will not traverse an edge twice. Suppose for the sake
of contradiction that there is a first “find” message f that traverses an edge
e = {u, v} for the second time and assume that e is the first edge that is
traversed twice by f . The first time, f traverses e. Assume that e is first
traversed from u to v. Since we are on a tree, the second time, e must be
traversed from v to u. Because e is the first edge to be traversed twice, f must
re-visit e before visiting any other edges. Right before f reaches v, the edge e
is in state 2 (f is on the move) and in state 3 (it will immediately return with
the pointer from v to u). This is a contradiction to Lemma 6.5.

Remarks:

• Finding a good tree is an interesting problem. We would like to have
a tree with low stretch, low diameter, low degree, etc.

• It seems that the Arrow algorithm works especially well when lots of
“find” operations are initiated concurrently. Most of them will find a
“close-by” node, thus having low message/time complexity. For the
sake of simplicity we analyze a synchronous system.

Theorem 6.6. (Arrow, Concurrent Analysis) Let the system be synchronous.
Initially, the system is in a quiescent state. At time 0, a set S of nodes initiates
a “find” operation. The message complexity of all “find” operations is O(log |S|·
m∗) where m∗ is the message complexity of an optimal (with global knowledge)
algorithm on the tree.

Proof Sketch. Let d be the minimum distance of any node in S to the root.
There will be a node u1 at distance d from the root that reaches the root in
d time steps, turning all the arrows on the path to the root towards u1. A
node u2 that finds (is queued behind) u1 cannot distinguish the system from
a system where there was no request u1, and instead the root was initially
located at u1. The message cost of u2 is consequentially the distance between
u1 and u2 on the spanning tree. By induction the total message complexity is
exactly as if a collector starts at the root and then “greedily” collects tokens
located at the nodes in S (greedily in the sense that the collector always goes
towards the closest token). Greedy collecting the tokens is not a good strategy
in general because it will traverse the same edge more than twice in the worst

6.2. ARROW AND FRIENDS 63

case. An asymptotically optimal algorithm can also be translated into a depth-
first-search collecting paradigm, traversing each edge at most twice. In another
area of computer science, we would call the Arrow algorithm a nearest-neighbor
TSP heuristic (without returning to the start/root though), and the optimal
algorithm TSP-optimal. It was shown that nearest-neighbor has a logarithmic
overhead, which concludes the proof.

Remarks:

• An average request set S on a not-too-bad tree gives usually a much
better bound. However, there is an almost tight log |S|/ log log |S|
worst-case example.

• It was recently shown that Arrow can do as good in a dynamic setting
(where nodes are allowed to initiate requests at any time). In partic-
ular the message complexity of the dynamic analysis can be shown to
have a logD overhead only, where D is the diameter of the spanning
tree (note that for logarithmic trees, the overhead becomes log log n).

• What if the spanning tree is a star? Then with Theorem 6.4, each find
will terminate in 2 steps! Since also an optimal algorithm has message
cost 1, the algorithm is 2-competitive. . . ? Yes, but because of its high
degree the star center experiences contention. . . It can be shown that
the contention overhead is at most proportional to the largest degree
∆ of the spanning tree.

• Thought experiment: Assume a balanced binary spanning tree—by
Theorem 6.4, the message complexity per operation is log n. Because
a binary tree has maximum degree 3, the time per operation therefore
is at most 3 log n.

• There are better and worse choices for the spanning tree. The stretch
of an edge {u, v} is defined as distance between u and v in a span-
ning tree. The maximum stretch of a spanning tree is the maximum
stretch over all edges. A few years ago, it was shown how to construct
spanning trees that are O(log n)-stretch-competitive.

What if most nodes just want to read the shared object? Then it does
not make sense to acquire a lock every time. Instead we can use caching (see
Algorithm 6.7).

Theorem 6.8. Algorithm 6.7 is correct. More surprisingly, the message com-
plexity is 3-competitive (at most a factor 3 worse than the optimum).

Proof. Since the accesses do not overlap by definition, it suffices to show that
between two writes, we are 3-competitive. The sequence of accessing nodes is
w0, r1, r2, . . . , rk, w1. After w0, the object is stored at w0 and not cached
anywhere else. All reads cost twice the smallest subtree T spanning the write
w0 and all the reads since each read only goes to the first copy. The write w1

costs T plus the path P from w1 to T . Since any data management scheme
must use an edge in T and P at least once, and our algorithm uses edges in T
at most 3 times (and in P at most once), the theorem follows.

64 CHAPTER 6. SHARED OBJECTS

Algorithm 6.7 Shared Object: Read/Write Caching

• Nodes can either read or write the shared object. For simplicity we first
assume that reads or writes do not overlap in time (access to the object is
sequential).
• Nodes store three items: a parent pointer pointing to one of the neighbors

(as with Arrow), and a cache bit for each edge, plus (potentially) a copy of
the object.
• Initially the object is stored at a single node u; all the parent pointers point

towards u, all the cache bits are false.
• When initiating a read, a message follows the arrows (this time: without

inverting them!) until it reaches a cached version of the object. Then a copy
of the object is cached along the path back to the initiating node, and the
cache bits on the visited edges are set to true.
• A write at u writes the new value locally (at node u), then searches (follow the

parent pointers and reverse them towards u) a first node with a copy. Delete
the copy and follow (in parallel, by flooding) all edge that have the cache flag
set. Point the parent pointer towards u, and remove the cache flags.

Remarks:

• Concurrent reads are not a problem, also multiple concurrent reads
and one write work just fine.

• What about concurrent writes? To achieve consistency writes need to
invalidate the caches before writing their value. It is claimed that the
strategy then becomes 4-competitive.

• Is the algorithm also time competitive? Well, not really: The optimal
algorithm that we compare to is usually offline. This means it knows
the whole access sequence in advance. It can then cache the object
before the request even appears!

• Algorithms on trees are often simpler, but have the disadvantage that
they introduce the extra stretch factor. In a ring, for example, any
tree has stretch n− 1; so there is always a bad request pattern.

6.3. IVY AND FRIENDS 65

Algorithm 6.9 Shared Object: Pointer Forwarding

Initialization: Object is stored at root r of a precomputed spanning tree T (as
in the Arrow algorithm, each node has a parent pointer pointing towards
the object).

Accessing Object: (by node u)
1: follow parent pointers to current root r of T
2: send object from r to u
3: r.parent := u; u.parent := u; // u is the new root

Algorithm 6.10 Shared Object: Ivy

Initialization: Object is stored at root r of a precomputed spanning tree T
(as before, each node has a parent pointer pointing towards the object). For
simplicity, we assume that accesses to the object are sequential.

Start Find Request at Node u:
1: u sends “find by u” message to parent node
2: u.parent := u

Upon v receiving “Find by u” Message:
3: if v.parent = v then
4: send object to u
5: else
6: send “find by u” message to v.parent
7: end if
8: v.parent := u // u will become the new root

6.3 Ivy and Friends

In the following we study algorithms that do not restrict communication to a
tree. Of particular interest is the special case of a complete graph (clique). A
simple solution for this case is given by Algorithm 6.9.

Remarks:

• If the graph is not complete, routing can be used to find the root.

• Assume that the nodes line up in a linked list. If we always choose the
first node of the linked list to acquire the object, we have message/time
complexity n. The new topology is again a linear linked list. Pointer
forwarding is therefore bad in a worst-case.

• If edges are not FIFO, it can even happen that the number of steps
is unbounded for a node having bad luck. An algorithm with such a
property is named “not fair,” or “not wait-free.” (Example: Initially
we have the list 4 → 3 → 2 → 1; 4 starts a find; when the message
of 4 passes 3, 3 itself starts a find. The message of 3 may arrive at 2
and then 1 earlier, thus the new end of the list is 2→ 1→ 3; once the
message of 4 passes 2, the game re-starts.)

There seems to be a natural improvement of the pointer forwarding idea.
Instead of simply redirecting the parent pointer from the old root to the new
root, we can redirect all the parent pointers of the nodes on the path visited

66 CHAPTER 6. SHARED OBJECTS

Figure 6.11: Reversal of the path x0, x1, x2, x3, x4, x5.

during a find message to the new root. The details are given by Algorithm 6.10.
Figure 6.11 shows how the pointer redirecting affects a given tree (the right tree
results from a find request started at node x0 on the left tree).

Remarks:

• Also with Algorithm 6.10, we might have a bad linked list situation.
However, if the start of the list acquires the object, the linked list
turns into a star. As the following theorem shows, the search paths
are not long on average. Since paths sometimes can be bad, we will
need amortized analysis.

Theorem 6.12. If the initial tree is a star, a find request of Algorithm 6.10
needs at most log n steps on average, where n is the number of processors.

Proof. All logarithms in the following proof are to base 2. We assume that
accesses to the shared object are sequential. We use a potential function argu-
ment. Let s(u) be the size of the subtree rooted at node u (the number of nodes
in the subtree including u itself). We define the potential Φ of the whole tree
T as (V is the set of all nodes)

Φ(T) =
∑
u∈V

log s(u)

2
.

Assume that the path traversed by the ith operation has length ki, i.e., the ith

operation redirects ki pointers to the new root. Clearly, the number of steps
of the ith operation is proportional to ki. We are interested in the cost of m
consecutive operations,

∑m
i=1 ki.

Let T0 be the initial tree and let Ti be the tree after the ith operation.
Further, let ai = ki−Φ(Ti−1)+Φ(Ti) be the amortized cost of the ith operation.
We have

m∑
i=1

ai =

m∑
i=1

(
ki − Φ(Ti−1) + Φ(Ti)

)
=

m∑
i=1

ki − Φ(T0) + Φ(Tm).

For any tree T , we have Φ(T) ≥ log(n)/2. Because we assume that T0 is a star,
we also have Φ(T0) = log(n)/2. We therefore get that

m∑
i=1

ai ≥
m∑
i=1

ki.

6.3. IVY AND FRIENDS 67

Hence, it suffices to upper bound the amortized cost of every operation. We
thus analyze the amortized cost ai of the ith operation. Let x0, x1, x2, . . . , xki
be the path that is reversed by the operation. Further for 0 ≤ j ≤ ki, let sj be
the size of the subtree rooted at xj before the reversal. The size of the subtree
rooted at x0 after the reversal is ski and the size of the one rooted at xj after the
reversal, for 1 ≤ j ≤ ki, is sj − sj−1 (see Figure 6.11). For all other nodes, the
sizes of their subtrees are the same, therefore the corresponding terms cancel
out in the ammortized cost ai. We can thus write ai as

ai = ki −

 ki∑
j=0

1

2
log sj

+

1

2
log ski +

ki∑
j=1

1

2
log(sj − sj−1)

= ki +

1

2
·
ki−1∑
j=0

(
log(sj+1 − sj)− log sj

)
= ki +

1

2
·
ki−1∑
j=0

log

(
sj+1 − sj

sj

)
.

For 0 ≤ j ≤ ki−1, let αj = sj+1/sj . Note that sj+1 > sj and thus that αj > 1.
Further note, that (sj+1 − sj)/sj = αj − 1. We therefore have that

ai = ki +
1

2
·
ki−1∑
j=0

log(αj − 1)

=

ki−1∑
j=0

(
1 +

1

2
log(αj − 1)

)
.

For α > 1, it can be shown that 1 + log(α − 1)/2 ≤ logα (see Lemma 6.13).
From this inequality, we obtain

ai ≤
ki−1∑
j=0

logαj =

ki−1∑
j=0

log
sj+1

sj
=

ki−1∑
j=0

(log sj+1 − log sj)

= log ski − log s0 ≤ log n,

because ski = n and s0 ≥ 1. This concludes the proof.

Lemma 6.13. For α > 1, 1 + log(α− 1)/2 ≤ logα.

Proof. The claim can be verified by the following chain of reasoning:

0 ≤ (α− 2)2

0 ≤ α2 − 4α+ 4

4(α− 1) ≤ α2

log2

(
4(α− 1)

)
≤ log2

(
α2
)

2 + log2(α− 1) ≤ 2 log2 α

1 +
1

2
log2(α− 1) ≤ log2 α.

68 CHAPTER 6. SHARED OBJECTS

Remarks:

• Systems guys (the algorithm is called Ivy because it was used in a
system with the same name) have some fancy heuristics to improve
performance even more: For example, the root every now and then
broadcasts its name such that paths will be shortened.

• What about concurrent requests? It works with the same argument
as in Arrow. Also for Ivy an argument including congestion is missing
(and more pressing, since the dynamic topology of a tree cannot be
chosen to have low degree and thus low congestion as in Arrow).

• Sometimes the type of accesses allows that several accesses can be
combined into one to reduce congestion higher up the tree. Let the
tree in Algorithm 6.1 be a balanced binary tree. If the access to a
shared variable for example is “add value x to the shared variable”,
two or more accesses that accidentally meet at a node can be combined
into one. Clearly accidental meeting is rare in an asynchronous model.
We might be able to use synchronizers (or maybe some other timing
tricks) to help meeting a little bit.

Chapter Notes

The Arrow protocol was designed by Raymond [Ray89]. There are real life im-
plementations of the Arrow protocol, such as the Aleph Toolkit [Her99]. The
performance of the protocol under high loads was tested in [HW99] and other im-
plementations and variations of the protocol were given in, e.g., [PR99, HTW00].

It has been shown that the find operations of the protocol do not backtrack,
i.e., the time and message complexities are O(D) [DH98], and that the Arrow
protocol is fault tolerant [HT01]. Given a set of concurrent request, Herlihy et
al. [HTW01] showed that the time and message complexities are within factor
logR from the optimal, where R is the number of requests. Later, this analysis
was extended to long-lived and asynchronous systems. In particular, Herlihy et
al. [HKTW06] showed that the competitive ratio in this asynchronous concur-
rent setting is O(logD). Thanks to the lower bound of the greedy TSP heuristic,
this is almost tight.

The Ivy system was introduced in [Li88, LH89]. On the theory side, it was
shown by Ginat et al. [GST89] that the amortized cost of a single request of
the Ivy protocol is Θ(log n). Closely related work to the Ivy protocol on the
practical side is research on virtual memory and parallel computing on loosely
coupled multiprocessors. For example [BB81, LSHL82, FR86] contain studies on
variations of the network models, limitations on data sharing between processes
and different approaches.

Later, the research focus shifted towards systems where most data operations
were read operations, i.e., efficient caching became one of the main objects of
study, e.g., [MMVW97].

BIBLIOGRAPHY 69

Bibliography

[BB81] Thomas J. Buckholtz and Helen T. Buckholtz. Apollo Domain
Architecture. Technical report, Apollo Computer, Inc., 1981.

[DH98] Michael J. Demmer and Maurice Herlihy. The Arrow Distributed
Directory Protocol. In Proceedings of the 12th International Sym-
posium on Distributed Computing (DISC), 1998.

[FR86] Robert Fitzgerald and Richard F. Rashid. The Integration of
Virtual Memory Management and Interprocess Communication in
Accent. ACM Transactions on Computer Systems, 4(2):147–177,
1986.

[GST89] David Ginat, Daniel Sleator, and Robert Tarjan. A Tight Amor-
tized Bound for Path Reversal. Information Processing Letters,
31(1):3–5, 1989.

[Her99] Maurice Herlihy. The Aleph Toolkit: Support for Scalable Dis-
tributed Shared Objects. In Proceedings of the Third Interna-
tional Workshop on Network-Based Parallel Computing: Commu-
nication, Architecture, and Applications (CANPC), pages 137–149,
1999.

[HKTW06] Maurice Herlihy, Fabian Kuhn, Srikanta Tirthapura, and Roger
Wattenhofer. Dynamic Analysis of the Arrow Distributed Protocol.
In Theory of Computing Systems, Volume 39, Number 6, November
2006.

[HT01] Maurice Herlihy and Srikanta Tirthapura. Self Stabilizing Distrib-
uted Queuing. In Proceedings of the 15th International Conference
on Distributed Computing (DISC), pages 209–223, 2001.

[HTW00] Maurice Herlihy, Srikanta Tirthapura, and Roger Wattenhofer. Or-
dered Multicast and Distributed Swap. In Operating Systems Re-
view, Volume 35/1, 2001. Also in PODC Middleware Symposium,
Portland, Oregon, July 2000.

[HTW01] Maurice Herlihy, Srikanta Tirthapura, and Roger Wattenhofer.
Competitive Concurrent Distributed Queuing. In Twentieth ACM
Symposium on Principles of Distributed Computing (PODC), Au-
gust 2001.

[HW99] Maurice Herlihy and Michael Warres. A Tale of Two Directories:
Implementing Distributed Shared Objects in Java. In Proceedings
of the ACM 1999 conference on Java Grande (JAVA), pages 99–
108, 1999.

[LH89] Kai Li and Paul Hudak. Memory Coherence in Shared Vir-
tual Memory Systems. ACM Transactions on Computer Systems,
7(4):312–359, November 1989.

[Li88] Kai Li. IVY: Shared Virtual Memory System for Parallel Comput-
ing. In International Conference on Parallel Processing, 1988.

70 CHAPTER 6. SHARED OBJECTS

[LSHL82] Paul J. Leach, Bernard L. Stumpf, James A. Hamilton, and Paul H.
Levine. UIDs as Internal Names in a Distributed File System. In
Proceedings of the First ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), pages 34–41, 1982.

[MMVW97] B. Maggs, F. Meyer auf der Heide, B. Voecking, and M. Wester-
mann. Exploiting Locality for Data Management in Systems of
Limited Bandwidth. In IEEE Symposium on Foundations of Com-
puter Science (FOCS), 1997.

[PR99] David Peleg and Eilon Reshef. A Variant of the Arrow Distributed
Directory Protocol with Low Average Complexity. In Proceedings
of the 26th International Colloquium on Automata, Languages and
Programming (ICALP), pages 615–624, 1999.

[Ray89] Kerry Raymond. A Tree-based Algorithm for Distributed Mu-
tual Exclusion. ACM Transactions on Computer Systems, 7:61–77,
1989.

Chapter 7

Maximal Independent Set

In this chapter we present a highlight of this course, a fast maximal independent
set (MIS) algorithm. The algorithm is the first randomized algorithm that we
study in this class. In distributed computing, randomization is a powerful and
therefore omnipresent concept, as it allows for relatively simple yet efficient
algorithms. As such the studied algorithm is archetypal.

A MIS is a basic building block in distributed computing, some other prob-
lems pretty much follow directly from the MIS problem. At the end of this
chapter, we will give two examples: matching and vertex coloring (see Chapter
1).

7.1 MIS

Definition 7.1 (Independent Set). Given an undirected Graph G = (V,E) an
independent set is a subset of nodes U ⊆ V , such that no two nodes in U
are adjacent. An independent set is maximal if no node can be added without
violating independence. An independent set of maximum cardinality is called
maximum.

2

1

2

Figure 7.2: Example graph with 1) a maximal independent set (MIS) and 2) a
maximum independent set (MaxIS).

71

72 CHAPTER 7. MAXIMAL INDEPENDENT SET

Remarks:

• Computing a maximum independent set (MaxIS) is a notoriously diffi-
cult problem. It is equivalent to maximum clique on the complemen-
tary graph. Both problems are NP-hard, in fact not approximable
within n

1
2−ε within polynomial time.

• In this course we concentrate on the maximal independent set (MIS)
problem. Please note that MIS and MaxIS can be quite different,
indeed e.g. on a star graph there exists an MIS that is Θ(n) smaller
than the MaxIS (cf. Figure 7.2).

• Computing a MIS sequentially is trivial: Scan the nodes in arbitrary
order. If a node u does not violate independence, add u to the MIS.
If u violates independence, discard u. So the only question is how to
compute a MIS in a distributed way.

Algorithm 7.3 Slow MIS

Require: Node IDs
Every node v executes the following code:

1: if all neighbors of v with larger identifiers have decided not to join the MIS
then

2: v decides to join the MIS
3: end if

Remarks:

• Not surprisingly the slow algorithm is not better than the sequential
algorithm in the worst case, because there might be one single point
of activity at any time. Formally:

Theorem 7.4 (Analysis of Algorithm 7.3). Algorithm 7.3 features a time com-
plexity of O(n) and a message complexity of O(m).

Remarks:

• This is not very exciting.

• There is a relation between independent sets and node coloring (Chap-
ter 1), since each color class is an independent set, however, not nec-
essarily a MIS. Still, starting with a coloring, one can easily derive a
MIS algorithm: In the first round all nodes of the first color join the
MIS and notify their neighbors. Then, all nodes of the second color
which do not have a neighbor that is already in the MIS join the MIS
and inform their neighbors. This process is repeated for all colors.
Thus the following corollary holds:

Corollary 7.5. Given a coloring algorithm that runs in time T and needs C
colors, we can construct a MIS in time T + C.

7.2. ORIGINAL FAST MIS 73

Remarks:

• Using Theorem 1.23 and Corollary 7.5 we get a distributed determin-
istic MIS algorithm for trees (and for bounded degree graphs) with
time complexity O(log∗ n).

• With a lower bound argument one can show that this deterministic
MIS algorithm is asymptotically optimal for rings.

• There have been attempts to extend Algorithm 1.17 to more general
graphs, however, so far without much success. Below we present a
radically different approach that uses randomization.

7.2 Original Fast MIS

Algorithm 7.6 Fast MIS

The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v marks itself with probability 1

2d(v) , where d(v) is the current

degree of v.
2) If no higher degree neighbor of v is also marked, node v joins the MIS. If
a higher degree neighbor of v is marked, node v unmarks itself again. (If the
neighbors have the same degree, ties are broken arbitrarily, e.g., by identifier).
3) Delete all nodes that joined the MIS and their neighbors, as they cannot
join the MIS anymore.

Remarks:

• Correctness in the sense that the algorithm produces an independent
set is relatively simple: Steps 1 and 2 make sure that if a node v joins
the MIS, then v’s neighbors do not join the MIS at the same time.
Step 3 makes sure that v’s neighbors will never join the MIS.

• Likewise the algorithm eventually produces a MIS, because the node
with the highest degree will mark itself at some point in Step 1.

• So the only remaining question is how fast the algorithm terminates.
To understand this, we need to dig a bit deeper.

Lemma 7.7 (Joining MIS). A node v joins the MIS in Step 2 with probability
p ≥ 1

4d(v) .

Proof: Let M be the set of marked nodes in Step 1 and MIS be the set of nodes
that join the MIS in Step 2. Let H(v) be the set of neighbors of v with higher
degree, or same degree and higher identifier. Using independence of the random

74 CHAPTER 7. MAXIMAL INDEPENDENT SET

choices of v and nodes in H(v) in Step 1 we get

P [v /∈ MIS|v ∈M] = P [there is a node w ∈ H(v), w ∈M |v ∈M]

= P [there is a node w ∈ H(v), w ∈M]

≤
∑

w∈H(v)

P [w ∈M] =
∑

w∈H(v)

1

2d(w)

≤
∑

w∈H(v)

1

2d(v)
≤ d(v)

2d(v)
=

1

2
.

Then

P [v ∈ MIS] = P [v ∈ MIS|v ∈M] · P [v ∈M] ≥ 1

2
· 1

2d(v)
.

2

Lemma 7.8 (Good Nodes). A node v is called good if

∑
w∈N(v)

1

2d(w)
≥ 1

6
,

where N(v) is the set of neighbors of v. Otherwise we call v a bad node. A
good node will be removed in Step 3 with probability p ≥ 1

36 .

Proof: Let node v be good. Intuitively, good nodes have lots of low-degree
neighbors, thus chances are high that one of them goes into the independent
set, in which case v will be removed in Step 3 of the algorithm.

If there is a neighbor w ∈ N(v) with degree at most 2 we are done: With
Lemma 7.7 the probability that node w joins the MIS is at least 1

8 , and our
good node will be removed in Step 3.

So all we need to worry about is that all neighbors have at least degree 3:

For any neighbor w of v we have 1
2d(w) ≤

1
6 . Since

∑
w∈N(v)

1

2d(w)
≥ 1

6
there is a

subset of neighbors S ⊆ N(v) such that
1

6
≤
∑
w∈S

1

2d(w)
≤ 1

3

We can now bound the probability that node v will be removed. Let therefore
R be the event of v being removed. Again, if a neighbor of v joins the MIS in
Step 2, node v will be removed in Step 3. We have

P [R] ≥ P [there is a node u ∈ S, u ∈ MIS]

≥
∑
u∈S

P [u ∈ MIS]−
∑

u,w∈S;u6=w

P [u ∈ MIS and w ∈ MIS] .

For the last inequality we used the inclusion-exclusion principle truncated
after the second order terms. Let M again be the set of marked nodes after

7.2. ORIGINAL FAST MIS 75

Step 1. Using P [u ∈M] ≥ P [u ∈ MIS] we get

P [R] ≥
∑
u∈S

P [u ∈ MIS]−
∑

u,w∈S;u 6=w

P [u ∈M and w ∈M]

≥
∑
u∈S

P [u ∈ MIS]−
∑
u∈S

∑
w∈S

P [u ∈M] · P [w ∈M]

≥
∑
u∈S

1

4d(u)
−
∑
u∈S

∑
w∈S

1

2d(u)

1

2d(w)

≥
∑
u∈S

1

2d(u)

(
1

2
−
∑
w∈S

1

2d(w)

)
≥ 1

6

(
1

2
− 1

3

)
=

1

36
.

2

Remarks:

• We would be almost finished if we could prove that many nodes are
good in each phase. Unfortunately this is not the case: In a star-
graph, for instance, only a single node is good! We need to find a
work-around.

Lemma 7.9 (Good Edges). An edge e = (u, v) is called bad if both u and v
are bad; else the edge is called good. The following holds: At any time at least
half of the edges are good.

Proof: For the proof we construct a directed auxiliary graph: Direct each edge
towards the higher degree node (if both nodes have the same degree direct it
towards the higher identifier). Now we need a little helper lemma before we can
continue with the proof.

Lemma 7.10. A bad node has outdegree (number of edges pointing away from
bad node) at least twice its indegree (number of edges pointing towards bad node).

Proof: For the sake of contradiction, assume that a bad node v does not have
outdegree at least twice its indegree. In other words, at least one third of the
neighbor nodes (let’s call them S) have degree at most d(v). But then∑

w∈N(v)

1

2d(w)
≥
∑
w∈S

1

2d(w)
≥
∑
w∈S

1

2d(v)
≥ d(v)

3

1

2d(v)
=

1

6

which means v is good, a contradiction. 2

Continuing the proof of Lemma 7.9: According to Lemma 7.10 the number of
edges directed into bad nodes is at most half the number of edges directed out
of bad nodes. Thus, the number of edges directed into bad nodes is at most
half the number of edges. Thus, at least half of the edges are directed into good
nodes. Since these edges are not bad, they must be good.

Theorem 7.11 (Analysis of Algorithm 7.6). Algorithm 7.6 terminates in ex-
pected time O(log n).

Proof: With Lemma 7.8 a good node (and therefore a good edge!) will be
deleted with constant probability. Since at least half of the edges are good
(Lemma 7.9) a constant fraction of edges will be deleted in each phase.

76 CHAPTER 7. MAXIMAL INDEPENDENT SET

More formally: With Lemmas 7.8 and 7.9 we know that at least half of the
edges will be removed with probability at least 1/36. Let R be the number
of edges to be removed in a certain phase. Using linearity of expectation (cf.
Theorem 7.13) we know that E [R] ≥ m/72, m being the total number of edges at
the start of the phase. Now let p := P [R ≤ E [R] /2]. Bounding the expectation
yields

E [R] =
∑
r

P [R = r] · r ≤ P [R ≤ E[R]/2] · E[R]/2 + P [R > E[R]/2] ·m

= p · E [R] /2 + (1− p) ·m.

Solving for p we get

p ≤ m− E [R]

m− E [R] /2
<
m− E [R] /2

m
≤ 1− 1/144.

In other words, with probability at least 1/144 at least m/144 edges are removed
in a phase. After expected O(logm) phases all edges are deleted. Since m ≤ n2

and thus O(logm) = O(log n) the Theorem follows. 2

Remarks:

• With a bit of more math one can even show that Algorithm 7.6 ter-
minates in time O(log n) “with high probability”.

7.3 Fast MIS v2

Algorithm 7.12 Fast MIS 2

The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v chooses a random value r(v) ∈ [0, 1] and sends it to its
neighbors.
2) If r(v) < r(w) for all neighbors w ∈ N(v), node v enters the MIS and
informs its neighbors.
3) If v or a neighbor of v entered the MIS, v terminates (v and all edges
adjacent to v are removed from the graph), otherwise v enters the next phase.

Remarks:

• Correctness in the sense that the algorithm produces an independent
set is simple: Steps 1 and 2 make sure that if a node v joins the MIS,
then v’s neighbors do not join the MIS at the same time. Step 3 makes
sure that v’s neighbors will never join the MIS.

• Likewise the algorithm eventually produces a MIS, because the node
with the globally smallest value will always join the MIS, hence there
is progress.

• So the only remaining question is how fast the algorithm terminates.
To understand this, we need to dig a bit deeper.

7.3. FAST MIS V2 77

• Our proof will rest on a simple, yet powerful observation about ex-
pected values of random variables that may not be independent :

Theorem 7.13 (Linearity of Expectation). Let Xi, i = 1, . . . , k denote random
variables, then

E

[∑
i

Xi

]
=
∑
i

E [Xi] .

Proof. It is sufficient to prove E [X + Y] = E [X]+E [Y] for two random variables
X and Y , because then the statement follows by induction. Since

P [(X,Y) = (x, y)] = P [X = x] · P [Y = y|X = x]

= P [Y = y] · P [X = x|Y = y]

we get that

E [X + Y] =
∑

(X,Y)=(x,y)

P [(X,Y) = (x, y)] · (x+ y)

=
∑
X=x

∑
Y=y

P [X = x] · P [Y = y|X = x] · x

+
∑
Y=y

∑
X=x

P [Y = y] · P [X = x|Y = y] · y

=
∑
X=x

P [X = x] · x+
∑
Y=y

P [Y = y] · y

= E [X] + E [Y] .

2

Remarks:

• How can we prove that the algorithm only needs O(log n) phases in
expectation? It would be great if this algorithm managed to remove a
constant fraction of nodes in each phase. Unfortunately, it does not.

• Instead we will prove that the number of edges decreases quickly.
Again, it would be great if any single edge was removed with constant
probability in Step 3. But again, unfortunately, this is not the case.

• Maybe we can argue about the expected number of edges to be re-
moved in one single phase? Let’s see: A node v enters the MIS with
probability 1/(d(v) + 1), where d(v) is the degree of node v. By doing
so, not only are v’s edges removed, but indeed all the edges of v’s
neighbors as well – generally these are much more than d(v) edges. So
there is hope, but we need to be careful: If we do this the most naive
way, we will count the same edge many times.

• How can we fix this? The nice observation is that it is enough to
count just some of the removed edges. Given a new MIS node v and
a neighbor w ∈ N(v), we count the edges only if r(v) < r(x) for all
x ∈ N(w). This looks promising. In a star graph, for instance, only
the smallest random value can be accounted for removing all the edges
of the star.

78 CHAPTER 7. MAXIMAL INDEPENDENT SET

Lemma 7.14 (Edge Removal). In a single phase, we remove at least half of
the edges in expectation.

Proof. To simplify the notation, at the start of our phase, the graph is simply
G = (V,E). In addition, to ease presentation, we replace each undirected edge
{v, w} by the two directed edges (v, w) and (w, v).

Suppose that a node v joins the MIS in this phase, i.e., r(v) < r(w) for all
neighbors w ∈ N(v). If in addition we have r(v) < r(x) for all neighbors x of a
neighbor w of v, we call this event (v → w). The probability of event (v → w)
is at least 1/(d(v) + d(w)), since d(v) + d(w) is the maximum number of nodes
adjacent to v or w (or both). As v joins the MIS, all (directed) edges (w, x)
with x ∈ N(w) will be removed; there are d(w) of these edges.

We now count the removed edges. Whether we remove the edges adjacent
to w because of event (v → w) is a random variable X(v→w). If event (v → w)
occurs, X(v→w) has the value d(w), if not it has the value 0. For each undirected
edge {v, w} we have two such variables, X(v→w) and X(w→v). Due to Theorem
7.13, the expected value of the sum X of all these random variables is at least

E [X] =
∑

{v,w}∈E

E[X(v→w)] + E[X(w→v)]

=
∑

{v,w}∈E

P [Event (v → w)] · d(w) + P [Event (w → v)] · d(v)

≥
∑

{v,w}∈E

d(w)

d(v) + d(w)
+

d(v)

d(w) + d(v)

=
∑

{v,w}∈E

1 = |E|.

In other words, in expectation |E| directed edges are removed in a single
phase! Note that we did not double count any edge removals, as a directed edge
(w, x) can only be removed by an event (v → w). The event (v → w) inhibits
a concurrent event (v′ → w) since r(v) < r(v′) for all v′ ∈ N(w). We may
have counted an undirected edge at most twice (once in each direction). So, in
expectation at least half of the undirected edges are removed. 2

Remarks:

• This enables us to follow a bound on the expected running time of
Algorithm 7.12 quite easily.

Theorem 7.15 (Expected running time of Algorithm 7.12). Algorithm 7.12
terminates after at most 3 log4/3m+ 1 ∈ O(log n) phases in expectation.

Proof: The probability that in a single phase at least a quarter of all edges
are removed is at least 1/3. For the sake of contradiction, assume not. Then
with probability less than 1/3 we may be lucky and many (potentially all) edges
are removed. With probability more than 2/3 less than 1/4 of the edges are
removed. Hence the expected fraction of removed edges is strictly less than
1/3 · 1 + 2/3 · 1/4 = 1/2. This contradicts Lemma 7.14.

Hence, in expectation at least every third phase is “good” and removes at
least a quarter of the edges. To get rid of all but two edges we need log4/3m

7.3. FAST MIS V2 79

good phases in expectation. The last two edges will certainly be removed in the
next phase. Hence a total of 3 log4/3m+ 1 phases are enough in expectation.

Remarks:

• Sometimes one expects a bit more of an algorithm: Not only should
the expected time to terminate be good, but the algorithm should
always terminate quickly. As this is impossible in randomized algo-
rithms (after all, the random choices may be “unlucky” all the time!),
researchers often settle for a compromise, and just demand that the
probability that the algorithm does not terminate in the specified
time can be made absurdly small. For our algorithm, this can be de-
duced from Lemma 7.14 and another standard tool, namely Chernoff’s
Bound.

Definition 7.16 (W.h.p.). We say that an algorithm terminates w.h.p. (with
high probability) within O(t) time if it does so with probability at least 1− 1/nc

for any choice of c ≥ 1. Here c may affect the constants in the Big-O notation
because it is considered a “tunable constant” and usually kept small.

Definition 7.17 (Chernoff’s Bound). Let X =
∑k
i=1Xi be the sum of k inde-

pendent 0− 1 random variables. Then Chernoff’s bound states that w.h.p.

|X − E[X]| ∈ O
(

log n+
√
E[X] log n

)
.

Corollary 7.18 (Running Time of Algorithm 7.12). Algorithm 7.12 terminates
w.h.p. in O(log n) time.

Proof: In Theorem 7.15 we used that independently of everything that happened
before, in each phase we have a constant probability p that a quarter of the edges
are removed. Call such a phase good. For some constants C1 and C2, let us check
after C1 log n+C2 ∈ O(log n) phases, in how many phases at least a quarter of
the edges have been removed. In expectation, these are at least p(C1 log n+C2)

many. Now we look at the random variable X =
∑C1 logn+C2

i=1 Xi, where the Xi

are independent 0− 1 variables being one with exactly probability p. Certainly,
if X is at least x with some probability, then the probability that we have
x good phases can only be larger (if no edges are left, certainly “all” of the
remaining edges are removed). To X we can apply Chernoff’s bound. If C1

and C2 are chosen large enough, they will overcome the constants in the Big-O
from Chernoff’s bound, i.e., w.h.p. it holds that |X−E[X]| ≤ E[X]/2, implying
X ≥ E[X]/2. Choosing C1 large enough, we will have w.h.p. sufficiently many
good phases, i.e., the algorithm terminates w.h.p. in O(log n) phases.

Remarks:

• The algorithm can be improved. Drawing random real numbers in
each phase for instance is not necessary. One can achieve the same by
sending only a total of O(log n) random (and as many non-random)
bits over each edge.

• One of the main open problems in distributed computing is whether
one can beat this logarithmic time, or at least achieve it with a deter-
ministic algorithm.

• Let’s turn our attention to applications of MIS next.

80 CHAPTER 7. MAXIMAL INDEPENDENT SET

7.4 Applications

Definition 7.19 (Matching). Given a graph G = (V,E) a matching is a subset
of edges M ⊆ E, such that no two edges in M are adjacent (i.e., where no node
is adjacent to two edges in the matching). A matching is maximal if no edge
can be added without violating the above constraint. A matching of maximum
cardinality is called maximum. A matching is called perfect if each node is
adjacent to an edge in the matching.

Remarks:

• In contrast to MaxIS, a maximum matching can be found in polyno-
mial time, and is also easy to approximate, since any maximal match-
ing is a 2-approximation.

• An independent set algorithm is also a matching algorithm: Let G =
(V,E) be the graph for which we want to construct the matching.
The so-called line graph G′ is defined as follows: for every edge in G
there is a node in G′; two nodes in G′ are connected by an edge if
their respective edges in G are adjacent. A (maximal) independent
set in the line graph G′ is a (maximal) matching in the original graph
G, and vice versa. Using Algorithm 7.12 directly produces a O(log n)
bound for maximal matching.

• More importantly, our MIS algorithm can also be used for vertex
coloring (Problem 1.1):

Algorithm 7.20 General Graph Coloring

1: Given a graph G = (V,E) we virtually build a graph G′ = (V ′, E′) as
follows:

2: Every node v ∈ V clones itself d(v)+1 times (v0, . . . , vd(v) ∈ V ′), d(v) being
the degree of v in G.

3: The edge set E′ of G′ is as follows:
4: First all clones are in a clique: (vi, vj) ∈ E′, for all v ∈ V and all 0 ≤ i <
j ≤ d(v)

5: Second all ith clones of neighbors in the original graph G are connected:
(ui, vi) ∈ E′, for all (u, v) ∈ E and all 0 ≤ i ≤ min(d(u), d(v)).

6: Now we simply run (simulate) the fast MIS Algorithm 7.12 on G′.
7: If node vi is in the MIS in G′, then node v gets color i.

Theorem 7.21 (Analysis of Algorithm 7.20). Algorithm 7.20 (∆ + 1)-colors
an arbitrary graph in O(log n) time, with high probability, ∆ being the largest
degree in the graph.

Proof: Thanks to the clique among the clones at most one clone is in the MIS.
And because of the d(v)+1 clones of node v every node will get a free color! The
running time remains logarithmic since G′ has O

(
n2
)

nodes and the exponent
becomes a constant factor when applying the logarithm.

7.4. APPLICATIONS 81

Remarks:

• This solves our open problem from Chapter 1.1!

• Together with Corollary 7.5 we get quite close ties between (∆ + 1)-
coloring and the MIS problem.

• Computing a MIS also solves another graph problem on graphs of
bounded independence.

Definition 7.22 (Bounded Independence). G = (V,E) is of bounded indepen-
dence, if for every node v ∈ V the largest independent set in the neighborhood
N(v) is bounded by a constant.

Definition 7.23 ((Minimum) Dominating Sets). A dominating set is a subset
of the nodes such that each node is in the set or adjacent to a node in the set.
A minimum dominating set is a dominating set containing the least possible
number of nodes.

Remarks:

• In general, finding a dominating set less than factor log n larger than
an minimum dominating set is NP-hard.

• Any MIS is a dominating set: if a node was not covered, it could join
the independent set.

• In general a MIS and a minimum dominating sets have not much in
common (think of a star). For graphs of bounded independence, this
is different.

Corollary 7.24. On graphs of bounded independence, a constant-factor approx-
imation to a minimum dominating set can be found in time O(log n) w.h.p.

Proof: Denote by M a minimum dominating set and by I a MIS. Since M is a
dominating set, each node from I is in M or adjacent to a node in M . Since
the graph is of bounded independence, no node in M is adjacent to more than
constantly many nodes from I. Thus, |I| ∈ O(|M |). Therefore, we can compute
a MIS with Algorithm 7.12 and output it as the dominating set, which takes
O(log n) rounds w.h.p.

Chapter Notes

As we have seen, a MIS can be used in versatile ways. Indeed, it was once argued
that the cells of a fly compute a MIS to decide where to grow hair [AAB+11].
The fast MIS algorithm is a simplified version of an algorithm by Luby [Lub86].
Around the same time there have been a number of other papers dealing with the
same or related problems, for instance by Alon, Babai, and Itai [ABI86], or by
Israeli and Itai [II86]. The analysis presented in Section 7.2 takes elements of all
these papers, and from other papers on distributed weighted matching [WW04].
The analysis in the book [Pel00] by David Peleg is different, and only achieves
O(log2 n) time. The new MIS variant (with the simpler analysis) of Section
7.3 is by Métivier, Robson, Saheb-Djahromi and Zemmari [MRSDZ11]. With

82 CHAPTER 7. MAXIMAL INDEPENDENT SET

some adaptations, the algorithms [Lub86, MRSDZ11] only need to exchange
a total of O(log n) bits per node, which is asymptotically optimum, even on
unoriented trees [KSOS06]. However, the distributed time complexity for MIS
is still somewhat open, as the strongest lower bounds are Ω(

√
log n) or Ω(log ∆)

[KMW04]. Recent research regarding the MIS problem focused on improving
the O(log n) time complexity for special graph classes, for instances growth-
bounded graphs [SW08] or trees [LW11]. There are also results that depend
on the degree of the graph [BE09, Kuh09]. Deterministic MIS algorithms are
still far from the lower bounds, as the best deterministic MIS algorithm takes
2O(
√

logn) time [PS96]. The maximum matching algorithm mentioned in the
remarks is the blossom algorithm by Jack Edmonds.

Bibliography

[AAB+11] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama
Barkai, and Ziv Bar-Joseph. A Biological Solution to a Fundamen-
tal Distributed Computing Problem. volume 331, pages 183–185.
American Association for the Advancement of Science, January
2011.

[ABI86] Noga Alon, László Babai, and Alon Itai. A Fast and Simple
Randomized Parallel Algorithm for the Maximal Independent Set
Problem. J. Algorithms, 7(4):567–583, 1986.

[BE09] Leonid Barenboim and Michael Elkin. Distributed (delta+1)-
coloring in linear (in delta) time. In 41st ACM Symposium On
Theory of Computing (STOC), 2009.

[II86] Amos Israeli and Alon Itai. A Fast and Simple Randomized Parallel
Algorithm for Maximal Matching. Inf. Process. Lett., 22(2):77–80,
1986.

[KMW04] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be
Computed Locally! In Proceedings of the 23rd ACM Symposium
on Principles of Distributed Computing (PODC), July 2004.

[KSOS06] Kishore Kothapalli, Christian Scheideler, Melih Onus, and Chris-
tian Schindelhauer. Distributed coloring in O(

√
log n) Bit Rounds.

In 20th international conference on Parallel and Distributed Pro-
cessing (IPDPS), 2006.

[Kuh09] Fabian Kuhn. Weak graph colorings: distributed algorithms and
applications. In 21st ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), 2009.

[Lub86] Michael Luby. A Simple Parallel Algorithm for the Maximal Inde-
pendent Set Problem. SIAM J. Comput., 15(4):1036–1053, 1986.

[LW11] Christoph Lenzen and Roger Wattenhofer. MIS on trees. In PODC,
pages 41–48, 2011.

BIBLIOGRAPHY 83

[MRSDZ11] Yves Métivier, John Michael Robson, Nasser Saheb-Djahromi, and
Akka Zemmari. An optimal bit complexity randomized distributed
MIS algorithm. Distributed Computing, 23(5-6):331–340, 2011.

[Pel00] David Peleg. Distributed Computing: a Locality-Sensitive Ap-
proach. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2000.

[PS96] Alessandro Panconesi and Aravind Srinivasan. On the Complexity
of Distributed Network Decomposition. J. Algorithms, 20(2):356–
374, 1996.

[SW08] Johannes Schneider and Roger Wattenhofer. A Log-Star Distrib-
uted Maximal Independent Set Algorithm for Growth-Bounded
Graphs. In 27th ACM Symposium on Principles of Distributed
Computing (PODC), Toronto, Canada, August 2008.

[WW04] Mirjam Wattenhofer and Roger Wattenhofer. Distributed
Weighted Matching. In 18th Annual Conference on Distributed
Computing (DISC), Amsterdam, Netherlands, October 2004.

84 CHAPTER 7. MAXIMAL INDEPENDENT SET

Chapter 8

Locality Lower Bounds

In Chapter 1, we looked at distributed algorithms for coloring. In particular,
we saw that rings and rooted trees can be colored with 3 colors in log∗ n+O(1)
rounds.

8.1 Model

In this chapter, we will reconsider the distributed coloring problem. We will look
at a classic lower bound that shows that the result of Chapter 1 is tight: Coloring
rings (and rooted trees) indeed requires Ω(log∗ n) rounds. In particular, we will
prove a lower bound for coloring in the following setting:

• We consider deterministic, synchronous algorithms.

• Message size and local computations are unbounded.

• We assume that the network is a directed ring with n nodes.

• Nodes have unique labels (identifiers) from 1 to n.

Remarks:

• A generalization of the lower bound to randomized algorithms is pos-
sible.

• Except for restricting to deterministic algorithms, all the conditions
above make a lower bound stronger: Any lower bound for synchronous
algorithms certainly also holds for asynchronous ones. A lower bound
that is true if message size and local computations are not restricted
is clearly also valid if we require a bound on the maximal message
size or the amount of local computations. Similarly, assuming that
the ring is directed and that node labels are from 1 to n (instead of
choosing IDs from a more general domain) also strengthens the lower
bound.

• Instead of directly proving that 3-coloring a ring needs Ω(log∗ n)
rounds, we will prove a slightly more general statement. We will con-
sider deterministic algorithms with time complexity r (for arbitrary

85

86 CHAPTER 8. LOCALITY LOWER BOUNDS

Algorithm 8.1 Synchronous Algorithm: Canonical Form

1: In r rounds: send complete initial state to nodes at distance at most r
2: // do all the communication first
3: Compute output based on complete information about r-neighborhood
4: // do all the computation in the end

r) and derive a lower bound on the number of colors that are needed if
we want to properly color an n-node ring with an r-round algorithm.
A 3-coloring lower bound can then be derived by taking the smallest
r for which an r-round algorithm needs 3 or fewer colors.

8.2 Locality

Let us for a moment look at distributed algorithms more generally (i.e., not
only at coloring and not only at rings). Assume that initially, all nodes only
know their own label (identifier) and potentially some additional input. As
information needs at least r rounds to travel r hops, after r rounds, a node v
can only learn about other nodes at distance at most r. If message size and local
computations are not restricted, it is in fact not hard to see, that in r rounds,
a node v can exactly learn all the node labels and inputs up to distance r.
As shown by the following lemma, this allows to transform every deterministic
r-round synchronous algorithm into a simple canonical form.

Lemma 8.2. If message size and local computations are not bounded, every
deterministic, synchronous r-round algorithm can be transformed into an algo-
rithm of the form given by Algorithm 8.1 (i.e., it is possible to first communicate
for r rounds and then do all the computations in the end).

Proof. Consider some r-round algorithm A. We want to show that A can be
brought to the canonical form given by Algorithm 8.1. First, we let the nodes
communicate for r rounds. Assume that in every round, every node sends its
complete state to all of its neighbors (remember that there is no restriction on
the maximal message size). By induction, after i rounds, every node knows the
initial state of all other nodes at distance at most i. Hence, after r rounds, a
node v has the combined initial knowledge of all the nodes in its r-neighborhood.
We want to show that this suffices to locally (at node v) simulate enough of
Algorithm A to compute all the messages that v receives in the r communication
rounds of a regular execution of Algorithm A.

Concretely, we prove the following statement by induction on i. For all
nodes at distance at most r − i + 1 from v, node v can compute all messages
of the first i rounds of a regular execution of A. Note that this implies that v
can compute all the messages it receives from its neighbors during all r rounds.
Because v knows the initial state of all nodes in the r-neighborhood, v can
clearly compute all messages of the first round (i.e., the statement is true for
i = 1). Let us now consider the induction step from i to i+ 1. By the induction
hypothesis, v can compute the messages of the first i rounds of all nodes in
its (r − i + 1)-neighborhood. It can therefore compute all messages that are
received by nodes in the (r − i)-neighborhood in the first i rounds. This is of

8.2. LOCALITY 87

course exactly what is needed to compute the messages of round i+ 1 of nodes
in the (r − i)-neighborhood.

Remarks:

• It is straightforward to generalize the canonical form to randomized
algorithms: Every node first computes all the random bits it needs
throughout the algorithm. The random bits are then part of the initial
state of a node.

Definition 8.3 (r-hop view). We call the collection of the initial states of all
nodes in the r-neighborhood of a node v, the r-hop view of v.

Remarks:

• Assume that initially, every node knows its degree, its label (identi-
fier) and potentially some additional input. The r-hop view of a node
v then includes the complete topology of the r-neighborhood (exclud-
ing edges between nodes at distance r) and the labels and additional
inputs of all nodes in the r-neighborhood.

Based on the definition of an r-hop view, we can state the following corollary
of Lemma 8.2.

Corollary 8.4. A deterministic r-round algorithm A is a function that maps
every possible r-hop view to the set of possible outputs.

Proof. By Lemma 8.2, we know that we can transform Algorithm A to the
canonical form given by Algorithm 8.1. After r communication rounds, every
node v knows exactly its r-hop view. This information suffices to compute the
output of node v.

Remarks:

• Note that the above corollary implies that two nodes with equal r-hop
views have to compute the same output in every r-round algorithm.

• For coloring algorithms, the only input of a node v is its label. The
r-hop view of a node therefore is its labeled r-neighborhood.

• If we only consider rings, r-hop neighborhoods are particularly simple.
The labeled r-neighborhood of a node v (and hence its r-hop view) in
an oriented ring is simply a (2r + 1)-tuple (`−r, `−r+1, . . . , `0, . . . , `r)
of distinct node labels where `0 is the label of v. Assume that for
i > 0, `i is the label of the ith clockwise neighbor of v and `−i is
the label of the ith counterclockwise neighbor of v. A deterministic
coloring algorithm for oriented rings therefore is a function that maps
(2r + 1)-tuples of node labels to colors.

• Consider two r-hop views Vr = (`−r, . . . , `r) and V ′r = (`′−r, . . . , `
′
r).

If `′i = `i+1 for −r ≤ i ≤ r− 1 and if `′r 6= `i for −r ≤ i ≤ r, the r-hop
view V ′r can be the r-hop view of a clockwise neighbor of a node with
r-hop view Vr. Therefore, every algorithm A that computes a valid
coloring needs to assign different colors to Vr and V ′r. Otherwise, there
is a ring labeling for which A assigns the same color to two adjacent
nodes.

88 CHAPTER 8. LOCALITY LOWER BOUNDS

8.3 The Neighborhood Graph

We will now make the above observations concerning colorings of rings a bit
more formal. Instead of thinking of an r-round coloring algorithm as a function
from all possible r-hop views to colors, we will use a slightly different perspective.
Interestingly, the problem of understanding distributed coloring algorithms can
itself be seen as a classical graph coloring problem.

Definition 8.5 (Neighborhood Graph). For a given family of network graphs
G, the r-neighborhood graph Nr(G) is defined as follows. The node set of Nr(G)
is the set of all possible labeled r-neighborhoods (i.e., all possible r-hop views).
There is an edge between two labeled r-neighborhoods Vr and V ′r if Vr and V ′r
can be the r-hop views of two adjacent nodes.

Lemma 8.6. For a given family of network graphs G, there is an r-round al-
gorithm that colors graphs of G with c colors iff the chromatic number of the
neighborhood graph is χ(Nr(G)) ≤ c.

Proof. We have seen that a coloring algorithm is a function that maps every
possible r-hop view to a color. Hence, a coloring algorithm assigns a color to
every node of the neighborhood graph Nr(G). If two r-hop views Vr and V ′r can
be the r-hop views of two adjacent nodes u and v (for some labeled graph in
G), every correct coloring algorithm must assign different colors to Vr and V ′r.
Thus, specifying an r-round coloring algorithm for a family of network graphs
G is equivalent to coloring the respective neighborhood graph Nr(G).

Instead of directly defining the neighborhood graph for directed rings, we de-
fine directed graphs Bk that are closely related to the neighborhood graph. The
node set of Bk contains all k-tuples of increasing node labels ([n] = {1, . . . , n}):

V [Bk] =
{

(α1, . . . , αk) : αi ∈ [n], i < j → αi < αj
}

(8.1)

For α = (α1, . . . , αk) and β = (β1, . . . , βk) there is a directed edge from α to β
iff

∀i ∈ {1, . . . , k − 1} : βi = αi+1. (8.2)

Lemma 8.7. Viewed as an undirected graph, the graph B2r+1 is a subgraph of
the r-neighborhood graph of directed n-node rings with node labels from [n].

Proof. The claim follows directly from the observations regarding r-hop views
of nodes in a directed ring from Section 8.2. The set of k-tuples of increasing
node labels is a subset of the set of k-tuples of distinct node labels. Two nodes
of B2r+1 are connected by a directed edge iff the two corresponding r-hop views
are connected by a directed edge in the neighborhood graph. Note that if there
is an edge between α and β in Bk, α1 6= βk because the node labels in α and β
are increasing.

To determine a lower bound on the number of colors an r-round algorithm
needs for directed n-node rings, it therefore suffices to determine a lower bound
on the chromatic number of B2r+1. To obtain such a lower bound, we need the
following definition.

8.3. THE NEIGHBORHOOD GRAPH 89

Definition 8.8 (Diline Graph). The directed line graph (diline graph) DL(G)
of a directed graph G = (V,E) is defined as follows. The node set of DL(G) is
V [DL(G)] = E. There is a directed edge

(
(w, x), (y, z)

)
between (w, x) ∈ E and

(y, z) ∈ E iff x = y, i.e., if the first edge ends where the second one starts.

Lemma 8.9. If n > k, the graph Bk+1 can be defined recursively as follows:

Bk+1 = DL(Bk).

Proof. The edges of Bk are pairs of k-tuples α = (α1, . . . , αk) and β = (β1, . . . , βk)
that satisfy Conditions (8.1) and (8.2). Because the last k − 1 labels in α are
equal to the first k − 1 labels in β, the pair (α, β) can be represented by a
(k+1)-tuple γ = (γ1, . . . , γk+1) with γ1 = α1, γi = βi−1 = αi for 2 ≤ i ≤ k, and
γk+1 = βk. Because the labels in α and the labels in β are increasing, the labels
in γ are increasing as well. The two graphs Bk+1 and DL(Bk) therefore have
the same node sets. There is an edge between two nodes (α1, β1

) and (α2, β2
) of

DL(Bk) if β
1

= α2. This is equivalent to requiring that the two corresponding
(k + 1)-tuples γ

1
and γ

2
are neighbors in Bk+1, i.e., that the last k labels of γ

1
are equal to the first k labels of γ

2
.

The following lemma establishes a useful connection between the chromatic
numbers of a directed graph G and its diline graph DL(G).

Lemma 8.10. For the chromatic numbers χ(G) and χ(DL(G)) of a directed
graph G and its diline graph, it holds that

χ
(
DL(G)

)
≥ log2

(
χ(G)

)
.

Proof. Given a c-coloring ofDL(G), we show how to construct a 2c coloring ofG.
The claim of the lemma then follows because this implies that χ(G) ≤ 2χ(DL(G)).

Assume that we are given a c-coloring of DL(G). A c-coloring of the diline
graph DL(G) can be seen as a coloring of the edges of G such that no two
adjacent edges have the same color. For a node v of G, let Sv be the set of
colors of its outgoing edges. Let u and v be two nodes such that G contains a
directed edge (u, v) from u to v and let x be the color of (u, v). Clearly, x ∈ Su
because (u, v) is an outgoing edge of u. Because adjacent edges have different
colors, no outgoing edge (v, w) of v can have color x. Therefore x 6∈ Sv. This
implies that Su 6= Sv. We can therefore use these color sets to obtain a vertex
coloring of G, i.e., the color of u is Su and the color of v is Sv. Because the
number of possible subsets of [c] is 2c, this yields a 2c-coloring of G.

Let log(i) x be the i-fold application of the base-2 logarithm to x:

log(1) x = log2 x, log(i+1) x = log2(log(i) x).

Remember from Chapter 1 that

log∗ x = 1 if x ≤ 2, log∗ x = 1 + min{i : log(i) x ≤ 2}.

For the chromatic number of Bk, we obtain

Lemma 8.11. For all n ≥ 1, χ(B1) = n. Further, for n ≥ k ≥ 2, χ(Bk) ≥
log(k−1) n.

90 CHAPTER 8. LOCALITY LOWER BOUNDS

Proof. For k = 1, Bk is the complete graph on n nodes with a directed edge
from node i to node j iff i < j. Therefore, χ(B1) = n. For k > 2, the claim
follows by induction and Lemmas 8.9 and 8.10.

This finally allows us to state a lower bound on the number of rounds needed
to color a directed ring with 3 colors.

Theorem 8.12. Every deterministic, distributed algorithm to color a directed
ring with 3 or less colors needs at least (log∗ n)/2− 1 rounds.

Proof. Using the connection between Bk and the neighborhood graph for di-
rected rings, it suffices to show that χ(B2r+1) > 3 for all r < (log∗ n)/2 − 1.

From Lemma 8.11, we know that χ(B2r+1) ≥ log(2r) n. To obtain log(2r) n ≤ 2,

we need r ≥ (log∗ n)/2− 1. Because log2 3 < 2, we therefore have log(2r) n > 3
if r < log∗ n/2− 1.

Corollary 8.13. Every deterministic, distributed algorithm to compute an MIS
of a directed ring needs at least log∗ n/2−O(1) rounds.

Remarks:

• It is straightforward to see that also for a constant c > 3, the number
of rounds needed to color a ring with c or less colors is log∗ n/2−O(1).

• There basically (up to additive constants) is a gap of a factor of 2
between the log∗ n+O(1) upper bound of Chapter 1 and the log∗ n/2−
O(1) lower bound of this chapter. It is possible to show that the lower
bound is tight, even for undirected rings (for directed rings, this will
be part of the exercises).

• Alternatively, the lower bound can also be presented as an application
of Ramsey’s theory. Ramsey’s theory is best introduced with an ex-
ample: Assume you host a party, and you want to invite people such
that there are no three people who mutually know each other, and no
three people which are mutual strangers. How many people can you
invite? This is an example of Ramsey’s theorem, which says that for
any given integer c, and any given integers n1, . . . , nc, there is a Ram-
sey number R(n1, . . . , nc), such that if the edges of a complete graph
with R(n1, . . . , nc) nodes are colored with c different colors, then for
some color i the graph contains some complete subgraph of color i of
size ni. The special case in the party example is looking for R(3, 3).

• Ramsey theory is more general, as it deals with hyperedges. A normal
edge is essentially a subset of two nodes; a hyperedge is a subset of
k nodes. The party example can be explained in this context: We
have (hyper)edges of the form {i, j}, with 1 ≤ i, j ≤ n. Choosing n
sufficiently large, coloring the edges with two colors must exhibit a
set S of 3 edges {i, j} ⊂ {v1, v2, v3}, such that all edges in S have the
same color. To prove our coloring lower bound using Ramsey theory,
we form all hyperedges of size k = 2r+1, and color them with 3 colors.
Choosing n sufficiently large, there must be a set S = {v1, . . . , vk+1}
of k + 1 identifiers, such that all k + 1 hyperedges consisting of k

8.3. THE NEIGHBORHOOD GRAPH 91

nodes from S have the same color. Note that both {v1, . . . , vk} and
{v2, . . . , vk+1} are in the set S, hence there will be two neighboring
views with the same color. Ramsey theory shows that in this case
n will grow as a power tower (tetration) in k. Thus, if n is so large
that k is smaller than some function growing like log∗ n, the coloring
algorithm cannot be correct.

• The neighborhood graph concept can be used more generally to study
distributed graph coloring. It can for instance be used to show that
with a single round (every node sends its identifier to all neighbors) it
is possible to color a graph with (1+o(1))∆2 lnn colors, and that every
one-round algorithm needs at least Ω(∆2/ log2 ∆ + log log n) colors.

• One may also extend the proof to other problems, for instance one
may show that a constant approximation of the minimum dominating
set problem on unit disk graphs costs at least log-star time.

• Using r-hop views and the fact that nodes with equal r-hop views have
to make the same decisions is the basic principle behind almost all lo-
cality lower bounds (in fact, we are not aware of a locality lower bound
that does not use this principle). Using this basic technique (but a
completely different proof otherwise), it is for instance possible to show
that computing an MIS (and many other problems) in a general graph
requires at least Ω(

√
log n/ log log n) and Ω(log ∆/ log log ∆) rounds.

Chapter Notes

The lower bound proof in this chapter is by Linial [Lin92], proving asymptotic
optimality of the technique of Chapter 1. This proof can also be found in
Chapter 7.5 of [Pel00]. An alternative proof that omits the neighborhood graph
construction is presented in [LS14]. The lower bound is also true for randomized
algorithms [Nao91]. Recently, this lower bound technique was adapted to other
problems [CHW08, LW08]. In some sense, Linial’s seminal work raised the
question of what can be computed in O(1) time [NS93], essentially starting
distributed complexity theory.

More recently, using a different argument, Kuhn et al. [KMW04, KMW16]
managed to show more substantial lower bounds for a number of combinatorial
problems including minimum vertex cover (MVC), minimum dominating set
(MDS), maximal matching, or maximal independent set (MIS). More concretely,
Kuhn et al. showed that all these problems need polylogarithmic time (for a
polylogarithmic approximation, in case of approximation problems such as MVC
and MDS). Some of these bounds are tight, e.g. the MVC Ω(log ∆/ log log ∆)
lower bound is surprisingly tight [BYCHS16]. For recent surveys regarding
locality lower bounds we refer to e.g. [Suo12, KMW16].

Ramsey theory was started by Frank P. Ramsey with his 1930 article called
“On a problem of formal logic” [Ram30]. For an introduction to Ramsey theory
we refer to e.g. [NR90, LR03].

92 CHAPTER 8. LOCALITY LOWER BOUNDS

Bibliography

[BYCHS16] R Bar-Yehuda, K Censor-Hillel, and G Schwartzman. A distributed
(2+)-approximation for vertex cover in o (log/ log log) rounds.
CoRR, abs/1602.03713 v2, 2016.

[CHW08] A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak. Fast Distrib-
uted Approximations in Planar Graphs. In Proceedings of the 22nd
International Symposium on Distributed Computing (DISC), 2008.

[KMW04] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be
Computed Locally! In Proceedings of the 23rd ACM Symposium
on Principles of Distributed Computing (PODC), July 2004.

[KMW16] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local
Computation: Lower and Upper Bounds. In Journal of the ACM
(JACM), 2016.

[Lin92] N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal
on Computing, 21(1)(1):193–201, February 1992.

[LR03] Bruce M. Landman and Aaron Robertson. Ramsey Theory on the
Integers. American Mathematical Society, 2003.

[LS14] Juhana Laurinharju and Jukka Suomela. Brief Announcement:
Linial’s Lower Bound Made Easy. In Proceedings of the 2014 ACM
Symposium on Principles of Distributed Computing, PODC ’14,
pages 377–378, New York, NY, USA, 2014. ACM.

[LW08] Christoph Lenzen and Roger Wattenhofer. Leveraging Linial’s Lo-
cality Limit. In 22nd International Symposium on Distributed Com-
puting (DISC), Arcachon, France, September 2008.

[Nao91] Moni Naor. A Lower Bound on Probabilistic Algorithms for Dis-
tributive Ring Coloring. SIAM J. Discrete Math., 4(3):409–412,
1991.

[NR90] Jaroslav Nesetril and Vojtech Rodl, editors. Mathematics of Ram-
sey Theory. Springer Berlin Heidelberg, 1990.

[NS93] Moni Naor and Larry Stockmeyer. What can be Computed Lo-
cally? In Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, STOC ’93, pages 184–193, New York, NY,
USA, 1993. ACM.

[Pel00] David Peleg. Distributed Computing: a Locality-Sensitive Ap-
proach. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2000.

[Ram30] F. P. Ramsey. On a Problem of Formal Logic. Proc. London Math.
Soc. (3), 30:264–286, 1930.

[Suo12] Jukka Suomela. Survey of Local Algorithms.
http://www.cs.helsinki.fi/local-survey/, 2012.

Chapter 9

Social Networks

Distributed computing is applicable in various contexts. This lecture exemplar-
ily studies one of these contexts, social networks, an area of study whose origins
date back a century. To give you a first impression, consider Figure 9.1.

Zachary’s Karate Club

inst
2

3
4

5

6

7

8

9

10

11

12

13

14

1516

1718

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

admin

[Zachary 1977]

Recorded interactions in a

karate club for 2 years.

During observation,

adminstrator/instructor

conflict developed

⇒ broke into two clubs.

Who joins which club?

Split along

administrator/instructor

minimum cut (!)

4Figure 9.1: This graph shows the social relations between the members of a
karate club, studied by anthropologist Wayne Zachary in the 1970s. Two people
(nodes) stand out, the instructor and the administrator of the club, both happen
to have many friends among club members. At some point, a dispute caused
the club to split into two. Can you predict how the club partitioned? (If not,
just search the Internet for Zachary and Karate.)

93

94 CHAPTER 9. SOCIAL NETWORKS

9.1 Small World Networks

Back in 1929, Frigyes Karinthy published a volume of short stories that pos-
tulated that the world was “shrinking” because human beings were connected
more and more. Some claim that he was inspired by radio network pioneer
Guglielmo Marconi’s 1909 Nobel Prize speech. Despite physical distance, the
growing density of human “networks” renders the actual social distance smaller
and smaller. As a result, it is believed that any two individuals can be connected
through at most five (or so) acquaintances, i.e., within six hops.

The topic was hot in the 1960s. For instance, in 1964, Marshall McLuhan
coined the metaphor “Global Village”. He wrote: “As electrically contracted,
the globe is no more than a village”. He argues that due to the almost instanta-
neous reaction times of new (“electric”) technologies, each individual inevitably
feels the consequences of his actions and thus automatically deeply participates
in the global society. McLuhan understood what we now can directly observe –
real and virtual world are moving together. He realized that the transmission
medium, rather than the transmitted information is at the core of change, as
expressed by his famous phrase “the medium is the message”.

This idea has been followed ardently in the 1960s by several sociologists,
first by Michael Gurevich, later by Stanley Milgram. Milgram wanted to know
the average path length between two “random” humans, by using various ex-
periments, generally using randomly chosen individuals from the US Midwest
as starting points, and a stockbroker living in a suburb of Boston as target.
The starting points were given name, address, occupation, plus some personal
information about the target. They were asked to send a letter to the target.
However, they were not allowed to directly send the letter, rather, they had to
pass it to somebody they knew on first-name basis and that they thought to
have a higher probability to know the target person. This process was repeated,
until somebody knew the target person, and could deliver the letter. Shortly
after starting the experiment, letters have been received. Most letters were lost
during the process, but if they arrived, the average path length was about 5.5.
The observation that the entire population is connected by short acquaintance
chains got later popularized by the terms “six degrees of separation” and “small
world”.

Statisticians tried to explain Milgram’s experiments, by essentially giving
network models that allowed for short diameters, i.e., each node is connected
to each other node by only a few hops. Until today there is a thriving research
community in statistical physics that tries to understand network properties
that allow for “small world” effects.

The world is often fascinated by graphs with a small radius. For example,
movie fanatics study the who-acted-with-whom-in-the-same-movie graph. For
this graph it has long been believed that the actor Kevin Bacon has a partic-
ularly small radius. The number of hops from Bacon even got a name, the
Bacon Number. In the meantime, however, it has been shown that there are
“better” centers in the Hollywood universe, such as Sean Connery, Christopher
Lee, Rod Steiger, Gene Hackman, or Michael Caine. The center of other social
networks has also been explored, Paul Erdös for instance is well known in the
math community.

One of the keywords in this area are power-law graphs, networks where node
degrees are distributed according to a power-law distribution, i.e., the number

9.1. SMALL WORLD NETWORKS 95

of nodes with degree δ is proportional to δ−α, for some α > 1. Such power-
law graphs have been witnessed in many application areas, apart from social
networks also in the web, or in biology or physics.

Obviously, two power-law graphs might look and behave completely differ-
ently, even if α and the number of edges is exactly the same.

One well-known model towards this end is the Watts-Strogatz model. Watts
and Strogatz argued that social networks should be modeled by a combination of
two networks: As the basis we take a network that has a large cluster coefficient
. . .

Definition 9.2. The cluster coefficient of a network is defined by the probability
that two friends of a node are likely to be friends as well, averaged over all the
nodes.

. . . , then we augment such a graph with random links, every node for in-
stance points to a constant number of other nodes, chosen uniformly at random.
This augmentation represents acquaintances that connect nodes to parts of the
network that would otherwise be far away.

Remarks:

• Without further information, knowing the cluster coefficient is of ques-
tionable value: Assume we arrange the nodes in a grid. Technically,
if we connect each node to its four closest neighbors, the graph has
cluster coefficient 0, since there are no triangles; if we instead connect
each node with its eight closest neighbors, the cluster coefficient is 3/7.
The cluster coefficient is quite different, even though both networks
have similar characteristics.

This is interesting, but not enough to really understand what is going on. For
Milgram’s experiments to work, it is not sufficient to connect the nodes in a
certain way. In addition, the nodes themselves need to know how to forward
a message to one of their neighbors, even though they cannot know whether
that neighbor is really closer to the target. In other words, nodes are not just
following physical laws, but they make decisions themselves.

Let us consider an artificial network with nodes on a grid topology, plus some
additional random links per node. In a quantitative study it was shown that the
random links need a specific distance distribution to allow for efficient greedy
routing. This distribution marks the sweet spot for any navigable network.

Definition 9.4 (Augmented Grid). We take n = m2 nodes (i, j) ∈ V =

{1, . . . ,m}2 that are identified with the lattice points on an m × m grid. We
define the distance between two nodes (i, j) and (k, `) as d

(
(i, j), (k, `)

)
= |k −

i| + |` − j| as the distance between them on the m × m lattice. The network
is modeled using a parameter α ≥ 0. Each node u has a directed edge to ev-
ery lattice neighbor. These are the local contacts of a node. In addition, each
node also has an additional random link (the long-range contact). For all u
and v, the long-range contact of u points to node v with probability proportional
to d(u, v)−α, i.e., with probability d(u, v)−α/

∑
w∈V \{u} d(u,w)−α. Figure 9.3

illustrates the model.

96 CHAPTER 9. SOCIAL NETWORKS

Figure 9.3: Augmented grid with m = 6

Remarks:

• The network model has the following geographic interpretation: nodes
(individuals) live on a grid and know their neighbors on the grid.
Further, each node has some additional acquaintances throughout the
network.

• The parameter α controls how the additional neighbors are distributed
across the grid. If α = 0, long-range contacts are chosen uniformly at
random (as in the Watts-Strogatz model). As α increases, long-range
contacts become shorter on average. In the extreme case, if α → ∞,
all long-range contacts are to immediate neighbors on the grid.

• It can be shown that as long as α ≤ 2, the diameter of the resulting
graph is polylogarithmic in n (polynomial in log n) with high proba-
bility. In particular, if the long-range contacts are chosen uniformly
at random (α = 0), the diameter is O(log n).

Since the augmented grid contains random links, we do not know anything
for sure about how the random links are distributed. In theory, all links could
point to the same node! However, this is almost certainly not the case. Formally
this is captured by the term with high probability.

Definition 9.5 (With High Probability). Some probabilistic event is said to
occur with high probability (w.h.p.), if it happens with a probability p ≥ 1 −

9.1. SMALL WORLD NETWORKS 97

1/nc, where c is a constant. The constant c may be chosen arbitrarily, but it is
considered constant with respect to Big-O notation.

Remarks:

• For instance, a running time bound of c log n or ec! log n+ 5000c with
probability at least 1− 1/nc would be O(log n) w.h.p., but a running
time of nc would not be O(n) w.h.p. since c might also be 50.

• This definition is very powerful, as any polynomial (in n) number
of statements that hold w.h.p. also holds w.h.p. at the same time,
regardless of any dependencies between random variables!

Theorem 9.6. The diameter of the augmented grid with α = 0 is O(log n) with
high probability.

Proof Sketch. For simplicity, we will only show that we can reach a target node
t starting from some source node s. However, it can be shown that (essentially)
each of the intermediate claims holds with high probability, which then by means
of the union bound yields that all of the claims hold simultaneously with high
probability for all pairs of nodes (see exercises).

Let Ns be the dlog ne-hop neighborhood of source s on the grid, containing
Ω(log2 n) nodes. Each of the nodes in Ns has a random link, probably leading
to distant parts of the graph. As long as we have reached only o(n) nodes, any
new random link will with probability 1− o(1) lead to a node for which none of
its grid neighbors has been visited yet. Thus, in expectation we find almost |Ns|
new nodes whose neighbors are “fresh”. Using their grid links, we will reach
(4−o(1))|Ns| more nodes within one more hop. If bad luck strikes, it could still
happen that many of these links lead to a few nodes, already visited nodes, or
nodes that are very close to each other. But that is very unlikely, as we have
lots of random choices! Indeed, it can be shown that not only in expectation,
but with high probability (5− o(1))|Ns| many nodes are reached this way (see
exercises).

Because all the new nodes have (so far unused) random links, we can repeat
this reasoning inductively, implying that the number of nodes grows by (at least)
a constant factor for every two hops. Thus, after O(log n) hops, we will have
reached n/ log n nodes (which is still small compared to n). Finally, consider the
expected number of links from these nodes that enter the (log n)-neighborhood
of some target node t with respect to the grid. Since this neighborhood consists
of Ω(log2 n) nodes, in expectation Ω(log n) links come close enough to target
t. This is large enough to almost guarantee that this happens (see exercises).
Summing everything up, we still used merely O(log n) hops in total to get from
s to t.

This shows that for α = 0 (and in fact for all α ≤ 2), the resulting net-
work has a small diameter. Recall however that we also wanted the network
to be navigable. For this, we consider a simple greedy routing strategy (Algo-
rithm 9.7).

Lemma 9.8. In the augmented grid, Algorithm 9.7 finds a routing path of length
at most 2(m− 1) ∈ O(

√
n).

98 CHAPTER 9. SOCIAL NETWORKS

Algorithm 9.7 Greedy Routing

1: while not at destination do
2: go to a neighbor which is closest to destination (considering grid distance

only)
3: end while

Proof. Because of the grid, there is always a neighbor which is closer to the
destination. Since with each hop we reduce the distance to the target at least
by one in one of the two grid dimensions, we will reach the destination within
2(m− 1) steps.

This is not really what Milgram’s experiment promises. We want to know
how much the additional random links speed up the process. To this end, we
first need to understand how likely it is that the random link of node u points
to node v, in terms of their grid distance d(u, v), the number of nodes n, and
the constant parameter α.

Lemma 9.9. Node u’s random link points to a node v with probability

• Θ(1/(d(u, v)αm2−α)) if α < 2.

• Θ(1/(d(u, v)2 log n)) if α = 2,

• Θ(1/d(u, v)α) if α > 2.

Moreover, if α > 2, the probability to see a link of length at least d is in
Θ(1/dα−2).

Proof. For a constant α 6= 2, we have that

∑
w∈V \{u}

1

d(u,w)α
∈

m∑
r=1

Θ(r)

rα
= Θ

(∫ m

r=1

1

rα−1
dr

)
= Θ

([
r2−α

2− α

]m
1

)
.

If α < 2, this gives Θ(m2−α), if α > 2, it is in Θ(1). If α = 2, we get

∑
w∈V \{u}

1

d(u,w)α
∈

m∑
r=1

Θ(r)

r2
= Θ(1) ·

m∑
r=1

1

r
= Θ(logm) = Θ(log n).

Multiplying with d(u, v)α yields the first three bounds. For the last statement,
compute

∑
v∈V

d(u,v)≥d

Θ(1/d(u, v)α) = Θ

(∫ m

r=d

r

rα
dr

)
= Θ

([
r2−α

2− α

]m
d

)
= Θ(1/dα−2).

9.1. SMALL WORLD NETWORKS 99

Remarks:

• If α > 2, according to the lemma, the probability to see a random link
of length at least d = m1/(α−1) is Θ(1/dα−2) = Θ(1/m(α−2)/(α−1)).
In expectation we have to take Θ(m(α−2)/(α−1)) hops until we see a
random link of length at least d. When just following links of length
less than d, it takes more than m/d = m/m1/(α−1) = m(α−2)/(α−1)

hops. In other words, in expectation, either way we need at least
m(α−2)/(α−1) = mΩ(1) hops to the destination.

• If α < 2, there is a (slightly more complicated) argument. First we
draw a border around the nodes in distance m(2−α)/3 to the target.
Within this border there are about m2(2−α)/3 many nodes in the tar-
get area. Assume that the source is outside the target area. Start-
ing at the source, the probability to find a random link that leads
directly inside the target area is according to the lemma at most
m2(2−α)/3 · Θ(1/m2−α)) = Θ(1/m(2−α)/3). In other words, until we
find a random link that leads into the target area, in expectation,
we have to do Θ(m(2−α)/3) hops. This is too slow, and our greedy
strategy is probably faster, as thanks to having α < 2 there are many
long-range links. However, it means that we will probably enter the
border of the target area on a regular grid link. Once inside the tar-
get area, again the probability of short-cutting our trip by a random
long-range link is Θ(1/m(2−α)/3), so we probably just follow grid links,
m(2−α)/3 = mΩ(1) many of them.

• In summary, if α 6= 2, our greedy routing algorithm takes mΩ(1) =
nΩ(1) expected hops to reach the destination. This is polynomial in
the number of nodes n, and the social network can hardly be called a
“small world”.

• Maybe we can get a polylogarithmic bound on n if we set α = 2?

Definition 9.10 (Phase). Consider routing from source s to target t and assume
that we are at some intermediate node w. We say that we are in phase j at node
w if the lattice distance d(w, t) to the target node t is between 2j < d(w, t) ≤
2j+1.

Remarks:

• Enumerating the phases in decreasing order is useful, as notation be-
comes less cumbersome.

• There are dlogme ∈ O(log n) phases.

Lemma 9.11. Assume that we are in phase j at node w when routing from s
to t. The probability for getting (at least) to phase j − 1 in one step is at least
Ω(1/ log n).

Proof. Let Bj be the set of nodes x with d(x, t) ≤ 2j . We get from phase j to
(at least) phase j − 1 if the long-range contact of node w points to some node
in Bj . Note that we always make progress while following the greedy routing
path. Therefore, we have not seen node w before and the long-range contact of

100 CHAPTER 9. SOCIAL NETWORKS

w points to a random node that is independent of anything seen on the path
from s to w.

For all nodes x ∈ Bj , we have d(w, x) ≤ d(w, t) + d(x, t) ≤ 2j+1 + 2j < 2j+2.
Hence, for each node x ∈ Bj , the probability that the long-range contact of w
points to x is Ω(1/22j+4 log n). Further, the number of nodes in Bj is at least
(2j)2/2 = 22j−1. Hence, the probability that some node in Bj is the long range
contact of w is at least

Ω

(
|Bj | ·

1

22j+4 log n

)
= Ω

(
22j−1

22j+4 log n

)
= Ω

(
1

log n

)
.

Theorem 9.12. Consider the greedy routing path from a node s to a node t
on an augmented grid with parameter α = 2. The expected length of the path is
O(log2 n).

Proof. We already observed that the total number of phases is O(log n) (the
distance to the target is halved when we go from phase j to phase j − 1). At
each point during the routing process, the probability of proceeding to the next
phase is at least Ω(1/ log n). Let Xj be the number of steps in phase j. Because
the probability for ending the phase is Ω(1/ log n) in each step, in expectation
we need O(log n) steps to proceed to the next phase, i.e., E[Xj] ∈ O(log n). Let
X =

∑
j Xj be the total number of steps of the routing process. By linearity of

expectation, we have

E[X] =
∑
j

E[Xj] ∈ O(log2 n).

Remarks:

• One can show that the O(log2 n) result also holds w.h.p.

• In real world social networks, the parameter α was evaluated experi-
mentally. The assumption is that you are connected to the geograph-
ically closest nodes, and then have some random long-range contacts.
For Facebook grandpa LiveJournal it was shown that α is not really
2, but rather around 1.25.

9.2 Propagation Studies

In networks, nodes may influence each other’s behavior and decisions. There are
many applications where nodes influence their neighbors, e.g., they may impact
their opinions, or they may bias what products they buy, or they may pass on
a disease.

On a beach (modeled as a line segment), it is best to place an ice cream
stand right in the middle of the segment, because you will be able to “control”
the beach most easily. What about the second stand, where should it settle?
The answer generally depends on the model, but assuming that people will buy
ice cream from the stand that is closer, it should go right next to the first stand.

Rumors can spread surprisingly fast through social networks. Tradition-
ally this happens by word of mouth, but with the emergence of the Internet
and its possibilities new ways of rumor propagation are available. People write

9.2. PROPAGATION STUDIES 101

email, use instant messengers or publish their thoughts in a blog. Many factors
influence the dissemination of rumors. It is especially important where in a net-
work a rumor is initiated and how convincing it is. Furthermore the underlying
network structure decides how fast the information can spread and how many
people are reached. More generally, we can speak of diffusion of information in
networks. The analysis of these diffusion processes can be useful for viral mar-
keting, e.g., to target a few influential people to initiate marketing campaigns.
A company may wish to distribute the rumor of a new product via the most
influential individuals in popular social networks such as Facebook. A second
company might want to introduce a competing product and has hence to select
where to seed the information to be disseminated. Rumor spreading is quite
similar to our ice cream stand problem.

More formally, we may study propagation problems in graphs. Given a
graph, and two players. Let the first player choose a seed node u1; afterwards
let the second player choose a seed node u2, with u2 6= u1. The goal of the game
is to maximize the number of nodes that are closer to one’s own seed node.

In many graphs it is an advantage to choose first. In a star graph for instance
the first player can choose the center node of the star, controlling all but one
node. In some other graphs, the second player can at least score even. But is
there a graph where the second player has an advantage?

Theorem 9.13. In a two player rumor game where both players select one node
to initiate their rumor in the graph, the first player does not always win.

Proof. See Figure 9.14 for an example where the second player will always win,
regardless of the decision the first player. If the first player chooses the node x0

in the center, the second player can select x1. Choice x1 will be outwitted by x2,
and x2 itself can be answered by z1. All other strategies are either symmetric,
or even less promising for the first player.

x1x2

y2

y1

z1

x0

y2

z2

Figure 9.14: Counter example.

102 CHAPTER 9. SOCIAL NETWORKS

Chapter Notes

A simple form of a social network is the famous stable marriage problem [DS62]
in which a stable matching bipartite graph has to be found. There exists a great
many of variations which are based on this initial problem, e.g., [KC82, KMV94,
EO06, FKPS10, Hoe11]. Social networks like Facebook, Twitter and others have
grown very fast in the last years and hence spurred interest to research them.
How users influence other users has been studied both from a theoretical point
of view [KKT03] and in practice [CHBG10]. The structure of these networks
can be measured and studied [MMG+07]. More than half of the users in social
networks share more information than they expect to [LGKM11].

The small world phenomenon that we presented in this chapter is analyzed
by Kleinberg [Kle00]. A general overview is in [DJ10].

This chapter has been written in collaboration with Michael Kuhn.

Bibliography

[CHBG10] Meeyoung Cha, Hamed Haddadi, Fabŕıcio Benevenuto, and P. Kr-
ishna Gummadi. Measuring User Influence in Twitter: The Million
Follower Fallacy. In ICWSM, 2010.

[DJ10] Easley David and Kleinberg Jon. Networks, Crowds, and Markets:
Reasoning About a Highly Connected World. Cambridge University
Press, New York, NY, USA, 2010.

[DS62] D. Gale and L.S. Shapley. College Admission and the Stability of
Marriage. American Mathematical Monthly, 69(1):9–15, 1962.

[EO06] Federico Echenique and Jorge Oviedo. A theory of stability in many-
to-many matching markets. Theoretical Economics, 1(2):233–273,
2006.

[FKPS10] Patrik Floréen, Petteri Kaski, Valentin Polishchuk, and Jukka
Suomela. Almost Stable Matchings by Truncating the Gale-Shapley
Algorithm. Algorithmica, 58(1):102–118, 2010.

[Hoe11] Martin Hoefer. Local Matching Dynamics in Social Networks. Au-
tomata Languages and Programming, pages 113–124, 2011.

[Kar29] Frigyes Karinthy. Chain-Links, 1929.

[KC82] Alexander S. Kelso and Vincent P. Crawford. Job Matching, Coali-
tion Formation, and Gross Substitutes. Econometrica, 50(6):1483–
1504, 1982.

[KKT03] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the
spread of influence through a social network. In KDD, 2003.

[Kle00] Jon M. Kleinberg. The small-world phenomenon: an algorithm
perspective. In STOC, 2000.

[KMV94] Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-line
algorithms for weighted bipartite matching and stable marriages.
Theoretical Computer Science, 127:255–267, May 1994.

BIBLIOGRAPHY 103

[LGKM11] Yabing Liu, Krishna P. Gummadi, Balanchander Krishnamurthy,
and Alan Mislove. Analyzing Facebook privacy settings: User ex-
pectations vs. reality. In Proceedings of the 11th ACM/USENIX
Internet Measurement Conference (IMC’11), Berlin, Germany,
November 2011.

[McL64] Marshall McLuhan. Understanding media: The extensions of man.
McGraw-Hill, New York, 1964.

[Mil67] Stanley Milgram. The Small World Problem. Psychology Today,
2:60–67, 1967.

[MMG+07] Alan Mislove, Massimiliano Marcon, P. Krishna Gummadi, Peter
Druschel, and Bobby Bhattacharjee. Measurement and analysis of
online social networks. In Internet Measurement Comference, 2007.

[WS98] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of
“small-world” networks. Nature, 393(6684):440–442, Jun 1998.

[Zac77] W W Zachary. An information flow model for conflict and fission in
small groups. Journal of Anthropological Research, 33(4):452–473,
1977.

104 CHAPTER 9. SOCIAL NETWORKS

Chapter 10

Wireless Protocols

Wireless communication was one of the major success stories of the last decades.
Today, different wireless standards such as wireless local area networks (WLAN)
are omnipresent. In some sense, from a distributed computing viewpoint wireless
networks are quite simple, as they cannot form arbitrary network topologies.
Simplistic models of wireless networks include geometric graph models such as
the so-called unit disk graph. Modern models are more robust: The network
graph is restricted, e.g., the total number of neighbors of a node which are not
adjacent is likely to be small. This observation is hard to capture with purely
geometric models, and motivates more advanced network connectivity models
such as bounded growth or bounded independence.

However, on the other hand, wireless communication is also more difficult
than standard message passing, as for instance nodes are not able to transmit a
different message to each neighbor at the same time. And if two neighbors are
transmitting at the same time, they interfere, and a node may not be able to
decipher anything.

In this chapter we deal with the distributed computing principles of wireless
communication: We make the simplifying assumption that all n nodes are in the
communication range of each other, i.e., the network graph is a clique. Nodes
share a synchronous time, in each time slot a node can decide to either transmit
or receive (or sleep). However, two or more nodes transmitting in the same
time slot will cause interference. Transmitting nodes are never aware if there is
interference because they cannot simultaneously transmit and receive.

10.1 Basics

The basic communication protocol in wireless networks is the medium access
control (MAC) protocol. Unfortunately it is difficult to claim that one MAC
protocol is better than another, because it all depends on the parameters, such as
the network topology, the channel characteristics, or the traffic pattern. When
it comes to the principles of wireless protocols, we usually want to achieve
much simpler goals. One basic and important question is the following: How
long does it take until one node can transmit successfully, without interference?
This question is often called the wireless leader election problem (Chapter 2),
with the node transmitting alone being the leader.

105

106 CHAPTER 10. WIRELESS PROTOCOLS

Clearly, we can use node IDs to solve leader election, e.g., a node with ID i
transmits in time slot i. However, this may be incredibly slow. There are better
deterministic solutions, but by and large the best and simplest algorithms are
randomized.

Throughout this chapter, we use a random variable X to denote the number
of nodes transmitting in a given slot.

Algorithm 10.1 Slotted Aloha

1: Every node v executes the following code:
2: repeat
3: transmit with probability 1/n
4: until one node has transmitted alone

Theorem 10.2. Using Algorithm 10.1 allows one node to transmit alone (be-
come a leader) after expected time e.

Proof. The probability for success, i.e., only one node transmitting is

Pr[X = 1] = n · 1

n
·
(

1− 1

n

)n−1

≈ 1

e
,

where the last approximation is a result from Theorem 10.29 for sufficiently
large n. Hence, if we repeat this process e times, we can expect one success.

Remarks:

• The origin of the name is the ALOHAnet which was developed at the
University of Hawaii.

• How does the leader know that it is the leader? One simple solution is
a “distributed acknowledgment”. The nodes just continue Algorithm
10.1, including the ID of the the leader in their transmission. So the
leader learns that it is the leader.

• One more problem?! Indeed, node v which managed to transmit the
acknowledgment (alone) is the only remaining node which does not
know that the leader knows that it is the leader. We can fix this by
having the leader acknowledge v’s successful acknowledgment.

• One can also imagine an unslotted time model. In this model two
messages which overlap partially will interfere and no message is re-
ceived. As everything in this chapter, Algorithm 10.1 also works in
an unslotted time model, with a factor 2 penalty, i.e., the probability
for a successful transmission will drop from 1

e to 1
2e . Essentially, each

slot is divided into t small time slots with t→∞ and the nodes start
a new t-slot long transmission with probability 1

2nt .

10.2. INITIALIZATION 107

10.2 Initialization

Sometimes we want the n nodes to have the IDs {1, 2, . . . , n}. This process is
called initialization. Initialization can for instance be used to allow the nodes
to transmit one by one without any interference.

10.2.1 Non-Uniform Initialization

Theorem 10.3. If the nodes know n, we can initialize them in O(n) time slots.

Proof. We repeatedly elect a leader using e.g., Algorithm 10.1. The leader gets
the next free number and afterwards leaves the process. We know that this
works with probability 1/e. The expected time to finish is hence e · n.

Remarks:

• But this algorithm requires that the nodes know n in order to give
them IDs from 1, . . . , n! For a more realistic scenario we need a uni-
form algorithm, i.e, the nodes do not know n.

10.2.2 Uniform Initialization with CD

Definition 10.4 (Collision Detection, CD). Two or more nodes transmitting
concurrently is called interference. In a system with collision detection, a re-
ceiver can distinguish interference from nobody transmitting. In a system with-
out collision detection, a receiver cannot distinguish the two cases.

The main idea of the algorithm is to partition nodes iteratively into sets.
Each set is identified by a label (a bitstring), and by storing one such bitstring,
each node knows in which set it currently is. Initially, all nodes are in a single
set, identified by the empty bitstring. This set is then partitioned into two non-
empty sets, identified by ’0’ and ’1’. In the same way, all sets are iteratively
partitioned into two non-empty sets, as long as a set contains more than one
node. If a set contains only a single node, this node receives the next free ID.
The algorithm terminates once every node is alone in its set. Note that this
partitioning process iteratively creates a binary tree which has exactly one node
in the set at each leaf, and thus has n leaves.

108 CHAPTER 10. WIRELESS PROTOCOLS

Algorithm 10.5 Initialization with Collision Detection

1: Every node v executes the following code:
2: nextId := 0
3: myBitstring := ‘’ / initialize to empty string
4: bitstringsToSplit := [‘’] / a queue with sets to split

5: while bitstringsToSplit is not empty do
6: b := bitstringsToSplit.pop()

7: repeat
8: if b = myBitstring then
9: choose r uniformly at random from {0, 1}

10: in the next two time slots:
11: transmit in slot r, and listen in other slot
12: else
13: it is not my bitstring, just listen in both slots
14: end if
15: until there was at least 1 transmission in both slots
16: if b = myBitstring then
17: myBitstring := myBitstring + r / append bit r
18: end if

19: for r ∈ {0, 1} do
20: if some node u transmitted alone in slot r then
21: node u becomes ID nextId and becomes passive
22: nextId := nextId+ 1
23: else
24: bitstringsToSplit.push(b+ r)
25: end if
26: end for
27: end while

Remarks:

• In line 20 a transmitting node needs to know whether it was the only
one transmitting. This is achievable in several ways, for instance by
adding an acknowledgement round. To notify a node v that it has
transmitted alone in round r, every node that was silent in round r
sends an acknowledgement in round r+ 1, while v is silent. If v hears
a message or interference in r + 1, it knows that it transmitted alone
in round r.

Theorem 10.6. Algorithm 10.5 correctly initializes n nodes in expected time
O(n).

Proof. A successful split is defined as a split in which both subsets are non-
empty. We know that there are exactly n− 1 successful splits because we have
a binary tree with n leaves and n − 1 inner nodes. Let us now calculate the
probability for creating two non-empty sets from a set of size k ≥ 2 as

Pr[1 ≤ X ≤ k − 1] = 1− Pr[X = 0]− Pr[X = k] = 1− 1

2k
− 1

2k
≥ 1

2
.

10.3. LEADER ELECTION 109

Thus, in expectation we need O(n) splits.

Remarks:

• What if we do not have collision detection?

10.2.3 Uniform Initialization without CD

Let us assume that we have a special node ` (leader) and let S denote the set of
nodes which want to transmit. We now split every time slot from Algorithm 10.5
into two time slots and use the leader to help us distinguish between silence and
noise. In the first slot every node from the set S transmits, in the second slot
the nodes in S ∪ {`} transmit. This gives the nodes sufficient information to
distinguish the different cases (see Table 10.7).

nodes in S transmit nodes in S ∪ {`} transmit
|S| = 0 7 4

|S| = 1, S = {`} 4 4

|S| = 1, S 6= {`} 4 7

|S| ≥ 2 7 7

Table 10.7: Using a leader to distinguish between noise and silence: 7 represents
noise/silence, 4 represents a successful transmission.

Remarks:

• As such, Algorithm 10.5 works also without CD, with only a factor 2
overhead.

• More generally, a leader immediately brings CD to any protocol.

• This protocol has an important real life application, for instance when
checking out a shopping cart with items which have RFID tags.

• But how do we determine such a leader? And how long does it take
until we are “sure” that we have one? Let us repeat the notion of with
high probability.

10.3 Leader Election

10.3.1 With High Probability

Definition 10.8 (With High Probability). Some probabilistic event is said to
occur with high probability (w.h.p.), if it happens with a probability p ≥ 1 −
1/nc, where c is a constant. The constant c may be chosen arbitrarily, but it is
considered constant with respect to Big-O notation.

Theorem 10.9. Algorithm 10.1 elects a leader w.h.p. in O(log n) time slots.

110 CHAPTER 10. WIRELESS PROTOCOLS

Proof. The probability for not electing a leader after c · log n time slots, i.e.,
c log n slots without a successful transmission is

(
1− 1

e

)c lnn

=

(
1− 1

e

)e·c′ lnn
≤ 1

elnn·c′ =
1

nc′
.

Remarks:

• What about uniform algorithms, i.e. the number of nodes n is not
known?

10.3.2 Uniform Leader Election

Algorithm 10.10 Uniform leader election

1: Every node v executes the following code:
2: for k = 1, 2, 3, . . . do
3: for i = 1 to ck do
4: transmit with probability p := 1/2k

5: if node v was the only node which transmitted then
6: v becomes the leader
7: break
8: end if
9: end for

10: end for

Theorem 10.11. By using Algorithm 10.10 it is possible to elect a leader w.h.p.
in O(log2 n) time slots if n is not known.

Proof. Let us briefly describe the algorithm. The nodes transmit with prob-
ability p = 2−k for ck time slots for k = 1, 2, At first p will be too high
and hence there will be a lot of interference. But after log n phases, we have
k ≈ log n and thus the nodes transmit with probability ≈ 1

n . For simplicity’s
sake, let us assume that n is a power of 2. Using the approach outlined above,
we know that after log n iterations, we have p = 1

n . Theorem 10.9 yields that we
can elect a leader w.h.p. in O(log n) slots. Since we have to try log n estimates
until k ≈ n, the total runtime is O(log2 n).

Remarks:

• Note that our proposed algorithm has not used collision detection.
Can we solve leader election faster in a uniform setting with collision
detection?

10.3. LEADER ELECTION 111

Algorithm 10.12 Uniform leader election with CD

1: Every node v executes the following code:
2: repeat
3: transmit with probability 1

2
4: if at least one node transmitted then
5: all nodes that did not transmit quit the protocol
6: end if
7: until one node transmits alone

10.3.3 Fast Leader Election with CD

Theorem 10.13. With collision detection we can elect a leader using Algorithm
10.12 w.h.p. in O(log n) time slots.

Proof. The number of active nodes k is monotonically decreasing and always
greater than 1 which yields the correctness. A slot is called successful if at most
half the active nodes transmit. We can assume that k ≥ 2 since otherwise we
would have already elected a leader. We can calculate the probability that a
time slot is successful as

Pr

[
1 ≤ X ≤

⌈
k

2

⌉]
= P

[
X ≤

⌈
k

2

⌉]
− Pr[X = 0] ≥ 1

2
− 1

2k
≥ 1

4
.

Since the number of active nodes at least halves in every successful time slot,
log n successful time slots are sufficient to elect a leader. Now let Y be a random
variable which counts the number of successful time slots after 8 · c · log n time
slots. The expected value is E[Y] ≥ 8 · c · log n · 1

4 ≥ 2 · c · log n. Since all those
time slots are independent from each other, we can apply a Chernoff bound (see
Theorem 10.28) with δ = 1

2 which states

Pr[Y < (1− δ)E[Y]] ≤ e− δ
2

2 E[Y] ≤ e− 1
8 ·2c logn ≤ n−α

for any constant α.

Remarks:

• Can we be even faster?

10.3.4 Even Faster Leader Election with CD

Let us first briefly describe an algorithm for this. In the first phase the nodes
transmit with probability 1/220

, 1/221

, 1/222

, . . . until no node transmits. This
yields a first approximation on the number of nodes. Afterwards, a binary search
is performed to determine an even better approximation of n. Finally, the third
phase finds a constant approximation of n using a biased random walk. The
algorithm stops in any case as soon as only one node is transmitting, which will
become the leader.

Lemma 10.15. If j > log n+ log log n, then Pr[X > 1] ≤ 1
logn .

112 CHAPTER 10. WIRELESS PROTOCOLS

Algorithm 10.14 Fast uniform leader election

1: i := 1
2: repeat
3: i := 2 · i
4: transmit with probability 1/2i

5: until no node transmitted
{End of Phase 1}

6: l := 2i/2

7: u := 2i

8: while l + 1 < u do
9: j := d l+u2 e

10: transmit with probability 1/2j

11: if no node transmitted then
12: u := j
13: else
14: l := j
15: end if
16: end while
{End of Phase 2}

17: k := u
18: repeat
19: transmit with probability 1/2k

20: if no node transmitted then
21: k := k − 1
22: else
23: k := k + 1
24: end if
25: until exactly one node transmitted

Proof. The nodes transmit with probability 1/2j < 1/2logn+log logn = 1
n logn .

The expected number of nodes transmitting is E[X] = n
n logn . Using Markov’s

inequality (see Theorem 10.27) yields Pr[X > 1] ≤ Pr[X > E[X] · log n] ≤
1

logn .

Lemma 10.16. If j < log n− log log n, then P [X = 0] ≤ 1
n .

Proof. The nodes transmit with probability 1/2j > 1/2logn−log logn = logn
n .

Thus, the probability that a node is silent is at most 1 − logn
n . Hence, the

probability for a silent time slot, i.e., Pr[X = 0], is at most (1 − logn
n)n =

e− logn = 1
n .

Corollary 10.17. If i > 2 log n, then Pr[X > 1] ≤ 1
logn .

Proof. This follows from Lemma 10.15 since the deviation in this corollary is
even larger.

Corollary 10.18. If i < 1
2 log n, then P [X = 0] ≤ 1

n .

Proof. This follows from Lemma 10.16 since the deviation in this corollary is
even larger.

10.3. LEADER ELECTION 113

Lemma 10.19. Let v be such that 2v−1 < n ≤ 2v, i.e., v ≈ log n. If k > v+ 2,
then Pr[X > 1] ≤ 1

4 .

Proof. Markov’s inequality yields

Pr[X > 1] = Pr

[
X >

2k

n
E[X]

]
< Pr[X >

2k

2v
E[X]] < Pr[X > 4E[X]] <

1

4
.

Lemma 10.20. If k < v − 2, then P [X = 0] ≤ 1
4 .

Proof. A similar analysis is possible to upper bound the probability that a
transmission fails if our estimate is too small. We know that k ≤ v−2 and thus

Pr[X = 0] =

(
1− 1

2k

)n
< e−

n

2k < e−
2v−1

2k < e−2 <
1

4
.

Lemma 10.21. If v− 2 ≤ k ≤ v+ 2, then the probability that exactly one node
transmits is constant.

Proof. The transmission probability is p = 1
2v±Θ(1) = Θ(1/n), and the lemma

follows with a slightly adapted version of Theorem 10.2.

Lemma 10.22. With probability 1− 1
logn we find a leader in phase 3 in O(log log n)

time.

Proof. For any k, because of Lemmas 10.19 and 10.20, the random walk of the
third phase is biased towards the good area. One can show that in O(log log n)
steps one gets Ω(log log n) good transmissions. Let Y denote the number of
times exactly one node transmitted. With Lemma 10.21 we obtain E[Y] =
Ω(log log n). Now a direct application of a Chernoff bound (see Theorem 10.28)
yields that these transmissions elect a leader with probability 1− 1

logn .

Theorem 10.23. The Algorithm 10.14 elects a leader with probability of at
least 1− log logn

logn in time O(log log n).

Proof. From Corollary 10.17 we know that after O(log log n) time slots, the
first phase terminates. Since we perform a binary search on an interval of size
O(log n), the second phase also takes at most O(log log n) time slots. For the
third phase we know that O(log log n) slots are sufficient to elect a leader with
probability 1− 1

logn by Lemma 10.22. Thus, the total runtime is O(log log n).
Now we can combine the results. We know that the error probability for

every time slot in the first two phases is at most 1
logn . Using a union bound (see

Theorem 10.26), we can upper bound the probability that no error occurred by
log logn

logn . Thus, we know that after phase 2 our estimate is at most log log n away

from log n with probability of at least 1− log logn
logn . Hence, we can apply Lemma

10.22 and thus successfully elect a leader with probability of at least 1− log logn
logn

(again using a union bound) in time O(log log n).

114 CHAPTER 10. WIRELESS PROTOCOLS

Remarks:

• Tightening this analysis a bit more, one can elect a leader with prob-
ability 1− 1

logn in time log log n+ o(log log n).

• Can we be even faster?

10.3.5 Lower Bound

Theorem 10.24. Any uniform protocol that elects a leader with probability of

at least 1− 1
2

t
must run for at least t time slots.

Proof. Consider a system with only 2 nodes. The probability that exactly one
transmits is at most

Pr[X = 1] = 2p · (1− p) ≤ 1

2
.

Thus, after t time slots the probability that a leader was elected is at most

1− 1
2

t
.

Remarks:

• Setting t = log log n shows that Algorithm 10.14 is almost tight.

10.3.6 Uniform Asynchronous Wakeup without CD

Until now we have assumed that all nodes start the algorithm in the same time
slot. But what happens if this is not the case? How long does it take to elect
a leader if we want a uniform and anonymous (nodes do not have an identifier
and thus cannot base their decision on it) algorithm?

Theorem 10.25. If nodes wake up in an arbitrary (worst-case) way, any al-
gorithm may take Ω(n/ log n) time slots until a single node can successfully
transmit.

Proof. Nodes must transmit at some point, or they will surely never successfully
transmit. With a uniform protocol, every node executes the same code. We
focus on the first slot where nodes may transmit. No matter what the protocol
is, this happens with probability p. Since the protocol is uniform, p must be a
constant, independent of n.

The adversary wakes up w = c
p lnn nodes in each time slot with some con-

stant c. All nodes woken up in the first time slot will transmit with probability
p. We study the event E1 that exactly one of them transmits in that first time
slot. Using the inequality (1 + t/n)n ≤ et from Lemma 10.29 we get

10.4. USEFUL FORMULAS 115

Pr[E1] = w · p · (1− p)w−1

= c lnn (1− p)
1
p (c lnn−p)

≤ c lnn · e−c ln +p

= c lnn · n−cep

= n−c · O (log n)

<
1

nc−1
=

1

nc′
.

In other words, w.h.p. that time slot will not be successful. Since the nodes
cannot distinguish noise from silence, the same argument applies to every set of
nodes which wakes up. Let Eα be the event that all n/w time slots will not be
successful. Using the inequality 1− p ≤ (1− p/k)k from Lemma 10.30 we get

Pr[Eα] = (1− Pr(E1))n/w >

(
1− 1

nc′

)Θ(n/ logn)

> 1− 1

nc′′
.

In other words, w.h.p. it takes more than n/w time slots until some node can
transmit alone.

10.4 Useful Formulas

In this chapter we have used several inequalities in our proofs. For simplicity’s
sake we list all of them in this section.

Theorem 10.26. Boole’s inequality or union bound: For a countable set of
events E1, E2, E3, . . ., we have

Pr[
⋃
i

Ei] ≤
∑
i

Pr[Ei].

Theorem 10.27. Markov’s inequality: If X is any random variable and a > 0,
then

Pr[|X| ≥ a] ≤ E[X]

a
.

Theorem 10.28. Chernoff bound: Let Y1, . . . , Yn be a independent Bernoulli
random variables let Y :=

∑
i Yi. For any 0 ≤ δ ≤ 1 it holds

Pr[Y < (1− δ)E[Y]] ≤ e− δ
2

2 E[Y]

and for δ > 0

Pr[Y ≥ (1 + δ) · E[Y]] ≤ e−
min{δ,δ2}

3 ·E[Y]

Theorem 10.29. We have

et
(

1− t2

n

)
≤
(

1 +
t

n

)n
≤ et

116 CHAPTER 10. WIRELESS PROTOCOLS

for all n ∈ N, |t| ≤ n. Note that

lim
n→∞

(
1 +

t

n

)n
= et.

Theorem 10.30. For all p, k such that 0 < p < 1 and k ≥ 1 we have

1− p ≤ (1− p/k)k.

Chapter Notes

The Aloha protocol is presented and analyzed in [Abr70, BAK+75, Abr85]; the
basic technique that unslotted protocols are twice as bad a slotted protocols is
from [Rob75]. The idea to broadcast in a packet radio network by building a
tree was first presented in [TM78, Cap79]. This idea is also used in [HNO99]
to initialize the nodes. Willard [Wil86] was the first that managed to elect
a leader in O(log log n) time in expectation. Looking more carefully at the
success rate, it was shown that one can elect a leader with probability 1− 1

logn

in time log log n + o(log log n) [NO98]. Finally, approximating the number of
nodes in the network is analyzed in [JKZ02, CGK05]. The lower bound for
probabilistic wake-up is published in [JS02]. In addition to single-hop networks,
multi-hop networks have been analyzed, e.g. broadcast [BYGI92, KM98, CR06],
or deployment [MvRW06].

This chapter was written in collaboration with Philipp Brandes.

Bibliography

[Abr70] Norman Abramson. THE ALOHA SYSTEM: another alternative
for computer communications. In Proceedings of the November 17-
19, 1970, fall joint computer conference, pages 281–285, 1970.

[Abr85] Norman M. Abramson. Development of the ALOHANET. IEEE
Transactions on Information Theory, 31(2):119–123, 1985.

[BAK+75] R. Binder, Norman M. Abramson, Franklin Kuo, A. Okinaka, and
D. Wax. ALOHA packet broadcasting: a retrospect. In American
Federation of Information Processing Societies National Computer
Conference (AFIPS NCC), 1975.

[BYGI92] Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the Time-
Complexity of Broadcast in Multi-hop Radio Networks: An Expo-
nential Gap Between Determinism and Randomization. J. Comput.
Syst. Sci., 45(1):104–126, 1992.

[Cap79] J. Capetanakis. Tree algorithms for packet broadcast channels.
IEEE Trans. Inform. Theory, 25(5):505–515, 1979.

[CGK05] Ioannis Caragiannis, Clemente Galdi, and Christos Kaklamanis. Ba-
sic Computations in Wireless Networks. In International Symposium
on Algorithms and Computation (ISAAC), 2005.

BIBLIOGRAPHY 117

[CR06] Artur Czumaj and Wojciech Rytter. Broadcasting algorithms in
radio networks with unknown topology. J. Algorithms, 60(2):115–
143, 2006.

[HNO99] Tatsuya Hayashi, Koji Nakano, and Stephan Olariu. Randomized
Initialization Protocols for Packet Radio Networks. In 13th Interna-
tional Parallel Processing Symposium & 10th Symposium on Parallel
and Distributed Processing (IPPS/SPDP), 1999.

[JKZ02] Tomasz Jurdzinski, Miroslaw Kutylowski, and Jan Zatopianski.
Energy-Efficient Size Approximation of Radio Networks with No
Collision Detection. In Computing and Combinatorics (COCOON),
2002.

[JS02] Tomasz Jurdzinski and Grzegorz Stachowiak. Probabilistic Al-
gorithms for the Wakeup Problem in Single-Hop Radio Net-
works. In International Symposium on Algorithms and Computation
(ISAAC), 2002.

[KM98] Eyal Kushilevitz and Yishay Mansour. An Omega(D log (N/D))
Lower Bound for Broadcast in Radio Networks. SIAM J. Comput.,
27(3):702–712, 1998.

[MvRW06] Thomas Moscibroda, Pascal von Rickenbach, and Roger Watten-
hofer. Analyzing the Energy-Latency Trade-off during the Deploy-
ment of Sensor Networks. In 25th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM),
Barcelona, Spain, April 2006.

[NO98] Koji Nakano and Stephan Olariu. Randomized O (log log n)-Round
Leader Election Protocols in Packet Radio Networks. In Interna-
tional Symposium on Algorithms and Computation (ISAAC), 1998.

[Rob75] Lawrence G. Roberts. ALOHA packet system with and without
slots and capture. SIGCOMM Comput. Commun. Rev., 5(2):28–42,
April 1975.

[TM78] B. S. Tsybakov and V. A. Mikhailov. Slotted multiaccess packet
broadcasting feedback channel. Problemy Peredachi Informatsii,
14:32–59, October - December 1978.

[Wil86] Dan E. Willard. Log-Logarithmic Selection Resolution Protocols in
a Multiple Access Channel. SIAM J. Comput., 15(2):468–477, 1986.

118 CHAPTER 10. WIRELESS PROTOCOLS

Chapter 11

Synchronization

So far, we have mainly studied synchronous algorithms. Generally, asynchro-
nous algorithms are more difficult to obtain. Also it is substantially harder
to reason about asynchronous algorithms than about synchronous ones. For in-
stance, computing a BFS tree (Chapter 2) efficiently requires much more work in
an asynchronous system. However, many real systems are not synchronous, and
we therefore have to design asynchronous algorithms. In this chapter, we will
look at general simulation techniques, called synchronizers, that allow running
synchronous algorithms in asynchronous environments.

11.1 Basics

A synchronizer generates sequences of clock pulses at each node of the network
satisfying the condition given by the following definition.

Definition 11.1 (valid clock pulse). We call a clock pulse generated at a node
v valid if it is generated after v received all the messages of the synchronous
algorithm sent to v by its neighbors in the previous pulses.

Given a mechanism that generates the clock pulses, a synchronous algorithm
is turned into an asynchronous algorithm in an obvious way: As soon as the ith

clock pulse is generated at node v, v performs all the actions (local computations
and sending of messages) of round i of the synchronous algorithm.

Theorem 11.2. If all generated clock pulses are valid according to Definition
11.1, the above method provides an asynchronous algorithm that behaves exactly
the same way as the given synchronous algorithm.

Proof. When the ith pulse is generated at a node v, v has sent and received
exactly the same messages and performed the same local computations as in
the first i− 1 rounds of the synchronous algorithm.

The main problem when generating the clock pulses at a node v is that v can-
not know what messages its neighbors are sending to it in a given synchronous
round. Because there are no bounds on link delays, v cannot simply wait “long
enough” before generating the next pulse. In order satisfy Definition 11.1, nodes
have to send additional messages for the purpose of synchronization. The total

119

120 CHAPTER 11. SYNCHRONIZATION

complexity of the resulting asynchronous algorithm depends on the overhead
introduced by the synchronizer. For a synchronizer S, let T (S) and M(S) be
the time and message complexities of S for each generated clock pulse. As we
will see, some of the synchronizers need an initialization phase. We denote the
time and message complexities of the initialization by Tinit(S) and Minit(S),
respectively. If T (A) and M(A) are the time and message complexities of the
given synchronous algorithm A, the total time and message complexities Ttot
and Mtot of the resulting asynchronous algorithm then become

Ttot = Tinit(S)+T (A)·(1+T (S)) and Mtot = Minit(S)+M(A)+T (A)·M(S),

respectively.

Remarks:

• Because the initialization only needs to be done once for each network,
we will mostly be interested in the overheads T (S) and M(S) per
round of the synchronous algorithm.

Definition 11.3 (Safe Node). A node v is safe with respect to a certain clock
pulse if all messages of the synchronous algorithm sent by v in that pulse have
already arrived at their destinations.

Lemma 11.4. If all neighbors of a node v are safe with respect to the current
clock pulse of v, the next pulse can be generated for v.

Proof. If all neighbors of v are safe with respect to a certain pulse, v has received
all messages of the given pulse. Node v therefore satisfies the condition of
Definition 11.1 for generating a valid next pulse.

Remarks:

• In order to detect safety, we require that all algorithms send acknowl-
edgements for all received messages. As soon as a node v has received
an acknowledgement for each message that it has sent in a certain
pulse, it knows that it is safe with respect to that pulse. Note that
sending acknowledgements does not increase the asymptotic time and
message complexities.

11.2 The Local Synchronizer α

Algorithm 11.5 Synchronizer α (at node v)

1: wait until v is safe
2: send SAFE to all neighbors
3: wait until v receives SAFE messages from all neighbors
4: start new pulse

Synchronizer α is very simple. It does not need an initialization. Using
acknowledgements, each node eventually detects that it is safe. It then reports
this fact directly to all its neighbors. Whenever a node learns that all its neigh-
bors are safe, a new pulse is generated. Algorithm 11.5 formally describes the
synchronizer α.

11.3. SYNCHRONIZER β 121

Theorem 11.6. The time and message complexities of synchronizer α per syn-
chronous round are

T (α) = O(1) and M(α) = O(m).

Proof. Communication is only between neighbors. As soon as all neighbors of
a node v become safe, v knows of this fact after one additional time unit. For
every clock pulse, synchronizer α sends at most four additional messages over
every edge: Each of the nodes may have to acknowledge a message and reports
safety.

Remarks:

• Synchronizer α was presented in a framework, mostly set up to have
a common standard to discuss different synchronizers. Without the
framework, synchronizer α can be explained more easily:

1. Send message to all neighbors, include round information i and
actual data of round i (if any).

2. Wait for message of round i from all neighbors, and go to next
round.

• Although synchronizer α allows for simple and fast synchronization,
it produces awfully many messages. Can we do better? Yes.

11.3 The Global Synchronizer β

Algorithm 11.7 Synchronizer β (at node v)

1: wait until v is safe
2: wait until v receives SAFE messages from all its children in T
3: if v 6= ` then
4: send SAFE message to parent in T
5: wait until PULSE message received from parent in T
6: end if
7: send PULSE message to children in T
8: start new pulse

Synchronizer β needs an initialization that computes a leader node ` and a
spanning tree T rooted at `. As soon as all nodes are safe, this information is
propagated to ` by a convergecast. The leader then broadcasts this information
to all nodes. The details of synchronizer β are given in Algorithm 11.7.

Theorem 11.8. The time and message complexities of synchronizer β per syn-
chronous round are

T (β) = O(diameter(T)) ≤ O(n) and M(β) = O(n).

The time and message complexities for the initialization are

Tinit(β) = O(n) and Minit(β) = O(m+ n log n).

122 CHAPTER 11. SYNCHRONIZATION

Proof. Because the diameter of T is at most n − 1, the convergecast and the
broadcast together take at most 2n − 2 time units. Per clock pulse, the syn-
chronizer sends at most 2n− 2 synchronization messages (one in each direction
over each edge of T).

With the improved variant of the GHS algorithm (Algorithm 2.18) men-
tioned in Chapter 2, it is possible to construct an MST in time O(n) with
O(m + n log n) messages in an asynchronous environment. Once the tree is
computed, the tree can be made rooted in time O(n) with O(n) messages.

Remarks:

• We now got a time-efficient synchronizer (α) and a message-efficient
synchronizer (β), it is only natural to ask whether we can have the
best of both worlds. And, indeed, we can. How is that synchronizer
called? Quite obviously: γ.

11.4 The Hybrid Synchronizer γ

Figure 11.9: A cluster partition of a network: The dashed cycles specify the
clusters, cluster leaders are black, the solid edges are the edges of the intracluster
trees, and the bold solid edges are the intercluster edges

Synchronizer γ can be seen as a combination of synchronizers α and β. In the
initialization phase, the network is partitioned into clusters of small diameter.
In each cluster, a leader node is chosen and a BFS tree rooted at this leader
node is computed. These trees are called the intracluster trees. Two clusters
C1 and C2 are called neighboring if there are nodes u ∈ C1 and v ∈ C2 for
which (u, v) ∈ E. For every two neighboring clusters, an intercluster edge is
chosen, which will serve for communication between these clusters. Figure 11.9
illustrates this partitioning into clusters. We will discuss the details of how to
construct such a partition in the next section. We say that a cluster is safe if
all its nodes are safe.

11.4. SYNCHRONIZER γ 123

Synchronizer γ works in two phases. In a first phase, synchronizer β is
applied separately in each cluster by using the intracluster trees. Whenever
the leader of a cluster learns that its cluster is safe, it reports this fact to all
the nodes in the clusters as well as to the leaders of the neighboring clusters.
Now, the nodes of the cluster enter the second phase where they wait until
all the neighboring clusters are known to be safe and then generate the next
pulse. Hence, we essentially apply synchronizer α between clusters. A detailed
description is given by Algorithm 11.10.

Algorithm 11.10 Synchronizer γ (at node v)

1: wait until v is safe
2: wait until v receives SAFE messages from all children in intracluster tree
3: if v is not cluster leader then
4: send SAFE message to parent in intracluster tree
5: wait until CLUSTERSAFE message received from parent
6: end if
7: send CLUSTERSAFE message to all children in intracluster tree
8: send NEIGHBORSAFE message over all intercluster edges of v
9: wait until v receives NEIGHBORSAFE messages from all adjacent inter-

cluster edges and all children in intracluster tree
10: if v is not cluster leader then
11: send NEIGHBORSAFE message to parent in intracluster tree
12: wait until PULSE message received from parent
13: end if
14: send PULSE message to children in intracluster tree
15: start new pulse

Theorem 11.11. Let mC be the number of intercluster edges and let k be the
maximum cluster radius (i.e., the maximum distance of a leaf to its cluster
leader). The time and message complexities of synchronizer γ are

T (γ) = O(k) and M(γ) = O(n+mC).

Proof. We ignore acknowledgements, as they do not affect the asymptotic com-
plexities. Let us first look at the number of messages. Over every intraclus-
ter tree edge, exactly one SAFE message, one CLUSTERSAFE message, one
NEIGHBORSAFE message, and one PULSE message is sent. Further, one
NEIGHBORSAFE message is sent over every intercluster edge. Because there
are less than n intracluster tree edges, the total message complexity therefore
is at most 4n+ 2mC = O(n+mC).

For the time complexity, note that the depth of each intracluster tree is at
most k. On each intracluster tree, two convergecasts (the SAFE and NEIGH-
BORSAFE messages) and two broadcasts (the CLUSTERSAFE and PULSE
messages) are performed. The time complexity for this is at most 4k. There
is one more time unit needed to send the NEIGHBORSAFE messages over the
intercluster edges. The total time complexity therefore is at most 4k + 1 =
O(k).

124 CHAPTER 11. SYNCHRONIZATION

11.5 Network Partition

We will now look at the initialization phase of synchronizer γ. Algorithm 11.12
describes how to construct a partition into clusters that can be used for syn-
chronizer γ. In Algorithm 11.12, B(v, r) denotes the ball of radius r around v,
i.e., B(v, r) = {u ∈ V : d(u, v) ≤ r} where d(u, v) is the hop distance between
u and v. The algorithm has a parameter ρ > 1. The clusters are constructed
sequentially. Each cluster is started at an arbitrary node that has not been
included in a cluster. Then the cluster radius is grown as long as the cluster
grows by a factor more than ρ.

Algorithm 11.12 Cluster construction

1: while unprocessed nodes do
2: select an arbitrary unprocessed node v;
3: r := 0;
4: while |B(v, r + 1)| > ρ|B(v, r)| do
5: r := r + 1
6: end while
7: makeCluster(B(v, r)) // all nodes in B(v, r) are now processed
8: end while

Remarks:

• The algorithm allows a trade-off between the cluster diameter k (and
thus the time complexity) and the number of intercluster edges mC

(and thus the message complexity). We will quantify the possibilities
in the next section.

• Two very simple partitions would be to make a cluster out of every
single node or to make one big cluster that contains the whole graph.
We then get synchronizers α and β as special cases of synchronizer γ.

Theorem 11.13. Algorithm 11.12 computes a partition of the network graph
into clusters of radius at most logρ n. The number of intercluster edges is at
most (ρ− 1) · n.

Proof. The radius of a cluster is initially 0 and does only grow as long as it
grows by a factor larger than ρ. Since there are only n nodes in the graph, this
can happen at most logρ n times.

To count the number of intercluster edges, observe that an edge can only
become an intercluster edge if it connects a node at the boundary of a cluster
with a node outside a cluster. Consider a cluster C of size |C|. We know that
C = B(v, r) for some v ∈ V and r ≥ 0. Further, we know that |B(v, r + 1)| ≤
ρ · |B(v, r)|. The number of nodes adjacent to cluster C is therefore at most
|B(v, r+ 1) \B(v, r)| ≤ ρ · |C| − |C|. Because there is only one intercluster edge
connecting two clusters by definition, the number of intercluster edges adjacent
to C is at most (ρ − 1) · |C|. Summing over all clusters, we get that the total
number of intercluster edges is at most (ρ− 1) · n.

Corollary 11.14. Using ρ = 2, Algorithm 11.12 computes a clustering with
cluster radius at most log2 n and with at most n intercluster edges.

11.5. NETWORK PARTITION 125

Corollary 11.15. Using ρ = n1/k, Algorithm 11.12 computes a clustering with
cluster radius at most k and at most O(n1+1/k) intercluster edges.

Remarks:

• Algorithm 11.12 describes a centralized construction of the partition-
ing of the graph. For ρ ≥ 2, the clustering can be computed by an
asynchronous distributed algorithm in time O(n) with O(m+n log n)
(reasonably sized) messages (showing this will be part of the exer-
cises).

• It can be shown that the trade-off between cluster radius and number
of intercluster edges of Algorithm 11.12 is asymptotically optimal.
There are graphs for which every clustering into clusters of radius at
most k requires n1+c/k intercluster edges for some constant c.

The above remarks lead to a complete characterization of the complexity of
synchronizer γ.

Corollary 11.16. The time and message complexities of synchronizer γ per
synchronous round are

T (γ) = O(k) and M(γ) = O(n1+1/k).

The time and message complexities for the initialization are

Tinit(γ) = O(n) and Minit(γ) = O(m+ n log n).

Remarks:

• In Chapter 2, you have seen that by using flooding, there is a very
simple synchronous algorithm to compute a BFS tree in time O(D)
with message complexity O(m). If we use synchronizer γ to make this
algorithm asynchronous, we get an algorithm with time complexity
O(n+D log n) and message complexityO(m+n log n+D·n) (including
initialization).

• The synchronizers α, β, and γ achieve global synchronization, i.e.
every node generates every clock pulse. The disadvantage of this is
that nodes that do not participate in a computation also have to
participate in the synchronization. In many computations (e.g. in a
BFS construction), many nodes only participate for a few synchronous
rounds. In such scenarios, it is possible to achieve time and message
complexity O(log3 n) per synchronous round (without initialization).

• It can be shown that if all nodes in the network need to generate all
pulses, the trade-off of synchronizer γ is asymptotically optimal.

• Partitions of networks into clusters of small diameter and coverings
of networks with clusters of small diameters come in many variations
and have various applications in distributed computations. In particu-
lar, apart from synchronizers, algorithms for routing, the construction
of sparse spanning subgraphs, distributed data structures, and even
computations of local structures such as a MIS or a dominating set
are based on some kind of network partitions or covers.

126 CHAPTER 11. SYNCHRONIZATION

11.6 Clock Synchronization

“A man with one clock knows what time it is – a man with two is never sure.”

Synchronizers can directly be used to give nodes in an asynchronous network a
common notion of time. In wireless networks, for instance, many basic protocols
need an accurate time. Sometimes a common time in the whole network is
needed, often it is enough to synchronize neighbors. The purpose of the time
division multiple access (TDMA) protocol is to use the common wireless channel
as efficiently as possible, i.e., interfering nodes should never transmit at the
same time (on the same frequency). If we use synchronizer β to give the nodes
a common notion of time, every single clock cycle costs D time units!

Often, each (wireless) node is equipped with an internal clock. Using this
clock, it should be possible to divide time into slots, and make each node send
(or listen, or sleep, respectively) in the appropriate slots according to the media
access control (MAC) layer protocol used.

However, as it turns out, synchronizing clocks in a network is not trivial.
As nodes’ internal clocks are not perfect, they will run at speeds that are time-
dependent. For instance, variations in temperature or supply voltage will affect
this clock drift. For standard clocks, the drift is in the order of parts per million,
i.e., within a second, it will accumulate to a couple of microseconds. Wireless
TDMA protocols account for this by introducing guard times. Whenever a node
knows that it is about to receive a message from a neighbor, it powers up its
radio a little bit earlier to make sure that it does not miss the message even
when clocks are not perfectly synchronized. If nodes are badly synchronized,
messages of different slots might collide.

In the clock synchronization problem, we are given a network (graph) with
n nodes. The goal for each node is to have a logical clock such that the logical
clock values are well synchronized, and close to real time. Each node is equipped
with a hardware clock, that ticks more or less in real time, i.e., the time between
two pulses is arbitrary between [1− ε, 1 + ε], for a constant ε� 1. Similarly as
in our asynchronous model, we assume that messages sent over the edges of the
graph have a delivery time between [0, 1]. In other words, we have a bounded
but variable drift on the hardware clocks and an arbitrary jitter in the delivery
times. The goal is to design a message-passing algorithm that ensures that the
logical clock skew of adjacent nodes is as small as possible at all times.

Theorem 11.17. The global clock skew (the logical clock difference between any
two nodes in the graph) is Ω(D), where D is the diameter of the graph.

Proof. For a node u, let tu be the logical time of u and let (u → v) denote a
message sent from u to a node v. Let t(m) be the time delay of a message m
and let u and v be neighboring nodes. First consider a case where the message
delays between u and v are 1/2. Then all the messages sent by u and v at time
i according to the clock of the sender arrive at time i + 1/2 according to the
clock of the receiver.

Then consider the following cases

• tu = tv + 1/2, t(u→ v) = 1, t(v → u) = 0

• tu = tv − 1/2, t(u→ v) = 0, t(v → u) = 1,

11.6. CLOCK SYNCHRONIZATION 127

where the message delivery time is always fast for one node and slow for the
other and the logical clocks are off by 1/2. In both scenarios, the messages sent
at time i according to the clock of the sender arrive at time i + 1/2 according
to the logical clock of the receiver. Therefore, for nodes u and v, both cases
with clock drift seem the same as the case with perfectly synchronized clocks.
Furthermore, in a linked list of D nodes, the left- and rightmost nodes l, r cannot
distinguish tl = tr +D/2 from tl = tr −D/2.

Remarks:

• From Theorem 11.17, it directly follows that all the clock synchro-
nization algorithms we studied have a global skew of Ω(D).

• Many natural algorithms manage to achieve a global clock skew of
O(D).

As both the message jitter and hardware clock drift are bounded by con-
stants, it feels like we should be able to get a constant drift between neighboring
nodes. As synchronizer α pays most attention to the local synchronization, we
take a look at a protocol inspired by the synchronizer α. A pseudo-code repre-
sentation for the clock synchronization protocol α is given in Algorithm 11.18.

Algorithm 11.18 Clock synchronization α (at node v)

1: repeat
2: send logical time tv to all neighbors
3: if Receive logical time tu, where tu > tv, from any neighbor u then
4: tv := tu
5: end if
6: until done

Lemma 11.19. The clock synchronization protocol α has a local skew of Ω(n).

Proof. Let the graph be a linked list of D nodes. We denote the nodes by
v1, v2, . . . , vD from left to right and the logical clock of node vi by ti. Apart
from the left-most node v1 all hardware clocks run with speed 1 (real time).
Node v1 runs at maximum speed, i.e. the time between two pulses is not 1 but
1− ε. Assume that initially all message delays are 1. After some time, node v1

will start to speed up v2, and after some more time v2 will speed up v3, and
so on. At some point of time, we will have a clock skew of 1 between any two
neighbors. In particular t1 = tD +D − 1.

Now we start playing around with the message delays. Let t1 = T . First we
set the delay between the v1 and v2 to 0. Now node v2 immediately adjusts its
logical clock to T . After this event (which is instantaneous in our model) we set
the delay between v2 and v3 to 0, which results in v3 setting its logical clock to T
as well. We perform this successively to all pairs of nodes until vD−2 and vD−1.
Now node vD−1 sets its logical clock to T , which indicates that the difference
between the logical clocks of vD−1 and vD is T − (T − (D − 1)) = D − 1.

128 CHAPTER 11. SYNCHRONIZATION

Remarks:

• The introduced examples may seem cooked-up, but examples like this
exist in all networks, and for all algorithms. Indeed, it was shown that
any natural clock synchronization algorithm must have a bad local
skew. In particular, a protocol that averages between all neighbors
is even worse than the introduced α algorithm. This algorithm has a
clock skew of Ω(D2) in the linked list, at all times.

• It was shown that the local clock skew is Θ(logD), i.e., there is a pro-
tocol that achieves this bound, and there is a proof that no algorithm
can be better than this bound!

• Note that these are worst-case bounds. In practice, clock drift and
message delays may not be the worst possible, typically the speed of
hardware clocks changes at a comparatively slow pace and the mes-
sage transmission times follow a benign probability distribution. If we
assume this, better protocols do exist.

Chapter Notes

The idea behind synchronizers is quite intuitive and as such, synchronizers α and
β were implicitly used in various asynchronous algorithms [Gal76, Cha79, CL85]
before being proposed as separate entities. The general idea of applying syn-
chronizers to run synchronous algorithms in asynchronous networks was first
introduced by Awerbuch [Awe85a]. His work also formally introduced the syn-
chronizers α and β. Improved synchronizers that exploit inactive nodes or hy-
percube networks were presented in [AP90, PU87].

Naturally, as synchronizers are motivated by practical difficulties with local
clocks, there are plenty of real life applications. Studies regarding applications
can be found in, e.g., [SM86, Awe85b, LTC89, AP90, PU87]. Synchronizers in
the presence of network failures have been discussed in [AP88, HS94].

It has been known for a long time that the global clock skew is Θ(D) [LL84,
ST87]. The problem of synchronizing the clocks of nearby nodes was intro-
duced by Fan and Lynch in [LF04]; they proved a surprising lower bound of
Ω(logD/ log logD) for the local skew. The first algorithm providing a non-
trivial local skew of O(

√
D) was given in [LW06]. Later, matching upper and

lower bounds of Θ(logD) were given in [LLW10]. The problem has also been
studied in a dynamic setting [KLO09, KLLO10].

Clock synchronization is a well-studied problem in practice, for instance
regarding the global clock skew in sensor networks, e.g. [EGE02, GKS03,
MKSL04, PSJ04]. One more recent line of work is focussing on the problem
of minimizing the local clock skew [BvRW07, SW09, LSW09, FW10, FZTS11].

Bibliography

[AP88] Baruch Awerbuch and David Peleg. Adapting to Asynchronous Dy-
namic Networks with Polylogarithmic Overhead. In 24th ACM Sym-
posium on Foundations of Computer Science (FOCS), pages 206–
220, 1988.

BIBLIOGRAPHY 129

[AP90] Baruch Awerbuch and David Peleg. Network Synchronization with
Polylogarithmic Overhead. In Proceedings of the 31st IEEE Sympo-
sium on Foundations of Computer Science (FOCS), 1990.

[Awe85a] Baruch Awerbuch. Complexity of Network Synchronization. Journal
of the ACM (JACM), 32(4):804–823, October 1985.

[Awe85b] Baruch Awerbuch. Reducing Complexities of the Distributed Max-
flow and Breadth-first-search Algorithms by Means of Network Syn-
chronization. Networks, 15:425–437, 1985.

[BvRW07] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer.
Dozer: Ultra-Low Power Data Gathering in Sensor Networks. In
International Conference on Information Processing in Sensor Net-
works (IPSN), Cambridge, Massachusetts, USA, April 2007.

[Cha79] E.J.H. Chang. Decentralized Algorithms in Distributed Systems. PhD
thesis, University of Toronto, 1979.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed Snapshots: De-
termining Global States of Distributed Systems. ACM Transactions
on Computer Systems, 1:63–75, 1985.

[EGE02] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained
Network Time Synchronization Using Reference Broadcasts. ACM
SIGOPS Operating Systems Review, 36:147–163, 2002.

[FW10] Roland Flury and Roger Wattenhofer. Slotted Programming for
Sensor Networks. In International Conference on Information Pro-
cessing in Sensor Networks (IPSN), Stockholm, Sweden, April 2010.

[FZTS11] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh.
Efficient Network Flooding and Time Synchronization with Glossy.
In Proceedings of the 10th International Conference on Information
Processing in Sensor Networks (IPSN), pages 73–84, 2011.

[Gal76] Robert Gallager. Distributed Minimum Hop Algorithms. Technical
report, Lab. for Information and Decision Systems, 1976.

[GKS03] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-
sync Protocol for Sensor Networks. In Proceedings of the 1st interna-
tional conference on Embedded Networked Sensor Systems (SenSys),
2003.

[HS94] M. Harrington and A. K. Somani. Synchronizing Hypercube Net-
works in the Presence of Faults. IEEE Transactions on Computers,
43(10):1175–1183, 1994.

[KLLO10] Fabian Kuhn, Christoph Lenzen, Thomas Locher, and Rotem Osh-
man. Optimal Gradient Clock Synchronization in Dynamic Net-
works. In 29th Symposium on Principles of Distributed Computing
(PODC), Zurich, Switzerland, July 2010.

130 CHAPTER 11. SYNCHRONIZATION

[KLO09] Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient Clock
Synchronization in Dynamic Networks. In 21st ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), Calgary,
Canada, August 2009.

[LF04] Nancy Lynch and Rui Fan. Gradient Clock Synchronization. In
Proceedings of the 23rd Annual ACM Symposium on Principles of
Distributed Computing (PODC), 2004.

[LL84] Jennifer Lundelius and Nancy Lynch. An Upper and Lower Bound
for Clock Synchronization. Information and Control, 62:190–204,
1984.

[LLW10] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight
Bounds for Clock Synchronization. In Journal of the ACM, Volume
57, Number 2, January 2010.

[LSW09] Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer. Op-
timal Clock Synchronization in Networks. In 7th ACM Conference
on Embedded Networked Sensor Systems (SenSys), Berkeley, Cali-
fornia, USA, November 2009.

[LTC89] K. B. Lakshmanan, K. Thulasiraman, and M. A. Comeau. An Ef-
ficient Distributed Protocol for Finding Shortest Paths in Networks
with Negative Weights. IEEE Trans. Softw. Eng., 15:639–644, 1989.

[LW06] Thomas Locher and Roger Wattenhofer. Oblivious Gradient Clock
Synchronization. In 20th International Symposium on Distributed
Computing (DISC), Stockholm, Sweden, September 2006.

[MKSL04] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The
Flooding Time Synchronization Protocol. In Proceedings of the 2nd
international Conference on Embedded Networked Sensor Systems,
SenSys ’04, 2004.

[PSJ04] Santashil PalChaudhuri, Amit Kumar Saha, and David B. Johnson.
Adaptive Clock Synchronization in Sensor Networks. In Proceedings
of the 3rd International Symposium on Information Processing in
Sensor Networks, IPSN ’04, 2004.

[PU87] David Peleg and Jeffrey D. Ullman. An Optimal Synchronizer for
the Hypercube. In Proceedings of the sixth annual ACM Symposium
on Principles of Distributed Computing, PODC ’87, pages 77–85,
1987.

[SM86] Baruch Shieber and Shlomo Moran. Slowing Sequential Algorithms
for Obtaining Fast Distributed and Parallel Algorithms: Maximum
Matchings. In Proceedings of the fifth annual ACM Symposium on
Principles of Distributed Computing, PODC ’86, pages 282–292,
1986.

[ST87] T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. Jour-
nal of the ACM, 34:626–645, 1987.

BIBLIOGRAPHY 131

[SW09] Philipp Sommer and Roger Wattenhofer. Gradient Clock Synchro-
nization in Wireless Sensor Networks. In 8th ACM/IEEE Inter-
national Conference on Information Processing in Sensor Networks
(IPSN), San Francisco, USA, April 2009.

132 CHAPTER 11. SYNCHRONIZATION

Chapter 12

Stabilization

A large branch of research in distributed computing deals with fault-tolerance.
Being able to tolerate a considerable fraction of failing or even maliciously be-
having (“Byzantine”) nodes while trying to reach consensus (on e.g. the output
of a function) among the nodes that work properly is crucial for building reli-
able systems. However, consensus protocols require that a majority of the nodes
remains non-faulty all the time.

Can we design a distributed system that survives transient (short-lived)
failures, even if all nodes are temporarily failing? In other words, can we build
a distributed system that repairs itself ?

12.1 Self-Stabilization

Definition 12.1 (Self-Stabilization). A distributed system is self-stabilizing if,
starting from an arbitrary state, it is guaranteed to converge to a legitimate
state. If the system is in a legitimate state, it is guaranteed to remain there,
provided that no further faults happen. A state is legitimate if the state satisfies
the specifications of the distributed system.

Remarks:

• What kind of transient failures can we tolerate? An adversary can
crash nodes, or make nodes behave Byzantine. Indeed, temporarily
an adversary can do harm in even worse ways, e.g. by corrupting the
volatile memory of a node (without the node noticing – not unlike
the movie Memento), or by corrupting messages on the fly (without
anybody noticing). However, as all failures are transient, eventually
all nodes must work correctly again, that is, crashed nodes get res-
urrected, Byzantine nodes stop being malicious, messages are being
delivered reliably, and the memory of the nodes is secure.

• Clearly, the read only memory (ROM) must be taboo at all times for
the adversary. No system can repair itself if the program code itself or
constants are corrupted. The adversary can only corrupt the variables
in the volatile random access memory (RAM).

133

134 CHAPTER 12. STABILIZATION

Definition 12.2 (Time Complexity). The time complexity of a self-stabilizing
system is the time that passed after the last (transient) failure until the system
has converged to a legitimate state again, staying legitimate.

Remarks:

• Self-stabilization enables a distributed system to recover from a tran-
sient fault regardless of its nature. A self-stabilizing system does not
have to be initialized as it eventually (after convergence) will behave
correctly.

• One of the first self-stabilizing algorithms was Dijkstra’s token ring
network. A token ring is an early form of a local area network where
nodes are arranged in a ring, communicating by a token. The sys-
tem is correct if there is exactly one token in the ring. Let’s have
a look at a simple solution. Given an oriented ring, we simply call
the clockwise neighbor parent (p), and the counterclockwise neigh-
bor child (c). Also, there is a leader node v0. Every node v is in a
state S(v) ∈ {0, 1, . . . , n}, perpetually informing its child about its
state. The token is implicitly passed on by nodes switching state.
Upon noticing a change of the parent state S(p), node v executes the
following code:

Algorithm 12.3 Self-stabilizing Token Ring

1: if v = v0 then
2: if S(v) = S(p) then
3: S(v) := S(v) + 1 (mod n)
4: end if
5: else
6: S(v) := S(p)
7: end if

Theorem 12.4. Algorithm 12.3 stabilizes correctly.

Proof: As long as some nodes or edges are faulty, anything can happen. In self-
stabilization, we only consider the system after all faults already have happened
(at time t0, however starting in an arbitrary state).

Every node apart from leader v0 will always attain the state of its parent.
It may happen that one node after the other will learn the current state of the
leader. In this case the system stabilizes after the leader increases its state at
most n time units after time t0. It may however be that the leader increases its
state even if the system is not stable, e.g. because its parent or parent’s parent
accidentally had the same state at time t0.

The leader will increase its state possibly multiple times without reaching
stability, however, at some point the leader will reach state s, a state that no
other node had at time t0. (Since there are n nodes and n states, this will
eventually happen.) At this point the system must stabilize because the leader
cannot push for s+ 1 (mod n) until every node (including its parent) has s.

After stabilization, there will always be only one node changing its state,
i.e., the system remains in a legitimate state.

12.1. SELF-STABILIZATION 135

Remarks:

• Although one might think the time complexity of the algorithm is
quite bad, it is asymptotically optimal.

• It can be a lot of fun designing self-stabilizing algorithms. Let us try
to build a system, where the nodes organize themselves as a maximal
independent set (MIS, Chapter 7):

Algorithm 12.5 Self-stabilizing MIS

Require: Node IDs
Every node v executes the following code:

1: do atomically
2: Leave MIS if a neighbor with a larger ID is in the MIS
3: Join MIS if no neighbor with larger ID joins MIS
4: Send (node ID, MIS or not MIS) to all neighbors
5: end do

Remarks:

• Note that the main idea of Algorithm 12.5 is from Algorithm 7.3,
Chapter 7.

• As long as some nodes are faulty, anything can happen: Faulty nodes
may for instance decide to join the MIS, but report to their neighbors
that they did not join the MIS. Similarly messages may be corrupted
during transport. As soon as the system (nodes, messages) is correct,
however, the system will converge to a MIS. (The arguments are the
same as in Chapter 7).

• Self-stabilizing algorithms always run in an infinite loop, because tran-
sient failures can hit the system at any time. Without the infinite loop,
an adversary can always corrupt the solution “after” the algorithm
terminated.

• The problem of Algorithm 12.5 is its time complexity, which may be
linear in the number of nodes. This is not very exciting. We need
something better! Since Algorithm 12.5 was just the self-stabilizing
variant of the slow MIS Algorithm 7.3, maybe we can hope to “self-
stabilize” some of our fast algorithms from Chapter 7?

• Yes, we can! Indeed there is a general transformation that takes any
local algorithm (efficient but not fault-tolerant) and turns it into a self-
stabilizing algorithm, keeping the same level of efficiency and efficacy.
We present the general transformation below.

Theorem 12.6 (Transformation). We are given a deterministic local algorithm
A that computes a solution of a given problem in k synchronous communication
rounds. Using our transformation, we get a self-stabilizing system with time
complexity k. In other words, if the adversary does not corrupt the system for k
time units, the solution is stable. In addition, if the adversary does not corrupt
any node or message closer than distance k from a node u, node u will be stable.

136 CHAPTER 12. STABILIZATION

Proof: In the proof, we present the transformation. First, however, we need to
be more formal about the deterministic local algorithm A. In A, each node of
the network computes its decision in k phases. In phase i, node u computes
its local variables according to its local variables and received messages of the
earlier phases. Then node u sends its messages of phase i to its neighbors.
Finally node u receives the messages of phase i from its neighbors. The set of
local variables of node u in phase i is given by Liu. (In the very first phase, node
u initializes its local variables with L1

u.) The message sent from node u to node
v in phase i is denoted by mi

u,v. Since the algorithm A is deterministic, node u

can compute its local variables Liu and messages mi
u,∗ of phase i from its state

of earlier phases, by simply applying functions fL and fm. In particular,

Liu = fL(u, Li−1
u ,mi−1

∗,u), for i > 1, and (12.1)

mi
u,v = fm(u, v, Liu), for i ≥ 1. (12.2)

The self-stabilizing algorithm needs to simulate all the k phases of the local
algorithm A in parallel. Each node u stores its local variables L1

u, . . . , L
k
u as well

as all messages received m1
∗,u, . . . ,m

k
∗,u in two tables in RAM. For simplicity,

each node u also stores all the sent messages m1
u,∗, . . . ,m

k
u,∗ in a third table. If

a message or a local variable for a particular phase is unknown, the entry in the
table will be marked with a special value ⊥ (“unknown”). Initially, all entries
in the table are ⊥.

Clearly, in the self-stabilizing model, an adversary can choose to change
table values at all times, and even reset these values to ⊥. Our self-stabilizing
algorithm needs to constantly work against this adversary. In particular, each
node u runs these two procedures constantly:

• For all neighbors: Send each neighbor v a message containing the complete
row of messages of algorithmA, that is, send the vector (m1

u,v, . . . ,m
k
u,v) to

neighbor v. Similarly, if neighbor u receives such a vector from neighbor
v, then neighbor u replaces neighbor v’s row in the table of incoming
messages by the received vector (m1

v,u, . . . ,m
k
v,u).

• Because of the adversary, node u must constantly recompute its local
variables (including the initialization) and outgoing message vectors using
Functions (12.1) and (12.2) respectively.

The proof is by induction. Let N i(u) be the i-neighborhood of node u (that
is, all nodes within distance i of node u). We assume that the adversary has not
corrupted any node in Nk(u) since time t0. At time t0 all nodes in Nk(u) will
check and correct their initialization. Following Equation (12.2), at time t0 all
nodes in Nk(u) will send the correct message entry for the first round (m1

∗,∗) to
all neighbors. Asynchronous messages take at most 1 time unit to be received
at a destination. Hence, using the induction with Equations (12.1) and (12.2)
it follows that at time t0 + i, all nodes in Nk−i(u) have received the correct
messages m1

∗,∗, . . . ,m
i
∗,∗. Consequently, at time t0 + k node u has received all

messages of local algorithm A correctly, and will compute the same result value
as in A. 2

12.1. SELF-STABILIZATION 137

Remarks:

• Using our transformation (also known as “local checking”), designing
self-stabilizing algorithms just turned from art to craft.

• As we have seen, many local algorithms are randomized. This brings
two additional problems. Firstly, one may not exactly know how long
the algorithm will take. This is not really a problem since we can
simply send around all the messages needed, until the algorithm is
finished. The transformation of Theorem 12.6 works also if nodes
just send all messages that are not ⊥. Secondly, we must be careful
about the adversary. In particular we need to restrict the adversary
such that a node can produce a reproducible sufficiently long string
of random bits. This can be achieved by storing the sufficiently long
string along with the program code in the read only memory (ROM).
Alternatively, the algorithm might not store the random bit string in
its ROM, but only the seed for a random bit generator. We need this in
order to keep the adversary from reshuffling random bits until the bits
become “bad”, and the expected (or with high probability) efficacy
or efficiency guarantees of the original local algorithm A cannot be
guaranteed anymore.

• Since most local algorithms have only a few communication rounds,
and only exchange small messages, the memory overhead of the trans-
formation is usually bearable. In addition, information can often be
compressed in a suitable way so that for many algorithms message size
will remain polylogarithmic. For example, the information of the fast
MIS algorithm (Algorithm 7.12) consists of a series of random val-
ues (one for each round), plus two boolean values per round. These
boolean values represent whether the node joins the MIS, or whether
a neighbor of the node joins the MIS. The order of the values tells in
which round a decision is made. Indeed, the series of random bits can
even be compressed just into the random seed value, and the neighbors
can compute the random values of each round themselves.

• There is hope that our transformation as well gives good algorithms
for mobile networks, that is for networks where the topology of the
network may change. Indeed, for deterministic local approximation
algorithms, this is true: If the adversary does not change the topology
of a node’s k-neighborhood in time k, the solution will locally be stable
again.

• For randomized local approximation algorithms however, this is not
that simple. Assume for example, that we have a randomized local al-
gorithm for the dominating set problem. An adversary can constantly
switch the topology of the network, until it finds a topology for which
the random bits (which are not really random because these random
bits are in ROM) give a solution with a bad approximation ratio. By
defining a weaker adversarial model, we can fix this problem. Essen-
tially, the adversary needs to be oblivious, in the sense that it cannot
see the solution. Then it will not be possible for the adversary to
restart the random computation if the solution is “too good”.

138 CHAPTER 12. STABILIZATION

• Self-stabilization is the original approach, and self-organization may
be the general theme, but new buzzwords pop up every now and
then, e.g. self-configuration, self-management, self-regulation, self-
repairing, self-healing, self-optimization, self-adaptivity, or self-protection.
Generally all these are summarized as “self-*”. One computing giant
coined the term “autonomic computing” to reflect the trend of self-
managing distributed systems.

12.2 Advanced Stabilization

We finish the chapter with a non-trivial example beyond self-stabilization, show-
ing the beauty and potential of the area: In a small town, every evening each
citizen calls all his (or her) friends, asking them whether they will vote for the
Democratic or the Republican party at the next election.1 In our town citizens
listen to their friends, and everybody re-chooses his or her affiliation according
to the majority of friends.2 Is this process going to “stabilize” (in one way or
another)?

Remarks:

• Is eventually everybody voting for the same party? No.

• Will each citizen eventually stay with the same party? No.

• Will citizens that stayed with the same party for some time, stay with
that party forever? No.

• And if their friends also constantly root for the same party? No.

• Will this beast stabilize at all?!? Yes!

Eventually every citizen will either stay with the same party for the rest of her
life, or switch her opinion every day.

Theorem 12.7 (Dems & Reps). Eventually every citizen is rooting for the
same party every other day.

Proof: To prove that the opinions eventually become fixed or cycle every other
day, think of each friendship as a pair of (directed) edges, one in each direction.
Let us say an edge is currently bad if the party of the advising friend differs
from the next-day’s party of the advised friend. In other words, the edge is bad
if the advised friend did not follow the advisor’s opinion (which means that the
advisor was in the minority). An edge that is not bad, is good.

Consider the out-edges of citizen u on day t, during which (say) u roots for
the Democrats. Assume that on day t, g out-edges of u are good, and b out-
edges are bad. Note that g+ b is the degree of u. Since g out-edges are good, g
friends of u root for the Democrats on day t + 1. Likewise, b friends of u root
for the Republicans on day t + 1. In other words, on the evening of day t + 1
citizen u will receive g recommendations for Democrats, and b for Republicans.
We distinguish two cases:

1We are in the US, and as we know from The Simpsons, you “throw your vote away” if
you vote for somebody else. As a consequence our example has two parties only.

2Assume for the sake of simplicity that everybody has an odd number of friends.

12.2. ADVANCED STABILIZATION 139

• g > b: In this case, citizen u will again root for the Democrats on day
t + 2. Note that this means, on day t + 1, exactly g in-edges of u are
good, and exactly b in-edges are bad. In other words, the number of bad
out-edges on day t is exactly the number of bad in-edges on day t+ 1.

• g < b: In this case, citizen u will root for the Republicans on day t + 2.
Please note that on day t+1, exactly b in-edges of u are good, and exactly
g in-edges are bad. In other words, the number of bad out-edges on day
t was exactly the number of good in-edges on day t+ 1 (and vice versa).
This means that the number of bad out-edges on day t is strictly larger
than the number of bad in-edges on day t+ 1.

We can summarize these two cases by the following observation. If a citizen
u votes for the same party on day t as on day t + 2, the number of her bad
out-edges on day t is the same as the number of her bad in-edges on day t+ 1.
If a citizen u votes for different parties on the days t and t + 2, the number of
her bad out-edges on day t is strictly larger than the number of her bad in-edges
on day t+ 1.

We now account for the total number of bad edges. We denote the total
number of bad out-edges on day t with BOt and by the total number of bad
in-edges on day t with BIt. Using the analysis of the two cases, and summing
up for all citizens, we know that BOt ≥ BIt+1. Moreover, each out-edge of a
citizen is an in-edge for another citizen, hence BOt = BIt. In fact, if any citizen
switches its party from day t to t + 2, we know that the total number of bad
edges strictly decreases, i.e., BOt+1 = BIt+1 < BOt. But BO cannot decrease
forever. Once BOt+1 = BOt, every citizen u votes for the same party on day
t+2 as u voted on day t, and the system stabilizes in the sense that every citizen
will either stick with his or her party forever or flip-flop every day. 2

Remarks:

• The model can be generalized considerably by, for example, adding
weights to vertices (meaning some citizens’ opinions are more impor-
tant than others), adding weights to edges (meaning the influence be-
tween some citizens is stronger than between others), allowing loops
(citizens who consider their own current opinions as well), allowing
tie-breaking mechanisms, and even allowing different thresholds for
party changes.

• How long does it take until the system stabilizes?

• Some may be reminded of Conway’s Game of Life: We are given an
infinite two-dimensional grid of cells, each of which is in one of two
possible states, dead or alive. Every cell interacts with its eight neigh-
bors. In each round, the following transitions occur: Any live cell
with fewer than two live neighbors dies, as if caused by loneliness.
Any live cell with more than three live neighbors dies, as if by over-
crowding. Any live cell with two or three live neighbors lives on to
the next generation. Any dead cell with exactly three live neighbors
is “born” and becomes a live cell. The initial pattern constitutes the
“seed” of the system. The first generation is created by applying the
above rules simultaneously to every cell in the seed, births and deaths

140 CHAPTER 12. STABILIZATION

happen simultaneously, and the discrete moment at which this hap-
pens is sometimes called a tick. (In other words, each generation is
a pure function of the one before.) The rules continue to be applied
repeatedly to create further generations. John Conway figured that
these rules were enough to generate interesting situations, including
“breeders” with create “guns” which in turn create “gliders”. As such
Life in some sense answers an old question by John von Neumann,
whether there can be a simple machine that can build copies of itself.
In fact Life is Turing complete, that is, as powerful as any computer.

Figure 12.8: A “glider gun”. . .

Figure 12.9: . . . in action.

Chapter Notes

Self-stabilization was first introduced in a paper by Edsger W. Dijkstra in 1974
[Dij74], in the context of a token ring network. It was shown that the ring
stabilizes in time Θ(n). For his work Dijkstra received the 2002 ACM PODC
Influential Paper Award. Shortly after receiving the award he passed away.
With Dijkstra being such an eminent person in distributed computing (e.g.
concurrency, semaphores,mutual exclusion, deadlock, finding shortest paths in
graphs, fault-tolerance, self-stabilization), the award was renamed Edsger W.
Dijkstra Prize in Distributed Computing. In 1991 Awerbuch et al. showed that
any algorithm can be modified into a self-stabilizing algorithm that stabilizes in
the same time that is needed to compute the solution from scratch [APSV91].

The Republicans vs. Democrats problem was popularized by Peter Winkler,
in his column “Puzzled” [Win08]. Goles et al. already proved in [GO80] that
any configuration of any such system with symmetric edge weights will end up

BIBLIOGRAPHY 141

in a situation where each citizen votes for the same party every second day.
Winkler additionally proved that the time such a system takes to stabilize is
bounded by O(n2). Frischknecht et al. constructed a worst case graph which
takes Ω(n2/ log2 n) rounds to stabilize [FKW13]. Keller et al. generalized this
results in [KPW14], showing that a graph with symmetric edge weights stabi-
lizes in O(W (G)), where W (G) is the sum of edge weights in graph G. They
also constructed a weighted graph with exponential stabilization time. Closely
related to this puzzle is the well known Game of Life which was described by
the mathematician John Conway and made popular by Martin Gardner [Gar70].
In the Game of Life cells can be either dead or alive and change their states
according to the number of alive neighbors.

Bibliography

[APSV91] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-
Stabilization By Local Checking and Correction. In In Proceedings
of IEEE Symposium on Foundations of Computer Science (FOCS),
1991.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(11):943–644, November
1974.

[FKW13] Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer. Conver-
gence in (Social) Influence Networks. In 27th International Sympo-
sium on Distributed Computing (DISC), Jerusalem, Israel, October
2013.

[Gar70] M. Gardner. Mathematical Games: The fantastic combinations
of John Conway’s new solitaire game Life. Scientific American,
223:120–123, October 1970.

[GO80] E. Goles and J. Olivos. Periodic behavior of generalized threshold
functions. Discrete Mathematics, 30:187–189, 1980.

[KPW14] Barbara Keller, David Peleg, and Roger Wattenhofer. How even Tiny
Influence can have a Big Impact! In 7th International Conference
on Fun with Algorithms (FUN), Lipari Island, Italy, July 2014.

[Win08] P. Winkler. Puzzled. Communications of the ACM, 51(9):103–103,
August 2008.

142 CHAPTER 12. STABILIZATION

Chapter 13

Labeling Schemes

Imagine you want to repeatedly query a huge graph, e.g., a social or a road
network. For example, you might need to find out whether two nodes are
connected, or what the distance between two nodes is. Since the graph is so
large, you distribute it among multiple servers in your data center.

13.1 Adjacency

Theorem 13.1. It is possible to assign labels of size 2 log n bits to nodes in a
tree so that for every pair u, v of nodes, it is easy to tell whether u is adjacent
to v by just looking at u and v’s labels.

Proof. Choose a root in the tree arbitrarily so that every non-root node has a
parent. The label of each node u consists of two parts: The ID of u (from 1 to
n), and the ID of u’s parent (or nothing if u is the root).

Remarks:

• What we have constructed above is called a labeling scheme, more
precisely a labeling scheme for adjacency in trees. Formally, a labeling
scheme is defined as follows.

Definition 13.2. A labeling scheme consists of an encoder e and a decoder
d. The encoder e assigns to each node v a label e(v). The decoder d receives
the labels of the nodes in question and returns an answer to some query. The
largest size (in bits) of a label assigned to a node is called the label size of the
labeling scheme.

Remarks:

• In Theorem 13.1, the decoder receives two node labels e(u) and e(v),
and its answer is Yes or No, depending on whether u and v are
adjacent or not. The label size is 2 log n.

• The label size is the complexity measure we are going to focus on in
this chapter. The run-time of the encoder and the decoder are two
other complexity measures that are studied in the literature.

143

144 CHAPTER 13. LABELING SCHEMES

• There is an interesting connection between labeling schemes for ad-
jacency and so-called induced-universal graphs: Let F be a family
of graphs. The graph U(n) is called n-induced-universal for F if all
G ∈ F with at most n nodes appear as a node-induced subgraph in
U(n). (A node-induced subgraph of U(n) = (V,E) is any graph that
can be obtained by taking a subset V ′ of V and all edges from E which
have both endpoints in V ′.)

• In the movie Good Will Hunting, the big open question was to find all
graphs of the family of homeomorphically irreducible (non-isomorphic,
no node with degree 2) trees with 10 nodes, T10. What is the smallest
induced-universal graph for T10?

• If a graph family F allows a labeling scheme for adjacency with label
size f(n), then there are n-induced-universal graphs for F so that the
size of U(n) is at most 2f(n). Since the size of U(n) is exponential in
f it is interesting to study the label size carefully: If f is logn, the
size of U(n) is n, whereas if f is 2 log n the size of U(n) becomes n2!

• What about adjacency in general graphs?

Theorem 13.3. Any labeling scheme for adjacency in general graphs has a label
size of at least Ω(n) bits.

Proof. Let Gn denote the family of graphs with n nodes, and assume there is
a labeling scheme for adjacency in graphs from Gn with label size s. First, we
argue that the encoder e must be injective on Gn: Since the labeling scheme is
for adjacency, e cannot assign the same labels to two different graphs.

There are 2s possible labels for any node, and for every G ∈ Gn we can
choose n of them. Thus, we obtain that

|Gn| ≤
((

2s

n

))
=

(
2s + n− 1

n

)
Moreover, a graph in Gn can have at most

(
n
2

)
edges, and thus |Gn| ≥ 2(n2)/n!

when taking into account that the order of the nodes is irrelevant. Canceling
out the n! term and taking the logarithm on both sides of the inequality we
conclude that s ∈ Ω(n).

Remarks:

• The lower bound for general graphs is a bit discouraging; we wanted
to use labeling schemes for queries on large graphs!

• The situation is less dire if the graph is not arbitrary. For instance,
in degree-bounded graphs, in planar graphs, and in trees, the bounds
change to Θ(log n) bits.

• What about other queries, e.g., distance?

• Next, we will focus on rooted trees.

13.2. ROOTED TREES 145

13.2 Rooted Trees

Theorem 13.4. There is a 2 log n labeling scheme for ancestry, i.e., for two
nodes u and v, find out if u is an ancestor of v in the rooted tree T .

Proof. Traverse the tree with a depth first search, and consider the obtained
pre-ordering of the nodes, i.e., enumerate the nodes in the order in which they
are first visited. For a node u denote by l(u) the index in the pre-order. Our
encoder assigns labels e(u) = (l(u), r(u)) to each node u, where r(u) is the
largest value l(v) that appears at any node v in the sub-tree rooted at u. With
the labels assigned in this manner, we can find out whether u is an ancestor of
v by checking if l(v) is contained in the interval (l(u), r(u)].

Algorithm 13.5 Näıve-Distance-Labeling(T)

1: Let l be the label of the root r of T
2: Let T1, . . . , Tδ be the sub-trees rooted at each of the δ children of r
3: for i = 1, . . . , δ do
4: The root of Ti gets the label obtained by appending i to l
5: Näıve-Distance-Labeling(Ti)
6: end for

Theorem 13.6. There is an O(n log n) labeling scheme for distance in trees.

Proof. Apply the encoder algorithm Näıve-Distance-Labeling(T) to label the
tree T . The encoder assigns to every node v a sequence (l1, l2 . . .). The length
of a sequence e(v) is at most n, and each entry in the sequence requires at most
log n bits. A label (l1, . . . , lk) of a node v corresponds to a path from r to v in
T , and the nodes on the path are labeled (l1), (l1, l2), (l1, l2, l3) and so on. The
distance between u and v in T is obtained by reconstructing the paths from e(u)
and e(v).

Remarks:

• We can assign the labels more carefully to obtain a smaller label size.
For that, we use the following heavy-light decomposition.

Algorithm 13.7 Heavy-Light-Decomposition(T)

1: Node r is the root of T
2: Let T1, . . . , Tδ be the sub-trees rooted at each of the δ children of r
3: Let Tmax be a largest tree in {T1, . . . , Tδ} in terms of number of nodes
4: Mark the edge (r, Tmax) as heavy
5: Mark all edges to other children of r as light
6: Assign the names 1, . . . , δ − 1 to the light edges of r
7: for i = 1, . . . , δ do
8: Heavy-Light-Decomposition(Ti)
9: end for

Theorem 13.8. There is an O(log2 n) labeling scheme for distance in trees.

146 CHAPTER 13. LABELING SCHEMES

Proof. For our proof, use Heavy-Light-Decomposition(T) to partition T ’s edges
into heavy and light edges. All heavy edges form a collection of paths, called the
heavy paths. Moreover, every node is reachable from the root through a sequence
of heavy paths connected with light edges. Instead of storing the whole path to
reach a node, we only store the information about heavy paths and light edges
that were taken to reach a node from the root.

For instance, if node u can be reached by first using 2 heavy edges, then the
7th light edge, then 3 heavy edges, and then the light edges 1 and 4, then we
assign to v the label (2, 7,3, 1, 4). For any node u, the path p(u) from the root
to u is now specified by the label. The distance between any two nodes can be
computed using the paths.

Since every parent has at most ∆ < n children, the name of a light edge has
at most log n bits. The size (number of nodes in the sub-tree) of a light child is
at most half the size of its parent, so a path can have at most log n light edges.
Between any two light edges, there could be a heavy path, so we can have up to
log n heavy paths in a label. The length of such a heavy path can be described
with log n bits as well, since no heavy path has more than n nodes. Altogether
we therefore need at most O(log2 n) bits.

Remarks:

• One can show that any labeling scheme for distance in trees needs to
use labels of size at least Ω(log2 n).

• The distance encoder from Theorem 13.8 also supports decoders for
other queries. To check for ancestry, it therefore suffices to check if
p(u) is a prefix of p(v) or vice versa.

• The nearest common ancestor is the last node that is on both p(u)
and p(v), and the separation level is the length of the path to that
node.

• Two nodes are siblings if their distance is 2 but they are not ancestors.

• The heavy-light decomposition can be used to shave off a few bits in
other labeling schemes, e.g., ancestry or adjacency.

13.3 Road Networks

Labeling schemes are used to quickly find shortest paths in road networks.

Remarks:

• A näıve approach is to store at every node u the shortest paths to
all other nodes v. This requires an impractical amount of memory.
For example, the road network for Western Europe has 18 million
nodes and 44 million directed edges, and the USA road network has
24 million nodes and 58 million directed edges.

• What if we only store the next node on the shortest path to all targets?
In a worst case this stills requires Ω(n) bits per node. Moreover,
answering a single query takes many invocations of the decoder.

13.3. ROAD NETWORKS 147

• For simplicity, let us focus on answering distance queries only. Even
if we only want to know the distance, storing the full table of n2

distances costs more than 1000TB, too much for storing it in RAM.

• The idea for the encoder is to compute a set S of hub nodes that lie on
many shortest paths. We then store at each node u only the distance
to the hub nodes that appear on shortest paths originating or ending
in u.

• Given two labels e(u) and e(v), let H(u, v) denote the set of hub
nodes that appear in both labels. The decoder now simply returns
d(u, v) = min{dist(u, h) + dist(h, v) : h ∈ H(u, v)}, all of which can
be computed from the two labels.

• The key in finding a good labeling scheme now lies in finding good
hub nodes.

Algorithm 13.9 Näıve-Hub-Labeling(G)

1: Let P be the set of all n2 shortest paths
2: while P 6= ∅ do
3: Let h be a node which is on a maximum number of paths in P
4: for all paths p = (u, . . . , v) ∈ P do
5: if h is on p then
6: Add h with the distance dist(u, h) to the label of u
7: Add h with the distance dist(h, v) to the label of v
8: Remove p from P
9: end if

10: end for
11: end while

Remarks:

• Unfortunately, algorithm 13.9 takes a prohibitively long time to com-
pute.

• Another approach computes the set S as follows. The encoder (Algo-
rithm 13.10) first constructs so-called shortest path covers. The node
set Si is a shortest path cover if Si contains a node on every shortest
path of length between 2i−1 and 2i. At node v only the hub nodes in
Si that are within the ball of radius 2i around v (denoted by B(v, 2i))
are stored.

Algorithm 13.10 Hub-Labeling(G)

1: for i = 1, . . . , logD do
2: Compute the shortest path cover Si
3: end for
4: for all v ∈ V do
5: Let Fi(v) be the set Si ∩B(v, 2i)
6: Let F (v) be the set F1(v) ∪ F2(v) ∪ . . .
7: The label of v consists of the nodes in F (v), with their distance to v
8: end for

148 CHAPTER 13. LABELING SCHEMES

Remarks:

• The size of the shortest path covers will determine how space efficient
the solution will be. It turns out that real-world networks allow for
small shortest path covers: The parameter h is the so-called highway
dimension of G, is defined as h = maxi,v Fi(v), and h is conjectured
to be small for road networks.

• Computing Si with a minimal number of hubs is NP-hard, but one
can compute a O(log n) approximation of Si in polynomial time. Con-
sequently, the label size is at most O(h log n logD). By ordering the
nodes in each label by their ID, the decoder can scan through both
node lists in parallel in time O(h log n logD).

• While this approach yields good theoretical bounds, the encoder is
still too slow in practice. Therefore, before computing the shortest
path covers, the graph is contracted by introducing shortcuts first.

• Based on this approach a distance query on a continent-sized road
network can be answered in less that 1µs on current hardware, orders
of magnitude faster than a single random disk access. Storing all the
labels requires roughly 20 GB of RAM.

• The method can be extended to support shortest path queries, e.g.,
by storing the path to/from the hub nodes, or by recursively querying
for nodes that lie on the shortest path to the hub.

Chapter Notes

Adjacency labelings were first studied by Breuer and Folkman [BF67]. The
log n + O(log∗ n) upper bound for trees is due to [AR02] using a clustering
technique. In contrast, it was shown that for general graphs the size of universal
graphs is at least 2(n−1)/2! Since graphs of arboricity d can be decomposed into
d forests [NW61], the labeling scheme from [AR02] can be used to label graphs
of arboricity d with d log n + O(log n) bit labels. For a thorough survey on
labeling schemes for rooted trees please check [AHR].

Universal graphs were studied already by Ackermann [Ack37], and later
by Erdős, Rényi, and Rado [ER63, Rad64]. The connection between labeling
schemes and universal graphs [KNR88] was investigated thoroughly. Our adja-
cency lower bound follows the presentation in [AKTZ14], which also summarizes
recent results in this field of research.

Distance labeling schemes were first studied by Peleg [Pel00]. The notion of
highway dimension was introduced by [AFGW10] in an attempt to explain the
good performance of many heuristics to speed up shortest path computations,
e.g., Transit Node Routing [BFSS07]. Their suggestions to modify the SHARC
heuristic [BD08] lead to the hub labeling scheme and were implemented and
evaluated [ADGW11], and later refined [DGSW14]. The Ω(n) label size lower
bound for routing (shortest paths) with stretch smaller than 3 is due to [GG01].

This chapter was written in collaboration with Jochen Seidel. Thanks to
Noy Rotbart for suggesting the topic.

BIBLIOGRAPHY 149

Bibliography

[Ack37] Wilhelm Ackermann. Die Widerspruchsfreiheit der allgemeinen
Mengenlehre. Mathematische Annalen, 114(1):305–315, 1937.

[ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato
Fonseca F. Werneck. A hub-based labeling algorithm for shortest
paths in road networks. In SEA, 2011.

[AFGW10] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato Fon-
seca F. Werneck. Highway dimension, shortest paths, and provably
efficient algorithms. In SODA, 2010.

[AHR] Stephen Alstrup, Esben Bistrup Halvorsen, and Noy Rotbart. A
survey on labeling schemes for trees. To appear.

[AKTZ14] Stephen Alstrup, Haim Kaplan, Mikkel Thorup, and Uri Zwick.
Adjacency labeling schemes and induced-universal graphs. CoRR,
abs/1404.3391, 2014.

[AR02] Stephen Alstrup and Theis Rauhe. Small induced-universal graphs
and compact implicit graph representations. In FOCS, 2002.

[BD08] Reinhard Bauer and Daniel Delling. SHARC: fast and robust uni-
directional routing. In ALENEX, 2008.

[BF67] Melvin A Breuer and Jon Folkman. An unexpected result in cod-
ing the vertices of a graph. Journal of Mathematical Analysis and
Applications, 20(3):583 – 600, 1967.

[BFSS07] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes.
Fast routing in road networks with transit nodes. Science,
316(5824):566, 2007.

[DGSW14] Daniel Delling, Andrew V. Goldberg, Ruslan Savchenko, and Re-
nato F. Werneck. Hub labels: Theory and practice. In SEA, 2014.

[ER63] P. Erdős and A. Rényi. Asymmetric graphs. Acta Mathematica
Academiae Scientiarum Hungarica, 14(3-4):295–315, 1963.

[GG01] Cyril Gavoille and Marc Gengler. Space-efficiency for routing
schemes of stretch factor three. J. Parallel Distrib. Comput.,
61(5):679–687, 2001.

[KNR88] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit repre-
sentation of graphs. In STOC, 1988.

[NW61] C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite
graphs. J. London Math. Soc., 36:445–450, 1961.

[Pel00] David Peleg. Proximity-preserving labeling schemes. Journal of
Graph Theory, 33(3):167–176, 2000.

[Rad64] Richard Rado. Universal graphs and universal functions. Acta
Arith., 9:331–340, 1964.

150 CHAPTER 13. LABELING SCHEMES

Chapter 14

Hard Problems

This chapter is on “hard” problems in distributed computing. In sequential com-
puting, there are NP-hard problems which are conjectured to take exponential
time. Is there something similar in distributed computing? Using flooding/echo
(Algorithms 2.9,2.10) from Chapter 2, everything so far was solvable basically
in O(D) time, where D is the diameter of the network.

14.1 Diameter & APSP

But how do we compute the diameter itself!?! With flooding/echo, of course!

Algorithm 14.1 Naive Diameter Construction

1: all nodes compute their radius by synchronous flooding/echo
2: all nodes flood their radius on the constructed BFS tree
3: the maximum radius a node sees is the diameter

Remarks:

• Since all these phases only take O(D) time, nodes know the diameter
in O(D) time, which is asymptotically optimal.

• However, there is a problem! Nodes are now involved in n parallel
flooding/echo operations, thus a node may have to handle many and
big messages in one single time step. Although this is not strictly
illegal in the message passing model, it still feels like cheating! A
natural question is whether we can do the same by just sending short
messages in each round.

• In Definition 1.8 of Chapter 1 we postulated that nodes should send
only messages of “reasonable” size. In this chapter we strengthen the
definition a bit, and require that each message should have at most
O(log n) bits. This is generally enough to communicate a constant
number of ID’s or values to neighbors, but not enough to communicate
everything a node knows!

• A simple way to avoid large messages is to split them into small mes-
sages that are sent using several rounds. This can cause that messages

151

152 CHAPTER 14. HARD PROBLEMS

are getting delayed in some nodes but not in others. The flooding
might not use edges of a BFS tree anymore! These floodings might not
compute correct distances anymore! On the other hand we know that
the maximal message size in Algorithm 14.1 is O(n log n). So we could
just simulate each of these “big message” rounds by n “small message”
rounds using small messages. This yields a runtime of O(nD) which
is not desirable. A third possible approach is “starting each flood-
ing/echo one after each other” and results in O(nD) in the worst case
as well.

• So let us fix the above algorithm! The key idea is to arrange the
flooding-echo processes in a more organized way: Start the flooding
processes in a certain order and prove that at any time, each node is
only involved in one flooding. This is realized in Algorithm 14.3.

Definition 14.2. (BFSv) Performing a breadth first search at node v produces
spanning tree BFSv (see Chapter 2). This takes time O(D) using small mes-
sages.

Remarks:

• A spanning tree of a graph G can be traversed in time O(n) by sending
a pebble over an edge in each time slot.

• This can be done using, e.g., a depth first search (DFS): Start at the
root of a tree, recursively visit all nodes in the following way. If the
current node still has an unvisited child, then the pebble always visits
that child first. Return to the parent only when all children have been
visited.

• Algorithm 14.3 works as follows: Given a graph G, first a leader l
computes its BFS tree BFSl. Then we send a pebble P to traverse
tree BFSl. Each time pebble P enters a node v for the first time, P
waits one time slot, and then starts a breadth first search (BFS) –
using edges in G – from v with the aim of computing the distances
from v to all other nodes. Since we start a BFSv from every node
v, each node u learns its distance to all these nodes v during the
according execution of BFSv. There is no need for an echo-process at
the end of BFSu.

Remarks:

• Having all distances is nice, but how do we get the diameter? Well, as
before, each node could just flood its radius (its maximum distance)
into the network. However, messages are small now and we need to
modify this slightly. In each round a node only sends the maximal
distance that it is aware of to its neighbors. After D rounds each
node will know the maximum distance among all nodes.

Lemma 14.4. In Algorithm 14.3, at no time a node w is simultaneously active
for both BFSu and BFSv.

14.2. LOWER BOUND GRAPHS 153

Algorithm 14.3 Computes APSP on G.

1: Assume we have a leader node l (if not, compute one first)
2: compute BFSl of leader l
3: send a pebble P to traverse BFSl in a DFS way;
4: while P traverses BFSl do
5: if P visits a new node v then
6: wait one time slot; // avoid congestion
7: start BFSv from node v; // compute all distances to v
8: // the depth of node u in BFSv is d(u, v)
9: end if

10: end while

Proof. Assume a BFSu is started at time tu at node u. Then node w will be
involved in BFSu at time tu + d(u,w). Now, consider a node v whose BFSv
is started at time tv > tu. According to the algorithm this implies that the
pebble visits v after u and took some time to travel from u to v. In particular,
the time to get from u to v is at least d(u, v), in addition at least node v is
visited for the first time (which involves waiting at least one time slot), and
we have tv ≥ tu + d(u, v) + 1. Using this and the triangle inequality, we get
that node w is involved in BFSv strictly after being involved in BFSu since
tv + d(v, w) ≥ (tu + d(u, v) + 1) + d(v, w) ≥ tu + d(u,w) + 1 > tu + d(u,w).

Theorem 14.5. Algorithm 14.3 computes APSP (all pairs shortest path) in
time O(n).

Proof. Since the previous lemma holds for any pair of vertices, no two BFS
“interfere” with each other, i.e. all messages can be sent on time without con-
gestion. Hence, all BFS stop at most D time slots after they were started. We
conclude that the runtime of the algorithm is determined by the time O(D) we
need to build tree BFSl, plus the time O(n) that P needs to traverse BFSl, plus
the time O(D) needed by the last BFS that P initiated. Since D ≤ n, this is
all in O(n).

Remarks:

• All of a sudden our algorithm needs O(n) time, and possibly n� D.
We should be able to do better, right?!

• Unfortunately not! One can show that computing the diameter of a
network needs Ω(n/ log n) time.

• Note that one can check whether a graph has diameter 1 by exchanging
some specific information such as degree with the neighbors. However,
already checking diameter 2 is difficult.

14.2 Lower Bound Graphs

We define a family G of graphs that we use to prove a lower bound on the
rounds needed to compute the diameter. To simplify our analysis, we assume
that (n− 2) can be divided by 8. We start by defining four sets of nodes, each

154 CHAPTER 14. HARD PROBLEMS

consisting of q = q(n) := (n− 2)/4 nodes. Throughout this chapter we write [q]
as a short version of {1, . . . , q} and define:

L0 := {li | i ∈ [q] } // upper left in Figure 14.6

L1 := {l′i | i ∈ [q] } // lower left

R0 := {ri | i ∈ [q] } // upper right

R1 := {r′i | i ∈ [q] } // lower right

L0 R0

R1L1

cL cR

l1 r1

l2 r2

l01 r0
1

l02 r0
2

Figure 14.6: The above skeleton G′ contains n = 10 nodes, such that q = 2.

We add node cL and connect it to all nodes in L0 and L1. Then we add
node cR, connected to all nodes in R0 and R1. Furthermore, nodes cL and cR
are connected by an edge. For i ∈ [q] we connect li to ri and l′i to r′i. Also we
add edges such that nodes in L0 are a clique, nodes in L1 are a clique, nodes
in R0 are a clique, and nodes in R1 are a clique. The resulting graph is called
G′. Graph G′ is the skeleton of any graph in family G.

More formally skeleton G′ = (V ′, E′) is:

V ′ := L0 ∪ L1 ∪ R0 ∪ R1 ∪ {cL, cR}

E′ :=
⋃

v ∈L0 ∪ L1

{(v, cL)} // connections to cL

∪
⋃

v ∈R0 ∪ R1

{(v, cR)} // connections to cR

∪
⋃
i∈[q]

{(li, ri), (l′i, r′i)} ∪ {(cL, cR)} // connects left to right

∪
⋃

S ∈ {L0,
L1, R0, R1}

⋃
u 6=v∈S

{(u, v)} // clique edges

To simplify our arguments, we partition G′ into two parts: Part L is the
subgraph induced by nodes L0 ∪ L1 ∪ {cL}. Part R is the subgraph induced
by nodes R0 ∪ R1 ∪ {cR}.

14.2. LOWER BOUND GRAPHS 155

Family G contains any graph G that is derived from G′ by adding any com-
bination of edges of the form (li, l

′
j) resp. (ri, r

′
j) with li ∈ L0, l′j ∈ L1, ri ∈ R0,

and r′j ∈ R1.

Part L Part R

cL cR

l1 r1

l2 r2

l01 r0
1

l02 r0
2

Figure 14.7: The above graph G has n = 10 and is a member of family G. What
is the diameter of G?

Lemma 14.8. The diameter of a graph G = (V,E) ∈ G is 2 if and only if: For
each tuple (i, j) with i, j ∈ [q], there is either edge (li, l

′
j) or edge (ri, r

′
j) (or both

edges) in E.

Proof. Note that the distance between most pairs of nodes is at most 2. In
particular, the radius of cL resp. cR is 2. Thanks to cL resp. cR the distance
between, any two nodes within Part L resp. within Part R is at most 2.
Because of the cliques L0,L1,R0,R1, distances between li and rj resp. l′i and
r′j is at most 2.

The only interesting case is between a node li ∈ L0 and node r′j ∈ R1 (or,
symmetrically, between l′j ∈ L1 and node ri ∈ R0). If either edge (li, l

′
j) or

edge (ri, r
′
j) is present, then this distance is 2, since the path (li, l

′
j , r
′
j) or the

path (li, ri, r
′
j) exists. If neither of the two edges exist, then the neighborhood

of li consists of {cL, ri}, all nodes in L0, and some nodes in L1 \ {l′j}, and the
neighborhood of r′j consists of {cR, l′j} , all nodes in R1, and some nodes in
R0 \ {ri} (see for example Figure 14.9 with i = 2 and j = 2.) Since the two
neighborhoods do not share a common node, the distance between li and r′j is
(at least) 3.

Remarks:

• Each part contains up to q2 ∈ Θ(n2) edges not belonging to the skele-
ton.

• There are 2q + 1 ∈ Θ(n) edges connecting the left and the right part.
Since in each round we can transmit O(log n) bits over each edge

156 CHAPTER 14. HARD PROBLEMS

cL cR

l1 r1

l2 r2

l01 r0
1

l02 r0
2

Figure 14.9: Nodes in the neighborhood of l2 are cyan, the neighborhood of r′2
is white. Since these neighborhoods do not intersect, the distance of these two
nodes is d(l2, r

′
2) > 2. If edge (l2, l

′
2) was included, their distance would be 2.

(in each direction), the bandwidth between Part L and Part R is
O(n log n).

• If we transmit the information of the Θ(n2) edges in a naive way with
a bandwidth of O(n log n), we need Ω(n/ log n) time. But maybe we
can do better?!? Can an algorithm be smarter and only send the
information that is really necessary to tell whether the diameter is 2?

• It turns out that any algorithm needs Ω(n/ log n) rounds, since the
information that is really necessary to tell that the diameter is larger
than 2 contains basically Θ(n2) bits.

14.3 Communication Complexity

To prove the last remark formally, we can use arguments from two-party com-
munication complexity. This area essentially deals with a basic version of dis-
tributed computation: two parties are given some input each and want to solve
a task on this input.

We consider two students (Alice and Bob) at two different universities con-
nected by a communication channel (e.g., via email) and we assume this channel
to be reliable. Now Alice and Bob want to check whether they received the same
problem set for homework (we assume their professors are lazy and wrote it on
the black board instead of putting a nicely prepared document online.) Do Alice
and Bob really need to type the whole problem set into their emails? In a more
formal way: Alice receives an k-bit string x and Bob another k-bit string y, and
the goal is for both of them to compute the equality function.

Definition 14.10. (Equality.) We define the equality function EQ to be:

EQ(x, y) :=

{
1 : x = y
0 : x 6= y .

14.3. COMMUNICATION COMPLEXITY 157

Remarks:

• In a more general setting, Alice and Bob are interested in computing a
certain function f : {0, 1}k×{0, 1}k → {0, 1} with the least amount of
communication between them. Of course they can always succeed by
having Alice send her whole k-bit string to Bob, who then computes
the function, but the idea here is to find clever ways of calculating f
with less than k bits of communication. We measure how clever they
can be as follows:

Definition 14.11. (Communication complexity CC.) The communication com-
plexity of protocol A for function f is CC(A, f) := minimum number of bits
exchanged between Alice and Bob in the worst case when using A. The commu-
nication complexity of f is CC(f) := min{CC(A, f) |A solves f}. That is the
minimal number of bits that the best protocol needs to send in the worst case.

Definition 14.12. For a given function f , we define a 2k × 2k matrix Mf

representing f . That is Mf
x,y := f(x, y).

Example 14.13. For EQ, in case k = 3, matrix MEQ looks like this:

EQ 000 001 010 011 100 101 110 111 ← x
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 1 0
111 0 0 0 0 0 0 0 1
↑ y

As a next step we define a (combinatorial) monochromatic rectangle. These

are “submatrices” of Mf which contain the same entry.

Definition 14.14. (monochromatic rectangle.) A set R ⊆ {0, 1}k × {0, 1}k is
called a monochromatic rectangle, if

• whenever (x1, y1) ∈ R and (x2, y2) ∈ R then (x1, y2) ∈ R.

• there is a fixed z such that f(x, y) = z for all (x, y) ∈ R.

Example 14.15. The first three of the following rectangles are monochromatic,
the last one is not:

R1 = {011} × {011} Example 14.13: light gray
R2 = {011, 100, 101, 110} × {000, 001} Example 14.13: gray
R3 = {000, 001, 101} × {011, 100, 110, 111} Example 14.13: dark gray
R4 = {000, 001} × {000, 001} Example 14.13: boxed

Each time Alice and Bob exchange a bit, they can eliminate columns/rows of
the matrix Mf and a combinatorial rectangle is left. They can stop communi-
cating when this remaining rectangle is monochromatic. However, maybe there
is a more efficient way to exchange information about a given bit string than

158 CHAPTER 14. HARD PROBLEMS

just naively transmitting contained bits? In order to cover all possible ways of
communication, we need the following definition:

Definition 14.16. (fooling set.) A set S ⊂ {0, 1}k × {0, 1}k fools f if there is
a fixed z such that

• f(x, y) = z for each (x, y) ∈ S

• For any (x1, y1) 6= (x2, y2) ∈ S, the rectangle {x1, x2} × {y1, y2} is not
monochromatic: Either f(x1, y2) 6= z, f(x2, y1) 6= z or both 6= z.

Example 14.17. Consider S = {(000, 000), (001, 001)}. Take a look at the
non-monochromatic rectangle R4 in Example 14.15. Verify that S is indeed a
fooling set for EQ!

Remarks:

• Can you find a larger fooling set for EQ?

• We assume that Alice and Bob take turns in sending a bit. This results
in 2 possible actions (send 0/1) per round and in 2t action patterns
during a sequence of t rounds.

Lemma 14.18. If S is a fooling set for f , then CC(f) = Ω(log |S|).

Proof. We prove the statement via contradiction: fix a protocol A and assume
that it needs t < log(|S|) rounds in the worst case. Then there are 2t possible
action patterns, with 2t < |S|. Hence for at least two elements of S, let us
call them (x1, y1), (x2, y2), protocol A produces the same action pattern P .
Naturally, the action pattern on the alternative inputs (x1, y2), (x2, y1) will be
P as well: in the first round Alice and Bob have no information on the other
party’s string and send the same bit that was sent in P . Based on this, they
determine the second bit to be exchanged, which will be the same as the second
one in P since they cannot distinguish the cases. This continues for all t rounds.
We conclude that after t rounds, Alice does not know whether Bob’s input is y1

or y2 and Bob does not know whether Alice’s input is x1 or x2. By the definition
of fooling sets, either

• f(x1, y2) 6= f(x1, y1) in which case Alice (with input x1) does not know
the solution yet,

or

• f(x2, y1) 6= f(x1, y1) in which case Bob (with input y1) does not know the
solution yet.

This contradicts the assumption that A leads to a correct decision for all inputs
after t rounds. Therefore at least log(|S|) rounds are necessary.

Theorem 14.19. CC(EQ) = Ω(k).

Proof. The set S := {(x, x) | x ∈ {0, 1}k} fools EQ and has size 2k. Now apply
Lemma 14.18.

Definition 14.20. Denote the negation of a string z by z and by x ◦ y the
concatenation of strings x and y.

14.3. COMMUNICATION COMPLEXITY 159

Lemma 14.21. Let x, y be k-bit strings. Then x 6= y if and only if there is an
index i ∈ [2k] such that the ith bit of x ◦ x and the ith bit of y ◦ y are both 0.

Proof. If x 6= y, there is an j ∈ [k] such that x and y differ in the jth bit.
Therefore either the jth bit of both x and y is 0, or the jth bit of x and y is
0. For this reason, there is an i ∈ [2k] such that x ◦ x and y ◦ y are both 0 at
position i.

If x = y, then for any i ∈ [2k] it is always the case that either the ith bit of
x ◦ x is 1 or the ith bit of y ◦ y (which is the negation of x ◦ x in this case) is
1.

Remarks:

• With these insights we get back to the problem of computing the
diameter of a graph and relate this problem to EQ.

Definition 14.22. Using the parameter q defined before, we define a bijective
map between all pairs x, y of q2-bit strings and the graphs in G: each pair of
strings x, y is mapped to graph Gx,y ∈ G that is derived from skeleton G′ by
adding

• edge (li, l
′
j) to Part L if and only if the (j + q · (i− 1))th bit of x is 1.

• edge (ri, r
′
j) to Part R if and only if the (j + q · (i− 1))th bit of y is 1.

Remarks:

• Clearly, Part L of Gx,y depends on x only and Part R depends on
y only.

Lemma 14.23. Let x and y be q2

2 -bit strings given to Alice and Bob.1 Then
graph G := Gx◦x,y◦y ∈ G has diameter 2 if and only if x = y.

Proof. By Lemma 14.21 and the construction of G, there is neither edge (li, l
′
j)

nor edge (ri, r
′
j) in E(G) for some (i, j) if and only if x 6= y. Applying Lemma

14.8 yields: G has diameter 2 if and only if x = y.

Theorem 14.24. Any distributed algorithm A that decides whether a graph G

has diameter 2 needs Ω
(

n
logn +D

)
time.

Proof. Computing D for sure needs time Ω(D). It remains to prove Ω
(

n
logn

)
.

Assume there is a distributed algorithm A that decides whether the diameter of

a graph is 2 in time o(n/ log n). When Alice and Bob are given q2

2 -bit inputs x
and y, they can simulate A to decide whether x = y as follows: Alice constructs
Part L of Gx◦x,y◦y and Bob constructs Part R. As we remarked, both parts
are independent of each other such that Part L can be constructed by Alice
without knowing y and Part R can be constructed by Bob without knowing x.
Furthermore, Gx◦x,y◦y has diameter 2 if and only if x = y (Lemma 14.23.)

Now Alice and Bob simulate the distributed algorithm A round by round:
In the first round, they determine which messages the nodes in their part of

1Thats why we need that n− 2 can be divided by 8.

160 CHAPTER 14. HARD PROBLEMS

G would send. Then they use their communication channel to exchange all
2(2q + 1) ∈ Θ(n) messages that would be sent over edges between Part L and
Part R in this round while executing A on G. Based on this Alice and Bob
determine which messages would be sent in round two and so on. For each
round simulated by Alice and Bob, they only need to communicate O(n log n)
bits: O(log n) bits for each of O(n) messages. Since A makes a decision after
o(n/ log n) rounds, this yields a total communication of o(n2) bits. On the other
hand, Lemma 14.19 states that to decide whether x equals y, Alice and Bob

need to communicate at least Ω
(
q2

2

)
= Ω(n2) bits. A contradiction.

Remarks:

• Until now we only considered deterministic algorithms. Can one do
better using randomness?

Algorithm 14.25 Randomized evaluation of EQ.

1: Alice and Bob use public randomness. That is they both have access to the
same random bit string z ∈ {0, 1}k

2: Alice sends bit a :=
∑
i∈[k] xi · zi mod 2 to Bob

3: Bob sends bit b :=
∑
i∈[k] yi · zi mod 2 to Alice

4: if a 6= b then
5: we know x 6= y
6: end if

Lemma 14.26. If x 6= y, Algorithm 14.25 discovers x 6= y with probability at
least 1/2.

Proof. Note that if x = y we have a = b for sure.
If x 6= y, Algorithm 14.25 may not reveal inequality. For instance, for k = 2,

if x = 01, y = 10 and z = 11 we get a = b = 1. In general, let I be the set of
indices where xi 6= yi, i.e. I := {i ∈ [k] | xi 6= yi}. Since x 6= y, we know that
|I| > 0. We have

|a− b| ≡
∑
i∈I

zi (mod 2),

and since all zi with i ∈ I are random, we get that a 6= b with probability at
least 1/2.

Remarks:

• By excluding the vector z = 0k we can even get a discovery probability
strictly larger than 1/2.

• Repeating the Algorithm 14.25 with different random strings z, the
error probability can be reduced arbitrarily.

• Does this imply that there is a fast randomized algorithm to determine
the diameter? Unfortunately not!

14.4. DISTRIBUTED COMPLEXITY THEORY 161

• Sometimes public randomness is not available, but private randomness
is. Here Alice has her own random string and Bob has his own random
string. A modified version of Algorithm 14.25 also works with private
randomness at the cost of the runtime.

• One can prove an Ω(n/ log n) lower bound for any randomized distrib-
uted algorithm that computes the diameter. To do so one considers
the disjointness function DISJ instead of equality. Here, Alice is given
a subset X ⊆ [k] and and Bob is given a subset Y ⊆ [k] and they need
to determine whether Y ∩ X = ∅. (X and Y can be represented by
k-bit strings x, y.) The reduction is similar as the one presented above
but uses graph Gx,y instead of Gx◦x,y◦y. However, the lower bound for
the randomized communication complexity of DISJ is more involved
than the lower bound for CC(EQ).

• Since one can compute the diameter given a solution for APSP, an
Ω(n/ log n) lower bound for APSP is implied. As such, our simple
Algorithm 14.3 is almost optimal!

• Many prominent functions allow for a low communication complex-
ity. For instance, CC(PARITY) = 2. What is the Hamming dis-
tance (number of different entries) of two strings? It is known that
CC(HAM ≥ d) = Ω(d). Also, CC(decide whether “HAM ≥ k/2 +√
k” or “HAM ≤ k/2 −

√
k”) = Ω(k), even when using randomness.

This problem is known as the Gap-Hamming-Distance.

• Lower bounds in communication complexity have many applications.
Apart from getting lower bounds in distributed computing, one can
also get lower bounds regarding circuit depth or query times for static
data structures.

• In the distributed setting with limited bandwidth we showed that
computing the diameter has about the same complexity as computing
all pairs shortest paths. In contrast, in sequential computing, it is
a major open problem whether the diameter can be computed faster
than all pairs shortest paths. No nontrivial lower bounds are known,
only that Ω(n2) steps are needed – partly due to the fact that there can
be n2 edges/distances in a graph. On the other hand the currently
best algorithm uses fast matrix multiplication and terminates after
O(n2.3727) steps.

14.4 Distributed Complexity Theory

We conclude this chapter with a short overview on the main complexity classes
of distributed message passing algorithms. Given a network with n nodes and
diameter D, we managed to establish a rich selection of upper and lower bounds
regarding how much time it takes to solve or approximate a problem. Currently
we know five main distributed complexity classes:

• Strictly local problems can be solved in constantO(1) time, e.g., a constant
approximation of a dominating set in a planar graph.

162 CHAPTER 14. HARD PROBLEMS

• Just a little bit slower are problems that can be solved in log-star O(log∗ n)
time, e.g., many combinatorial optimization problems in special graph
classes such as growth bounded graphs. 3-coloring a ring takes O(log∗ n).

• A large body of problems is polylogarithmic (or pseudo-local), in the sense
that they seem to be strictly local but are not, as they need O(polylog n)
time, e.g., the maximal independent set problem.

• There are problems which are global and need O(D) time, e.g., to count
the number of nodes in the network.

• Finally there are problems which need polynomial O(poly n) time, even if
the diameter D is a constant, e.g., computing the diameter of the network.

Chapter Notes

The linear time algorithm for computing the diameter was discovered inde-
pendently by [HW12, PRT12]. The presented matching lower bound is by
Frischknecht et al. [FHW12], extending techniques by [DHK+11].

Due to its importance in network design, shortest path-problems in general
and the APSP problem in particular were among the earliest studied problems
in distributed computing. Developed algorithms were immediately used, e.g.,
as early as in 1969 in the ARPANET (see [Lyn96], p.506). Routing messages
via shortest paths were extensively discussed to be beneficial in [Taj77, MS79,
MRR80, SS80, CM82] and in many other papers. It is not surprising that there
is plenty of literature dealing with algorithms for distributed APSP, but most
of them focused on secondary targets such as trading time for message com-
plexity. E.g., papers [AR78, Tou80, Che82] obtain a communication complexity
of roughly O(n ·m) bits/messages and still require superlinear runtime. Also a
lot of effort was spent to obtain fast sequential algorithms for various versions
of computing APSP or related problems such as the diameter problem, e.g.,
[CW90, AGM91, AMGN92, Sei95, SZ99, BVW08]. These algorithms are based
on fast matrix multiplication such that currently the best runtime is O(n2.3727)
due to [Wil12].

The problem sets in which one needs to distinguish diameter 2 from 4 are
inspired by a combinatorial (×, 3/2)-approximation in a sequential setting by
Aingworth et. al. [ACIM99]. The main idea behind this approximation is to
distinguish diameter 2 from 4. This part was transferred to the distributed
setting in [HW12].

Two-party communication complexity was introduced by Andy Yao in [Yao79].
Later, Yao received the Turing Award. A nice introduction to communication
complexity covering techniques such as fooling-sets is the book by Nisan and
Kushilevitz [KN97].

This chapter was written in collaboration with Stephan Holzer.

Bibliography

[ACIM99] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast Estima-
tion of Diameter and Shortest Paths (Without Matrix Multiplica-

BIBLIOGRAPHY 163

tion). SIAM Journal on Computing (SICOMP), 28(4):1167–1181,
1999.

[AGM91] N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs
shortest path problem. In Proceedings of the 32nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages
569–575, 1991.

[AMGN92] N. Alon, O. Margalit, Z. Galilt, and M. Naor. Witnesses for Boolean
Matrix Multiplication and for Shortest Paths. In Proceedings of
the 33rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 417–426. IEEE Computer Society, 1992.

[AR78] J.M. Abram and IB Rhodes. A decentralized shortest path algo-
rithm. In Proceedings of the 16th Allerton Conference on Commu-
nication, Control and Computing (Allerton), pages 271–277, 1978.

[BVW08] G.E. Blelloch, V. Vassilevska, and R. Williams. A New Combina-
torial Approach for Sparse Graph Problems. In Proceedings of the
35th international colloquium on Automata, Languages and Pro-
gramming, Part I (ICALP), pages 108–120. Springer-Verlag, 2008.

[Che82] C.C. Chen. A distributed algorithm for shortest paths. IEEE Trans-
actions on Computers (TC), 100(9):898–899, 1982.

[CM82] K.M. Chandy and J. Misra. Distributed computation on graphs:
Shortest path algorithms. Communications of the ACM (CACM),
25(11):833–837, 1982.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. Journal of symbolic computation (JSC),
9(3):251–280, 1990.

[DHK+11] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pan-
durangan, D. Peleg, and R. Wattenhofer. Distributed Verification
and Hardness of Distributed Approximation. Proceedings of the 43rd
annual ACM Symposium on Theory of Computing (STOC), 2011.

[FHW12] S. Frischknecht, S. Holzer, and R. Wattenhofer. Networks Can-
not Compute Their Diameter in Sublinear Time. In Proceedings
of the 23rd annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1150–1162, January 2012.

[HW12] Stephan Holzer and Roger Wattenhofer. Optimal Distributed All
Pairs Shortest Paths and Applications. In PODC, page to appear,
2012.

[KN97] E. Kushilevitz and N. Nisan. Communication complexity. Cam-
bridge University Press, 1997.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

164 CHAPTER 14. HARD PROBLEMS

[MRR80] J. McQuillan, I. Richer, and E. Rosen. The new routing algorithm
for the ARPANET. IEEE Transactions on Communications (TC),
28(5):711–719, 1980.

[MS79] P. Merlin and A. Segall. A failsafe distributed routing proto-
col. IEEE Transactions on Communications (TC), 27(9):1280–
1287, 1979.

[PRT12] David Peleg, Liam Roditty, and Elad Tal. Distributed Algorithms
for Network Diameter and Girth. In ICALP, page to appear, 2012.

[Sei95] R. Seidel. On the all-pairs-shortest-path problem in unweighted
undirected graphs. Journal of Computer and System Sciences
(JCSS), 51(3):400–403, 1995.

[SS80] M. Schwartz and T. Stern. Routing techniques used in computer
communication networks. IEEE Transactions on Communications
(TC), 28(4):539–552, 1980.

[SZ99] A. Shoshan and U. Zwick. All pairs shortest paths in undirected
graphs with integer weights. In Proceedings of the 40th Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
pages 605–614. IEEE, 1999.

[Taj77] W.D. Tajibnapis. A correctness proof of a topology information
maintenance protocol for a distributed computer network. Commu-
nications of the ACM (CACM), 20(7):477–485, 1977.

[Tou80] S. Toueg. An all-pairs shortest-paths distributed algorithm. Tech.
Rep. RC 8327, IBM TJ Watson Research Center, Yorktown
Heights, NY 10598, USA, 1980.

[Wil12] V.V. Williams. Multiplying Matrices Faster Than Coppersmith-
Winograd. Proceedings of the 44th annual ACM Symposium on
Theory of Computing (STOC), 2012.

[Yao79] A.C.C. Yao. Some complexity questions related to distributive com-
puting. In Proceedings of the 11th annual ACM symposium on The-
ory of computing (STOC), pages 209–213. ACM, 1979.

